• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于摩擦角修正的异性岩石结构面抗剪强度准则

    张志飞 黄曼 唐志成

    张志飞, 黄曼, 唐志成, 2024. 基于摩擦角修正的异性岩石结构面抗剪强度准则. 地球科学, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026
    引用本文: 张志飞, 黄曼, 唐志成, 2024. 基于摩擦角修正的异性岩石结构面抗剪强度准则. 地球科学, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026
    Zhang Zhifei, Huang Man, Tang Zhicheng, 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026
    Citation: Zhang Zhifei, Huang Man, Tang Zhicheng, 2024. Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle. Earth Science, 49(8): 2826-2838. doi: 10.3799/dqkx.2023.026

    基于摩擦角修正的异性岩石结构面抗剪强度准则

    doi: 10.3799/dqkx.2023.026
    基金项目: 

    国家自然科学基金面上项目 42177165

    国家自然科学基金面上项目 41672302

    国家自然科学基金面上项目 42272333

    详细信息
      作者简介:

      张志飞(1994-),男,博士研究生,从事岩石结构面剪切力学特性研究. ORCID:0000-0002-7768-694X. E-mail:zhangzhifei@cug.edu.cn

      通讯作者:

      唐志成,ORCID: 0000-0001-7554-0253.E-mail:zctang@cug.edu.cn

    • 中图分类号: P634.1

    Peak Shear Strength Criterion for Discontinuities with Different Rock Types Based on Revisiting Frictional Angle

    • 摘要: 异性岩石结构面在三峡库区广泛发育,准确评估其峰值剪切强度对库区岩体稳定性评价至关重要. 采用类岩石材料浇筑若干具有相同形貌、不同壁岩强度组合的异性结构面试块,在0.3~3.0 MPa常法向应力下开展直剪试验,并引入“壁岩强度组合系数λ”来表征岩石抗压强度和基本摩擦角对异性结构面峰值剪切强度的综合影响. 结果表明,异性结构面的峰值剪切强度随λ的增加而呈非线性降低,降低程度主要受粗糙度控制,而与法向应力关系不明显. 采用简单幂函数分析了峰值摩擦角与λ之间的关系,并在此基础上建立含三维形貌参数的异性岩石结构面抗剪强度经验准则. 最后,利用在三峡库区采集的天然样品进一步验证了新准则对天然异性岩石结构面峰值剪切强度评估的可靠性. 新准则可在一定程度上为三峡库区含异性结构面的岩体稳定性评价提供理论依据.

       

    • 图  1  三峡库区典型异性岩石结构面(亢金涛等, 2019)

      Fig.  1.  Typical rock discontinuities with different rock types in the Three Gorges reservoir area (Kang et al., 2019)

      图  2  测试试验设备

      a. 3D扫描仪;b. RTM⁃301液压伺服试验设备

      Fig.  2.  Testing experimental equipment

      图  3  典型剪切应力-剪切位移曲线(以B组J⁃Ⅰ/J⁃Ⅴ组合为例)

      Fig.  3.  Typical shear stress versus shear displacement curves (taking J⁃Ⅰ/J⁃Ⅴ combination in Group B as examples)

      图  4  异性结构面峰值剪切强度随λ的变化

      a. A组;b. B组;c. C组

      Fig.  4.  Variation of the peak shear strength of discontinuities with different rock types versus λ

      图  5  同性结构面试验剪切强度与Yang公式预测包络线比较

      Fig.  5.  Comparison between experimental shear strengths and predicted envelopes by Yang's criterion for discontinuities with identical rock type

      图  6  异性结构面峰值剪切强度试验值与Yang公式预测值的相关性

      Fig.  6.  Correlation between experimental peak shear strengths and predicted results by Yang's criterion for discontinuities with different rock types

      图  7  异性结构面峰值摩擦角变化

      a. A组;b. B组;c. C组

      Fig.  7.  Variation of peak friction angles of discontinuities with different rock types

      图  8  不同法向应力下ξ值随粗糙度参数的变化

      Fig.  8.  Variation of ξ versus roughness parameters under different normal stresses

      图  9  ab值随法向应力的变化

      Fig.  9.  Variation of a or b values versus normal stresses

      图  10  3组试块峰值剪切强度试验值与新公式预测值的对比

      a. A组;b. B组;c. C组

      Fig.  10.  Comparison between experimental peak shear strengths and predicted values by the new criterion for the three groups specimens

      图  11  三组试块峰值剪切强度试验值与新公式预测值的相关性

      Fig.  11.  Correlation between experimental peak shear strengths and predicted values by the new criterion for the three groups of specimens

      图  12  天然样品试验剪切强度与新公式预测值的对比

      Fig.  12.  Comparison between experimental shear strengths of natural samples and predicted values by the new criterion

      图  13  天然样品试验剪切强度与新公式预测值的相关性

      Fig.  13.  Correlation between experimental shear strengths of natural samples and predicted values by the new criterion

      图  14  JRC与$ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}}/\left(C+1\right) $间的关系

      Fig.  14.  Correlation between JRC and $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}}/\left(C+1\right) $

      图  15  Wu et al. (2018)的试验剪切强度与新公式预测值的对比

      Fig.  15.  Comparison between experimental shear strengths of Wu et al. (2018) and predicted values by the new criterion

      图  16  Wu et al.(2018)的试验剪切强度与新公式预测值的相关性

      Fig.  16.  Correlation between experimental shear strengths of Wu et al. (2018) and predicted values by the new criterion

      表  1  类岩石材料的主要力学参数

      Table  1.   Main mechanical parameters of rock⁃like materials

      材料 水/石膏(质量比) 抗拉强度$ {\sigma }_{\mathrm{t}} $(MPa) 单轴压缩强度$ {\sigma }_{\mathrm{c}} $(MPa) 基本摩擦角$ {\varphi }_{\mathrm{b}} $(°)
      J-Ⅰ 0.70 0.82 10.3 35.3
      J-Ⅱ 0.57 1.49 16.8 35.8
      J-Ⅲ 0.45 2.01 27.4 36.5
      J-Ⅳ 0.35 2.74 33.9 37.6
      J-Ⅴ 0.30 4.33 45.3 38.1
      下载: 导出CSV

      表  2  结构面粗糙参数

      Table  2.   Roughness parameters of discontinuities

      组别 $ {A}_{0} $ $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ C $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}}/\left(C+1\right) $ JRC
      A 0.486 55.4 13.6 3.795 7.2
      B 0.502 64.3 9.4 6.183 14.8
      C 0.491 75.8 7.3 9.133 18.7
      下载: 导出CSV

      表  4  天然异性结构面的试验数据

      Table  4.   Experimental data of natural discontinuities with different rock types

      试件编号 岩石类型 三维形貌参数 $ {\sigma }_{\mathrm{n}} $(MPa) 岩石力学参数 剪切强度(MPa) 相对误差
      $ {A}_{0} $ $ {\theta }_{\mathrm{m}\mathrm{a}\mathrm{x}}^{\mathrm{*}} $ C $ {\sigma }_{\mathrm{c}} $(MPa) $ {\varphi }_{\mathrm{b}} $(°) 试验值 预测值
      1# 粉砂质泥岩/长石石英砂岩 0.501 48.1 12.3 0.5 34.7/80.6 32.7/36.5 0.452 0.545 20.58%
      2# 粉砂质泥岩/长石石英砂岩 0.488 50.8 11.9 0.7 34.7/80.6 32.7/36.5 0.801 0.791 1.20%
      3# 粉砂质泥岩/长石石英砂岩 0.492 51.4 11.7 1.3 34.7/80.6 32.7/36.5 1.325 1.454 9.75%
      4# 泥岩/泥质灰岩 0.500 55.4 10.1 1.1 26.4/126.5 25.7/38.1 1.207 1.322 9.50%
      5# 泥岩/泥质灰岩 0.489 45.7 11.2 1.8 26.4/126.5 25.7/38.1 2.030 1.768 12.89%
      6# 泥岩/泥质灰岩 0.507 45.6 10.3 2.5 26.4/126.5 25.7/38.1 2.975 2.504 15.83%
      7# 泥质粉砂岩/泥质灰岩 0.490 55.4 10.5 0.6 58.2/126.5 25.7/38.1 0.652 0.787 20.70%
      8# 泥质粉砂岩/泥质灰岩 0.493 57.2 9.8 0.9 58.2/126.5 25.7/38.1 1.324 1.239 6.45%
      9# 泥质粉砂岩/泥质灰岩 0.510 60.1 8.6 1.0 58.2/126.5 25.7/38.1 1.627 1.530 5.97%
      10# 粉砂质泥岩/泥质粉砂岩 0.504 58.3 10.2 0.7 40.6/58.2 34.1/35.0 0.803 0.926 15.34%
      11# 粉砂质泥岩/泥质粉砂岩 0.495 52.1 9.9 1.4 40.6/58.2 34.1/35.0 1.508 1.666 10.51%
      下载: 导出CSV
    • Asadollahi, P., Tonon, F., 2010. Constitutive Model for Rock Fractures: Revisiting Barton's Empirical Model. Engineering Geology, 113(1/2/3/4): 11-32. https://doi.org/10.1016/j.enggeo.2010.01.007
      Alejano, L. R., Muralha, J., Ulusay, R., et al., 2018. ISRM Suggested Method for Determining the Basic Friction Angle of Planar Rock Surfaces by Means of Tilt Tests. Rock Mechanics and Rock Engineering, 51(12): 3853-3859. https://doi.org/10.1007/s00603-018-1627-6
      Ban, L. R., Qi, C. Z., Chen, H. X., et al., 2020. A New Criterion for Peak Shear Strength of Rock Joints with a 3D Roughness Parameter. Rock Mechanics and Rock Engineering, 53(4): 1755-1775. https://doi.org/10.1007/s00603-019-02007-z
      Bandis, S. C., Lumsden, A. C., Barton, N. R., 1983. Fundamentals of Rock Joint Deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6): 249-268. https://doi.org/10.1016/0148-9062(83)90595-8
      Barton, N., Choubey, V., 1977. The Shear Strength of Rock Joints in Theory and Practice. Rock Mechanics and Rock Engineering, 10(1-2): 1-54. https://doi.org/10.1007/bf01261801
      Barton, N., 1973. Review of a New Shear Strength Criterion for Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(11): A220. https://doi.org/10.1016/0148-9062(74)90491-4
      Beer, A. J., Stead, D., Coggan, J. S., 2002. Technical Note Estimation of the Joint Roughness Coefficient (JRC) by Visual Comparison. Rock Mechanics and Rock Engineering, 35(1): 65-74. https://doi.org/10.1007/s006030 200009 doi: 10.1007/s006030200009
      Chen, X., Zeng, Y. W., Ye, Y., et al., 2021. A Simplified Form of Grasselli's 3D Roughness Measure Θ*max/(C + 1). Rock Mechanics and Rock Engineering, 54(8): 4329-4346. https://doi.org/10.1007/s00603-021-02512-0
      Fan, X., Deng, Z. Y., Cui, Z. M., et al., 2021. A New Peak Shear Strength Model for Soft-Hard Joint. Rock and Soil Mechanics, 42(7): 1861-1870 (in Chinese with English abstract).
      Grasselli, G., Wirth, J., Egger, P., 2002. Quantitative Three-Dimensional Description of a Rough Surface and Parameter Evolution with Shearing. International Journal of Rock Mechanics and Mining Sciences, 39(6): 789-800. https://doi.org/10.1016/s1365-1609(2)00070-9
      Grasselli, G., Egger, P., 2003. Constitutive Law for the Shear Strength of Rock Joints Based on Three-Dimensional Surface Parameters. International Journal of Rock Mechanics and Mining Sciences, 40(1): 25-40. https://doi.org/10.1016/s1365-1609(2)00101-6
      Ghazvinian, A. H., Taghichian, A., Hashemi, M., et al., 2010. The Shear Behavior of Bedding Planes of Weakness between Two Different Rock Types with High Strength Difference. Rock Mechanics and Rock Engineering, 43(1): 69-87. https://doi.org/10.1007/s00603-009-0030-8
      He, J. M., Wu, G., 1994. The Criterion For Shear Strength of Discontinuities with Different Rock Properties in Rock Mass. Journal of Chongqing University, 17(2): 105-110 (in Chinese with English abstract).
      Homand, F., Belem, T., Souley, M., 2001. Friction and Degradation of Rock Joint Surfaces under Shear Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10): 973-999. https://doi.org/10.1002/nag.163.abs
      Hong, E. S., Lee, J. S., Lee, I. M., 2008. Underestimation of Roughness in Rough Rock Joints. International Journal for Numerical and Analytical Methods in Geomechanics, 32(11): 1385-1403. https://doi.org/10.1002/nag.678
      Jang, H. S., Kang, S. S., Jang, B. A., 2014. Determination of Joint Roughness Coefficients Using Roughness Parameters. Rock Mechanics and Rock Engineering, 47(6): 2061-2073. https://doi.org/10.1007/s00603-013-0535-z
      Jing, L. L., Wei, Y. F., 2020. Calculation Model for the Shear Strength of Soft-Hard Joints Based on Three-Dimensional Morphology and Dilatancy Effect. Engineering Mechanics, 37(12): 180-190 (in Chinese with English abstract). doi: 10.6052/j.issn.1000-4750.2020.02.0109
      Kulatilake, P. H. S. W., Shou, G., Huang, T. H., et al., 1995. New Peak Shear Strength Criteria for Anisotropic Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(7): 673-697. https://doi.org/10.1016/0148-9062(95)00022-9
      Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract).
      Li, Y. C., Tang, C., Li, D. Q., et al., 2020. A New Shear Strength Criterion of Three-Dimensional Rock Joints. Rock Mechanics and Rock Engineering, 53(3): 1477-1483. https://doi.org/10.1007/s00603-019-01976-5
      Liu, Q. S., Tian, Y. C., Liu, D. F., et al., 2017. Updates to JRC-JCS Model for Estimating the Peak Shear Strength of Rock Joints Based on Quantified Surface Description. Engineering Geology, 228(1): 282-300. https://doi.org/10.1016/j.enggeo.2017.08.020
      Patton, F. D., 1996. Multiple Modes of Shear Failure in Rock. In: Proceedings of the 1st Congress of International Society of Rock Mechanics, Lisbon, 509-513.
      Song, L. B., Jiang, Q., Li, Y. H., et al., 2017. Improved JRC-JCS Shear Strength Formula for Soft-Hard Natural Joints. Rock and Soil Mechanics, 38(10): 2789-2798 (in Chinese with English abstract).
      Tang, H. M., Ma, S. Z., Liu, Y. R., et al., 2002. Stability and Control Measures of Zhaoshuling Landslide, Badong County, Three Gorges Reservoir. Earth Science, 27(5): 621-625 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.05.024
      Tang, H. M., Wasowski, J., Juang, C. H., 2019. Geohazards in the Three Gorges Reservoir Area, China : Lessons Learned from Decades of Research. Engineering Geology, 261(1): 105267. https://doi.org/10.1016/j.enggeo. 2019. 105267 doi: 10.1016/j.enggeo.2019.105267
      Tang, Z. C., Xia, C. C., Song, Y. L., et al., 2012. Discussion about Grasselli's Peak Shear Strength Criterion for Rock Joints. Chinese Journal of Rock Mechanics and Engineering, 31(2): 356-364 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.02.015
      Tang, Z. C., Zhang, Z. F., Zuo, C. Q., et al., 2021. Peak Shear Strength Criterion for Mismatched Rock Joints: Revisiting JRC-JMC Criterion. International Journal of Rock Mechanics and Mining Sciences, 147(2): 104894. https://doi.org/10.1016/j.ijrmms.2021.104894
      Tang, Z. C., Wong, L. N. Y., 2016. New Criterion for Evaluating the Peak Shear Strength of Rock Joints under Different Contact States. Rock Mechanics and Rock Engineering, 49(4): 1191-1199. https://doi.org/10.1007/s00603-015-0811-1
      Tatone, B. S. A., Grasselli, G., 2009. A Method to Evaluate the Three-Dimensional Roughness of Fracture Surfaces in Brittle Geomaterials. Review of Scientific Instruments, 80(12): 125110. https://doi.org/10.1063/1.3266964
      Tatone, B. S. A., Grasselli, G., 2010. A New 2D Discontinuity Roughness Parameter and its Correlation with JRC. International Journal of Rock Mechanics and Mining Sciences, 47(8): 1391-1400. https://doi.org/10.1016/j.ijrmms.2010.06.006
      Tian, Y. C., Liu, Q. S., Liu, D. F., et al., 2018. Updates to Grasselli's Peak Shear Strength Model. Rock Mechanics and Rock Engineering, 51(7): 2115-2133. https://doi.org/10.1007/s00603-018-1469-2
      Wu, Q., Xu, Y. J., Tang, H. M., et al., 2018. Investigation on the Shear Properties of Discontinuities at the Interface between Different Rock Types in the Badong Formation, China. Engineering Geology, 245(4): 280-291. https://doi.org/10.1016/j.enggeo.2018.09.002
      Wu, Q., Jiang, Y. F., Tang, H. M., et al., 2020. Experimental and Numerical Studies on the Evolution of Shear Behaviour and Damage of Natural Discontinuities at the Interface between Different Rock Types. Rock Mechanics and Rock Engineering, 53(8): 3721-3744. https://doi.org/10.1007/s00603-020-02129-9
      Xu, D. P., Feng, X. T., Cui, Y. J., 2012. A Simple Shear Strength Model for Interlayer Shear Weakness Zone. Engineering Geology, 147-148(4): 114-123. https://doi.org/10.1016/j.enggeo.2012.07.016
      Xia, C. C., Tang, Z. C., Xiao, W. M., et al., 2014. New Peak Shear Strength Criterion of Rock Joints Based on Quantified Surface Description. Rock Mechanics and Rock Engineering, 47(2): 387-400. https://doi.org/10.1007/s00603-013-0395-6
      Yang, J., Rong, G., Hou, D., et al., 2016. Experimental Study on Peak Shear Strength Criterion for Rock Joints. Rock Mechanics and Rock Engineering, 49(3): 821-835. https://doi.org/10.1007/s00603-015-0791-1
      Zhao, J., 1997. Joint Surface Matching and Shear Strength Part B: JRC-JMC Shear Strength Criterion. International Journal of Rock Mechanics and Mining Sciences, 34(2): 179-185. https://doi.org/10.1016/s0148-9062(96)00063-0
      Zhao, Y. L., Zhang, L. Y., Wang, W. J., et al., 2020. Experimental Study on Shear Behavior and a Revised Shear Strength Model for Infilled Rock Joints. International Journal of Geomechanics, 20(9): 4020141. https://doi.org/10.1061/(asce)gm.1943-5622.0001781
      Zhang, Y. H., Wang, D. J., Tang, H. M., et al., 2016. Study of Shear Strength Characteristics of Heterogeneous Discontinuities Using PFC2D Simulation. Rock and Soil Mechanics, 37(4): 1031-1041 (in Chinese with English abstract).
      范祥, 邓志颖, 崔志猛, 等, 2021. 一种新的软-硬节理峰值剪切强度模型. 岩土力学, 42(7): 1861-1870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202107011.htm
      贺建明, 吴刚, 1994. 岩体异性结构面的抗剪强度准则. 重庆大学学报, 17(2): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE402.017.htm
      金磊磊, 魏玉峰, 2020. 基于三维形貌和剪胀效应的软-硬节理抗剪强度模型. 工程力学, 37(12): 180-190. doi: 10.6052/j.issn.1000-4750.2020.02.0109
      亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      宋磊博, 江权, 李元辉, 等, 2017. 软-硬自然节理的改进JRC-JCS剪切强度公式. 岩土力学, 38(10): 2789-2798. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201710004.htm
      唐辉明, 马淑芝, 刘佑荣, 等, 2002. 三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究. 地球科学, 27(5): 621-625. http://www.earth-science.net/article/id/1175
      唐志成, 夏才初, 宋英龙, 等, 2012. Grasselli节理峰值抗剪强度公式再探. 岩石力学与工程学报, 31(2): 356-364. doi: 10.3969/j.issn.1000-6915.2012.02.015
      张雅慧, 汪丁建, 唐辉明, 等, 2016. 基于PFC2D数值试验的异性结构面剪切强度特性研究. 岩土力学, 37(4): 1031-1041. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201604016.htm
    • 加载中
    图(16) / 表(3)
    计量
    • 文章访问数:  390
    • HTML全文浏览量:  194
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-23
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回