• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    压实作用下黏土弱透水层的有机碳释放量评估

    刘锐 陈娟 邱文凯 彭子琪 马腾

    刘锐, 陈娟, 邱文凯, 彭子琪, 马腾, 2024. 压实作用下黏土弱透水层的有机碳释放量评估. 地球科学, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024
    引用本文: 刘锐, 陈娟, 邱文凯, 彭子琪, 马腾, 2024. 压实作用下黏土弱透水层的有机碳释放量评估. 地球科学, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024
    Liu Rui, Chen Juan, Qiu Wenkai, Peng Ziqi, Ma Teng, 2024. Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction. Earth Science, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024
    Citation: Liu Rui, Chen Juan, Qiu Wenkai, Peng Ziqi, Ma Teng, 2024. Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction. Earth Science, 49(7): 2600-2613. doi: 10.3799/dqkx.2023.024

    压实作用下黏土弱透水层的有机碳释放量评估

    doi: 10.3799/dqkx.2023.024
    基金项目: 

    国家自然科学基金项目 41630318

    详细信息
      作者简介:

      刘锐(1994-),男,工程师,博士,主要从事水文地质相关研究.ORCID:0000-0002-2141-1007. E-mail:706875126@qq.com

      通讯作者:

      陈娟,ORCID: 0000-0002-6437-6539. E-mail: 642590450@qq.com

    • 中图分类号: P641.2

    Evaluation of Release Amount of Organic Carbon from Clayey Aquitard under Compaction

    • 摘要: 为定量评估压实过程中黏土弱透水层对相邻含水层的有机碳释放量,以沉湖湿地研究区钻孔沉积物的背景值为约束条件,采集表层原状淤泥开展了自然沉积和人为压实两种压实模式的物理模拟实验,建立了表征不同深度有机碳释放量差异性的数学模型.自然沉积条件下,有机碳通过矿化和相结合矿物的还原溶解随孔隙水释放;黏土层(厚度约20 m)压实释放的有机碳对下伏含水层(厚度约50~80 m)地下水的浓度贡献为6.99~11.19 mg/L,约是对流和扩散作用的3.9倍.人为压实以地面沉降为例,有机碳的浓度贡献为0.19~2.02 mg/L,高于同一时期的对流和扩散作用.黏土弱透水层的压实释水是地下水中有机碳的重要来源,在天然劣质地下水的研究中应引起重视.

       

    • 图  1  淤泥采样点及钻孔位置

      Fig.  1.  Location of sampling points of silt and borehole

      图  2  模拟装置的组成

      Fig.  2.  Composition of simulation device

      图  3  不同增压速率下释水量和压力的关系

      Fig.  3.  Relationship between water yield and pressure under different pressurization rates

      图  4  实验A中沉积物TOC和孔隙水DOC含量随增压的变化

      Fig.  4.  Variation of concentrations of sediment TOC and pore water DOC with pressurization in Experiment A

      图  5  实验A孔隙水中的主要成分含量随增压的变化

      Fig.  5.  Variation of concentrations of main components in pore water with pressurization in Experiment A

      图  6  沉湖钻孔沉积物TOC和孔隙水DOC含量随深度的变化

      Fig.  6.  Variation of sediment TOC and pore water DOC contents with pressurization of borehole in Chen Lake

      图  7  实验B中沉积物TOC和孔隙水DOC含量随增压的变化

      Fig.  7.  Variation of concentrations of sediment TOC and pore water DOC with pressurization in Experiment B

      图  8  实验A中含水率与DOC释放量的关系

      a.含水率和DOC释放量随增压的变化;b.含水率与DOC释放量的线性拟合

      Fig.  8.  Relationship between moisture content and DOC release amount in Experiment A

      图  9  实验B中(a)含水率和DOC释放量随增压的变化;(b)含水率与DOC释放量的线性拟合

      Fig.  9.  (a) Variation of moisture content and DOC release amount with pressurization; (b) linear fitting of moisture content and DOC release amount in Experiment B

      表  1  实验A中气体样品含量随增压的变化

      Table  1.   Variation of gas content with pressurization in Experiment A

      加压时间(h) 累积压力(MPa) CO2(10‒6 CH4(10‒6
      170 3.40 9 268.81±937.83 11 301.92±727.58
      220 4.40 8 463.48±16.33 18 851.73±1.44
      295 5.90 4 143.31±73.91 15 302.55±14.90
      下载: 导出CSV

      表  2  实验B中气体样品含量随增压的变化

      Table  2.   Variation of gas content with pressurization in Experiment B

      加压时间(h) 累积压力(MPa) CO2(10‒6 CH4(10‒6
      120 0.5 1 763.6±50.18 1 834.30±25.28
      264 1.1 2 324.6±106.76 3 948.25±19.14
      下载: 导出CSV

      表  3  单位面积黏土弱透水层释放的DOC通量和及地下水DOC浓度的贡献量

      Table  3.   Release amount of DOC from clayey aquitard and its contribution to groundwater DOC content in unit area

      沉积速率(m/a)×
      超采时间(a)
      压实释放的DOC总量
      (mg)
      压实对地下水DOC的浓度贡献
      (mg/L)
      对流和扩散释放的DOC总量
      (mg)
      对地下水DOC的浓度贡献总量(mg/L)
      0.2×5 6462.55 0.19~0.31 12 720 0.57~0.91
      0.2×15 10 703.27 0.32~0.51 12 960 0.70~1.13
      0.2×30 17 064.36 0.51~0.81 13 320 0.90~1.45
      0.4×5 8 582.91 0.26~0.41 12 720 0.63~1.01
      0.4×15 17 064.36 0.51~0.81 12 960 0.90~1.43
      0.4×30 29 786.54 0.89~1.42 13 320 1.28~2.05
      0.6×5 10 703.27 0.32~0.51 12 720 0.70~1.12
      0.6×15 23 425.45 0.70~1.12 12 960 1.08~1.73
      0.6×30 42 508.71 1.27~2.02 13 320 1.66~2.66
      注:压缩比(t)=沉积速率×超采时间/黏土层厚度(20 m);压实释放的DOC总量(Q)=(20 m3R2h)×(7.489 8×压缩比+0.766 9),R= 4 cm,h=70 cm;浓度贡献=DOC释放量/(含水层厚度×孔隙度×1 m3).
      下载: 导出CSV
    • Alvarez, D. A., Rosen, M. R., Perkins, S. D., et al., 2012. Bottom Sediment as a Source of Organic Contaminants in Lake Mead, Nevada, USA. Chemosphere, 88(5): 605-611. https://doi.org/10.1016/j.chemosphere.2012.03.040
      Beylich, A., Oberholzer, H. R., Schrader, S., et al., 2010. Evaluation of Soil Compaction Effects on Soil Biota and Soil Biological Processes in Soils. Soil and Tillage Research, 109(2): 133-143. https://doi.org/10.1016/j.still.2010.05.010
      Chen, Z. H., Wang, B. G., Zhao, J. F., 2022. Adsorption and Desorption Characteristics of Cd in Upland and Paddy Soil of Jianghan Plain. Earth Science, 47(2): 544-555 (in Chinese with English abstract).
      Deng, Y. M., Li, H. J., Wang, Y. X., et al., 2014. Temporal Variability of Groundwater Chemistry and Relationship with Water-Table Fluctuation in the Jianghan Plain, Central China. Procedia Earth and Planetary Science, 10: 100-103. https://doi.org/10.1016/j.proeps.2014.08.018
      Du, Y., Deng, Y. M., Ma, T., et al., 2018. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
      Du, Y., Deng, Y. M., Ma, T., et al., 2020. Enrichment of Geogenic Ammonium in Quaternary Alluvial-Lacustrine Aquifer Systems: Evidence from Carbon Isotopes and DOM Characteristics. Environmental Science & Technology, 54(10): 6104-6114. https://doi.org/10.1021/acs.est.0c00131
      Du, Y., Ma, T., Deng, Y., et al., 2017. Sources and Fate of High Levels of Ammonium in Surface Water and Shallow Groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 19 (2): 161-172. https://doi.org/10.1039/C6EM00531D
      Duan, Y. H., 2016. Seasonal Variations of Groundwater Arsenic Concentration in Shallow Aquifers (Dissertation). China University of Geosciences, Wuhan, 20-23 (in Chinese with English abstract).
      Ge, W. L., Li, Y. J., Zhang, C. M., et al., 2022. An Attribution Analysis of Land Subsidence Features in the City of Bayannur in Inner Mongolia Based on InSAR. Hydrogeology & Engineering Geology, 49(4): 198-206 (in Chinese with English abstract).
      Guan, S., Yang, Q., Li, Y. N., et al., 2022. River Flooding Response to ENSO-Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834
      Guo, H. M., Gao, Z. P., Xiu, W., 2022. Research Status and Trend of Coupling between Nitrogen Cycle and Arsenic Migration and Transformation in Groundwater Systems. Hydrogeology & Engineering Geology, 49(3): 153-163 (in Chinese with English abstract).
      Guo, H. P., Li, W. P., Wang, L. Y., et al., 2021. Present Situation and Research Prospects of the Land Subsidence Driven by Groundwater Levels in the North China Plain. Hydrogeology & Engineering Geology, 48(3): 162-171 (in Chinese with English abstract).
      Guo, W. R., Cecchetti, A. R., Wen, Y., et al., 2020. Sulfur Cycle in a Wetland Microcosm: Extended 34S-Stable Isotope Analysis and Mass Balance. Environmental Science & Technology, 54(9): 5498-5508. https://doi.org/10.1021/acs.est.9b05740
      Hendry, M. J., Wassenaar, L. I., 2004. Transport and Geochemical Controls on the Distribution of Solutes and Stable Isotopes in a Thick Clay-Rich till Aquitard, Canada. Isotopes in Environmental and Health Studies, 40(1): 3-19. https://doi.org/10.1080/10256010310001644942
      Jiao, J. J., Wang, Y., Cherry, J. A., et al., 2010. Abnormally High Ammonium of Natural Origin in a Coastal Aquifer-Aquitard System in the Pearl River Delta, China. Environmental Science & Technology, 44(19): 7470-7475. https://doi.org/10.1021/es1021697
      Liu, R., 2021. Effects and Mechanism of Fe on Organic Carbon Transformation during the Formation of Clayey Aquitard (Dissertation). China University of Geosciences, Wuhan, 57-77 (in Chinese with English abstract).
      Liu, R., Ma, T., Zhang, D., et al., 2020a. Spatial Distribution and Factors Influencing the Different Forms of Ammonium in Sediments and Pore Water of the Aquitard along the Tongshun River, China. Environmental Pollution, 266: 1152121. https://doi.org/10.1016/j.envpol.2020.115212
      Liu, Y. J., Ma, T., Chen, J., et al., 2020b. Compaction Simulator: A Novel Device for Pressure Experiments of Subsurface Sediments. Journal of Earth Science, 31(5): 1045-1050. https://doi.org/10.1007/s12583-020-1334-6
      Liu, R., Ma, T., Qiu, W., et al., 2020c. Effects of Fe Oxides on Organic Carbon Variation in the Evolution of Clayey Aquitard and Environmental Significance. Science of the Total Environment, 701: 134776. https://doi.org/10.1016/j.scitotenv.2019.134776
      Liu, R., Ma, T., Lin, C., et al., 2020d. Transfer and Transformation Mechanisms of Fe Bound-Organic Carbon in the Aquitard of a Lake-Wetland System during Reclamation. Environmental Pollution, 263: 114441. https://doi.org/10.1016/j.envpol.2020.114441
      Liu, R., Ma, T., Qiu, W. K., et al., 2019. Discussions on Environmental Significance of Organic Carbon in Silt Sediments. Environmental Science & Technology, 42(1): 184-192 (in Chinese with English abstract).
      Liu, Y. J., Ma, T., Du, Y., et al., 2016. A Simulation Method for Burial Evolution of Muddy Sediments. China, 201610029479.0 (in Chinese).
      Mao, N., Liu, G. M., Li, L. S., et al., 2022. Methane Fluxes and Their Relationships with Methane-Related Microbes in Permafrost Regions of the Qilian Mountains. Earth Science, 47(2): 556-567 (in Chinese with English abstract).
      Mihajlov, I., Mozumder, M. R. H., Bostick, B. C., et al., 2020. Arsenic Contamination of Bangladesh Aquifers Exacerbated by Clay Layers. Nature Communications, 11(1): 1-9. https://doi.org/10.1038/s41467-020-16104-z
      Niggemyer, A., Spring, S., Stackebrandt, E., et al., 2001. Isolation and Characterization of a Novel As(V)-Reducing Bacterium: Implications for Arsenic Mobilization and the Genus Desulfitobacterium. Applied and Environmental Microbiology, 67(12): 5568-5580. https://doi.org/10.1128/aem.67.12.5568-5580.2001
      Polizzotto, M. L., Kocar, B. D., Benner, S. G., et al., 2008. Near-Surface Wetland Sediments as a Source of Arsenic Release to Ground Water in Asia. Nature, 454: 505-508. https://doi.org/10.1038/nature07093
      Potter, P. E., Maynard, J. B., Depetris, P. J., 2005. Mud and Mudstones: Introduction and Overview. Springer Press, New York, 12.
      Qiu, W. K., Ma, T., Liu, R., et al., 2022. Variations in the Mineral Structures Dominating Solute Mobilization during Clay Compaction. Journal of Hydrology, 610: 127843. https://doi.org/10.1016/j.jhydrol.2022.127843
      Smith, R. G., Knight, R., Fendorf, S., 2018. Overpumping Leads to California Groundwater Arsenic Threat. Nature Communications, 9: 2089. https://doi.org/10.1038/s41467-018-04475-3
      Wang, L. G., 2015. Effect of Variable Temperature on Soil Organic Carbon Mineralization and Kinetics Features (Dissertation). Southwest University, Chongqing, 17-23 (in Chinese with English abstract).
      Wang, P. F., Zhao, L., Wang, C., et al., 2009. Nitrogen Distribution and Potential Mobility in Sediments of Three Typical Shallow Urban Lakes in China. Environmental Engineering Science, 26(10): 1511-1521. https://doi.org/10.1089/ees.2008.0367
      Wang, X. T., Di, G. S., 2019. Monitoring and Analysis of Land Subsidence in Eastern Liaocheng Based on PS- InSAR. Bulletin of Surveying and Mapping, (S2): 149-153 (in Chinese).
      Wang, Y., Jiao, J. J., Cherry, J. A., et al., 2013. Contribution of the Aquitard to the Regional Groundwater Hydrochemistry of the Underlying Confined Aquifer in the Pearl River Delta, China. Science of the Total Environment, 461-462: 663-671. https://doi.org/10.1016/j.scitotenv.2013.05.046
      Wang, Y., Jiao, J. J., Zhang, K., et al., 2016. Enrichment and Mechanisms of Heavy Metal Mobility in a Coastal Quaternary Groundwater System of the Pearl River Delta, China. Science of the Total Environment, 545-546: 493-502. https://doi.org/10.1016/j.scitotenv.2015.12.019
      Westerhoff, P., Highfield, D., Badruzzaman, M., et al., 2005. Rapid Small-Scale Column Tests for Arsenate Removal in Iron Oxide Packed Bed Columns. Journal of Environmental Engineering, 131(2): 262-271. https://doi.org/10.1061/(asce)0733-9372(2005)131: 2(262) doi: 10.1061/(asce)0733-9372(2005)131:2(262
      Xiao, C., 2019. Migration and Transformation Mechanism of Arsenic in Variable-Permeability Clayey Aquitard at Jianghan Plain (Dissertation). China University of Geosciences, Wuhan, 9-13 (in Chinese with English abstract).
      Xiao, C., Ma, T., Du, Y., 2021. Arsenic Releasing Mechanisms during Clayey Sediments Compaction: An Experiment Study. Journal of Hydrology, 597: 125743. https://doi.org/10.1016/j.jhydrol.2020.125743
      Zhang, J. W., Liang, X., Ge, Q., et al., 2017. Calculation Method about Hydraulic Conductivity of Quaternary Aquitard in Jianghan Plain. Earth Science, 42(5): 761-770 (in Chinese with English abstract).
      Zhang, R. Q., Liang, X., Jin, M., et al., 2011. Fundamentals of Hydrogeology. Geological Publishing House, Beijing (in Chinese).
      陈孜涵, 汪丙国, 赵建芳, 2022. 江汉平原旱地和水田土壤镉的吸附与解吸特征及影响因素. 地球科学, 47(2): 544-555. doi: 10.3799/dqkx.2021.108
      段艳华, 2016. 浅层地下水系统中砷富集的季节性变化与机理研究: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学, 20-23.
      葛伟丽, 李元杰, 张春明, 等, 2022. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析. 水文地质工程地质, 49(4): 198-206. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202204023.htm
      郭华明, 高志鹏, 修伟, 2022. 地下水氮循环与砷迁移转化耦合的研究现状和趋势. 水文地质工程地质, 49(3): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202203017.htm
      郭海朋, 李文鹏, 王丽亚, 等, 2021. 华北平原地下水位驱动下的地面沉降现状与研究展望. 水文地质工程地质, 48(3): 162-171. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202103021.htm
      刘锐, 2021. 黏土弱透水层形成过程中铁对有机碳迁移转化的影响机制(博士学位论文). 武汉: 中国地质大学, 57-77.
      刘锐, 马腾, 邱文凯, 等, 2019. 淤泥沉积物中有机碳的环境意义. 环境科学与技术, 42(1): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201901027.htm
      刘妍君, 马腾, 杜尧, 等, 2016. 一种泥质沉积物埋藏演化过程的模拟方法. 中国, 201610029479.0.
      毛楠, 刘桂民, 李莉莎, 等, 2022. 祁连山多年冻土区甲烷通量与甲烷微生物群落组成的关系. 地球科学, 47(2): 556-567. doi: 10.3799/dqkx.2021.037
      王莲阁, 2015. 温度变化对土壤有机碳矿化及其动力学特征的影响(硕士学位论文). 重庆: 西南大学, 17-23.
      王新田, 狄桂栓, 2019. 基于PS-InSAR的聊城东部地表沉降监测与分析. 测绘通报, (S2): 149-153. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB2019S2037.htm
      肖骢, 2019. 变渗透性粘性土弱透水层中砷的迁移转化机制: 以江汉平原为例(博士学位论文). 武汉: 中国地质大学, 9-13.
      张婧玮, 梁杏, 葛勤, 等, 2017. 江汉平原第四系弱透水层渗透系数求算方法. 地球科学, 42(5): 761-770. doi: 10.3799/dqkx.2017.064
      张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础. 北京: 地质出版社.
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  240
    • HTML全文浏览量:  94
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-28
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回