Regional Hillslope Stability Analysis under Rainfall Based on Characterization of Overburden Soil Layer Thickness
-
摘要: 区域内覆盖土层孕育着斜坡浅表层破坏,是区域斜坡破坏的最主要来源,但由于覆盖土层厚度的空间变化,导致堆积层滑坡灾害发育的底界难以合理确定,进而使稳定性评价结果未能指示实际滑坡状况.以黄冈市九资河镇为例,对该区域的覆盖层厚度进行详细调查,并通过基于地貌过程的估计方法确定了研究区覆盖层厚度的空间分布;在此基础上,运用斜坡稳定性定量模型,分析了研究区斜坡在降雨条件下的稳定性,并据此估计了区域堆积层滑坡的分布情况和可能性.结果显示:所提出的方法有效且具有很强的实用性,基于GIST模型估计的区域覆盖层厚度与实际情况较为接近(集中在0.5~3.0 m).覆盖层厚度的合理确定使得区域斜坡降雨入渗稳定性评价结果更加精细且具有实际滑坡指示意义;该区基本稳定和稳定斜坡主要分布于阶地平台或河漫滩等覆盖层厚度大但坡度较小区域,欠稳定及不稳定斜坡主要分布在水库及各支流靠岸位置,这些部位覆盖层厚度虽小但坡度较大、地形外凸且受地下水影响明显;短时间的强降雨对斜坡稳定性影响巨大.该研究有助于推动区域斜坡灾害评价向精细化方向发展.Abstract: The overburden layer in the region conceives the shallow surface damage of slopes and is the main source for the regional slope damage. But, the spatial variation in the thickness of the overburden layer makes it difficult to reasonably determine the bottom of hazard development, which in turn makes it difficult for the stability assessment results to indicate actual landslide conditions. Taking Jiuzihe Town of Huanggang City as an example, the overburden thickness in this area was investigated in detail, and the spatial distribution of overburden thickness was determined by a geomorphic process-based method. On this basis, the stability of slopes in the study area under rainfall conditions was analyzed using a quantitative model of slope stability, and the distribution and likelihood of regional accumulated layer landslide were estimated accordingly. The results show that the proposed method is effective and highly practical, and that the estimated regional overburden thickness based on GIST model is close to the actual situation, mainly concentrated in 0.5-3.0 m. The reasonable determination of overburden thickness makes the evaluation results of regional slope rainfall infiltration stability more precise and has practical landslide indication significance. The basically stable and stable slopes are mainly distributed in the areas with large overburden thickness but small slope, such as terrace platform or floodplain. While the less stable and unstable slopes are mainly distributed in the reservoir and the bank of various tributaries. Short period of heavy rainfall has great influence on slope stability. This study is helpful to the development of regional slope disaster assessment towards the fine direction.
-
表 1 研究区岩性强度参数及坡度临界值
Table 1. Lithological strength parameters and slope critical value in the study area
岩性分区 平均内摩擦角$ \varphi $(°) 平均粘聚力$ C $(kPa) 坡度临界值$ {\theta }_{\mathrm{t}\mathrm{h}} $(°) 第四系堆积物 15.3 25.3 22 残坡积物 22.6 27.1 28 花岗岩风化残积物 37.8 35.6 32 表 2 不同斜坡坡形P与η关系式及拟合度R2
Table 2. The P and η relation and fit R2 of different slope shape
斜坡坡形 P与$ \eta $拟合公式 R2 凹凸形 $ \eta =1.9-21.3p+78.6{p}^{2}-103.1{p}^{3}+44.4{p}^{4} $ 0.967 凸凹凸形 $ \eta =1.9-15.1p+41.3{p}^{2}-38.1{p}^{3}+10.13{p}^{4} $ 0.935 凸形 $ \eta =1.21-1.7p+0.53{p}^{2} $ 0.961 表 3 不同斜坡坡形校准参数$ {{K}}_{{c}} $取值
Table 3. Calibration parameter $ {{K}}_{{c}} $ value of different slope shape
斜坡坡形 覆盖层厚度调查值的最大值 $ \mathrm{M}\mathrm{a}\mathrm{x}\left[\right(1-C)\cdot \eta \cdot \psi ] $平均值 $ {K}_{c} $取值 凹凸形 5.0 m 0.782 6.4 凸凹凸形 5.5 m 0.822 6.7 凸形 6.0 m 0.902 6.6 表 4 覆盖层厚度区间分布占比
Table 4. Proportion of overburden thickness interval distribution
覆盖层厚度区间(m) 栅格总数(个) 栅格比重(%) 0~0.5 134 463 12.23 0.5~1.5 408 305 37.15 1.5~2.0 314 150 28.58 2.0~3.0 240 282 21.85 3.0~6.0 2 158 0.19 合计 1 099 358 100 表 5 研究区物理力学参数
Table 5. Physio-mechanical parameters of the study area
岩性 土体容重(kN/m3) 有效粘聚力(kPa) 有效内摩擦角(°) max min 均值 max min 均值 第四系堆积物 19.6 30.6 20.5 25.3 18.5 12.6 15.3 残坡积物 22.6 33.5 22.0 27.1 28.1 17.6 22.6 花岗岩风化残积物 27.8 46.9 25.6 35.6 45.3 32.6 37.8 表 6 研究区水文参数
Table 6. Hydrological parameters of the study area
岩性 水力扩散系数(m2/s) 饱和土体竖直渗透系数(m/s) 初始地表入渗系数(m/s) 体积含水率(%) 饱和 残余 第四系堆积物 2.5×10‒5 3×10‒7 3×10‒7 33 9 残坡积物 7.8×10‒4 9×10‒6 5×10‒6 48 7 花岗岩风化残积物 4.6×10‒4 8.5×10‒6 5.6×10‒8 27 6 表 7 降雨工况
Table 7. Working condition of rainfall
工况 阶段 降雨强度(mm/h) 降雨历时(h) 一 1-1 18 12 二 2-1 10 4 2-2 25 4 2-3 50 1 2-4 13 2 表 8 斜坡稳定性等级划分
Table 8. Classification of slope stability
稳定性系数(Fs) 稳定性等级 Fs < 1.0 不稳定 1.0≤Fs < 1.05 欠稳定 1.05≤Fs < 1.25 基本稳定 Fs≥1.25 稳定 -
Baum, R. L., Savage, W. Z., Godt, J. W., 2002. TRIGRS: A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0. US Geological Survey, Boulder. Cascini, L., Calvello, M., Grimaldi, G. M., 2010. Groundwater Modeling for the Analysis of Active Slow-Moving Landslides. Journal of Geotechnical and Geoenvironmental Engineering, 136(9): 1220-1230. https://doi.org/10.1061/(asce)gt.1943-5606.0000323 Catani, F., Segoni, S., Falorni, G., 2010. An Empirical Geomorphology-Based Approach to the Spatial Prediction of Soil Thickness at Catchment Scale. Water Resources Research, 46(5): W05508. https://doi.org/10.1029/2008wr007450 Gao, K. C., Cui, P., Zhao, C. Y., et al., 2006. Landslide Hazard Evaluation of Wanzhou Based on GIS Information Value Method in the Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 25(5): 991-996 (in Chinese with English abstract). Hu, T., Fan, X., Wang, S., et al., 2020. Landslide Susceptibility Evaluation of Sinan County Using Logistics Regression Model and 3S Technology. Bulletin of Geological Science and Technology, 39(2): 113-121 (in Chinese with English abstract). Hu, Y., Li, D. Y., Meng, S. S., et al., 2020. Landslide Susceptibility Evaluation in Badong County Based on Weights of Evidence Method. Bulletin of Geological Science and Technology, 39(3): 187-194 (in Chinese with English abstract). Huang, F. M., Chen, J. W., Fan, X. M., et al., 2022. Logistic Regression Fitting of Rainfall-Induced Landslide Occurrence Probability and Continuous Landslide Hazard Prediction Modelling. Earth Science, 47(12): 4609-4628 (in Chinese with English abstract). Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract). Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897-1910. https://doi.org/10.1029/2000wr900090 Jia, L., Cai, J. S., Yan, E. C., et al., 2021. Assessment of Landslide Susceptibility in Nanzhang County Based on Geological Environment Zoning. Yangtze River, 52(5): 86-94 (in Chinese with English abstract). Li, J. C., Ma, Q., Tao, J., 2012. Analysis and Application of Hydrological Basin Based on ArcGIS. Geospatial Information, 10(6): 121-123 (in Chinese with English abstract). Li, L. L., Teng, W. F., Zhang, Y. L., et al., 2019. Optimization of Shear Strength Parameters of Sliding Zone Soil in Huangtupo Landslide. Low Temperature Architecture Technology, 41(3): 75-79, 95 (in Chinese with English abstract). Liu, L., Yin, K. L., Wang, J. J., et al., 2016. Dynamic Evaluation of Regional Landslide Hazard Due to Rainfall: A Case Study in Wanzhou Central District, Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 35(3): 558-569 (in Chinese with English abstract). Miller, S. A., Degg, M., 2009. GIS Applied to Landslide Hazard Mapping and Evaluation in North-East Wales. EGU General Assembly Conference, Vienna. Montgomery, D. R., Dietrich, W. E., 1994. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research, 30(4): 1153-1171. https://doi.org/10.1029/93WR02979 Pack, R. T., Tarboton, D. G., Goodwin, C. N., 1998. The SINMAP Approach to Terrain Stability Mapping. The 8th Congress of the International Association of Engineering Geology, Vancouver. Song, S. Y., Wang, Q., Pan, Y. Z., et al., 2014. Landslide Risk Assessment Based on Catastrophe Theory. Rock and Soil Mechanics, 35(S2): 422-428 (in Chinese with English abstract). Yang, C., Liu, L. L., Zhang, Y. L., et al., 2022. Machine Learning Based on Landslide Susceptibility Assessment with Bayesian Optimized the Hyperparameters. Bulletin of Geological Science and Technology, 41(2): 228-238 (in Chinese with English abstract). Yang, H., Tang, M. G., Ye, R. Q., et al., 2017. Study on Soil-Water Characteristics of Unsaturated Soil of Landslide Deposits in Three Gorges Reservoir Area. Water Resources and Hydropower Engineering, 48(9): 168-173 (in Chinese with English abstract). Zeng, L. F., Wu, Z. J., Chen, T., et al., 2012. Inversing Study of Overburden Thickness in Loess Area of Tianshui. Rock and Soil Mechanics. 33(6): 1912-1916 (in Chinese with English abstract). Zhu, C. H., Wang, Z. H., Liu, J. M., 2006. Study on the Relation between the Permeation Damage Slope and the Grain Composition of Coarse-Grained Soil. China Rural Water and Hydropower, (3): 72-74, 77 (in Chinese with English abstract). Zhuang, J. Q., Cui, P., Ge, Y. G., et al., 2010. Risk Assessment of Collapse and Landslide in "5.12" Wenchuan Earthquake: Taking Duwen Highway as an Example. Chinese Journal of Rock Mechanics and Engineering, 29(S2): 3735-3742 (in Chinese with English abstract). 高克昌, 崔鹏, 赵纯勇, 等, 2006. 基于地理信息系统和信息量模型的滑坡危险性评价: 以重庆万州为例. 岩石力学与工程学报, 25(5): 991-996. 胡涛, 樊鑫, 王硕, 等, 2020. 基于逻辑回归模型和3S技术的思南县滑坡易发性评价. 地质科技通报, 39(2): 113-121. 胡燕, 李德营, 孟颂颂, 等, 2020. 基于证据权法的巴东县城滑坡灾害易发性评价. 地质科技通报, 39(3): 187-194. 黄发明, 陈佳武, 范宣梅, 等, 2022. 降雨型滑坡时间概率的逻辑回归拟合及连续概率滑坡危险性建模. 地球科学, 47(12): 4609-4628. doi: 10.3799/dqkx.2021.164 黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030. doi: 10.3799/dqkx.2021.243 贾琳, 蔡静森, 晏鄂川, 等, 2021. 基于地质环境分区的南漳县城区滑坡易发性评价. 人民长江, 52(5): 86-94. 李俊超, 马倩, 陶钧, 2012. 基于ArcGIS的水文流域分析及应用. 地理空间信息, 10(6): 121-123. 李雷雷, 滕伟福, 张延利, 等, 2019. 黄土坡滑坡滑带土抗剪强度参数的优选. 低温建筑技术, 41(3): 75-79, 95. 刘磊, 殷坤龙, 王佳佳, 等, 2016. 降雨影响下的区域滑坡危险性动态评价研究: 以三峡库区万州主城区为例. 岩石力学与工程学报, 35(3): 558-569. 宋盛渊, 王清, 潘玉珍, 等, 2014. 基于突变理论的滑坡危险性评价. 岩土力学, 35(S2): 422-428. 杨灿, 刘磊磊, 张遗立, 等, 2022. 基于贝叶斯优化机器学习超参数的滑坡易发性评价. 地质科技通报, 41(2): 228-238. 杨何, 汤明高, 叶润青, 等, 2017. 三峡库区滑坡堆积体非饱和土的土: 水特征研究. 水利水电技术, 48(9): 168-173. 曾立峰, 吴志坚, 陈拓, 等, 2012. 天水黄土地区覆盖层厚度的反演研究. 岩土力学, 33(6): 1912-1916. 朱崇辉, 王增红, 刘俊民, 2006. 粗粒土的渗透破坏坡降与颗粒级配的关系研究. 中国农村水利水电, (3): 72-74, 77. 庄建琦, 崔鹏, 葛永刚, 等, 2010. "5·12" 汶川地震崩塌滑坡危险性评价: 以都汶公路沿线为例. 岩石力学与工程学报, 29(S2): 3735-3742. -