• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑拦挡坝抗灾能力的泥石流危险性评价

    李永威 徐林荣 商拥辉 陈舒阳

    李永威, 徐林荣, 商拥辉, 陈舒阳, 2024. 考虑拦挡坝抗灾能力的泥石流危险性评价. 地球科学, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035
    引用本文: 李永威, 徐林荣, 商拥辉, 陈舒阳, 2024. 考虑拦挡坝抗灾能力的泥石流危险性评价. 地球科学, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035
    Li Yongwei, Xu Linrogn, Shang Yonghui, Chen Shuyang, 2024. Debris Flow Hazard Evaluation under the Influence of Retaining Dam. Earth Science, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035
    Citation: Li Yongwei, Xu Linrogn, Shang Yonghui, Chen Shuyang, 2024. Debris Flow Hazard Evaluation under the Influence of Retaining Dam. Earth Science, 49(8): 2839-2850. doi: 10.3799/dqkx.2023.035

    考虑拦挡坝抗灾能力的泥石流危险性评价

    doi: 10.3799/dqkx.2023.035
    基金项目: 

    国家面上项目 42172322

    国家自然科学基金项目 42007419

    国家重点研发计划 2018YFC1505403

    湖南省自然科学基金 2020JJ5981

    湖南省教育厅科学研究项目优秀青年基金 21B0226

    中南大学研究生自主探索创新项目 2022ZZTS0646

    详细信息
      作者简介:

      李永威(1994-),男,博士研究生,主要从事地质灾害评估、防治与预警预报研究工作. E-mail:yongweili@csu.edu.cn

      通讯作者:

      徐林荣, E-mail:lrxu@csu.edu.cn

    • 中图分类号: X43

    Debris Flow Hazard Evaluation under the Influence of Retaining Dam

    • 摘要: 震后低频泥石流发生概率增加、泥石流规模增大,导致拦挡坝阻灾能力变化,进而影响泥石流的危险性. 但鲜有研究揭示拦挡坝对泥石流危险性的影响. 同时,针对以形成条件为危险性评价指标的传统危险性评价方法无法度量泥石流的破坏力及强度等问题,提出增加泥石流动力学参数作为危险性评价指标,并采用改进的熵值法评估泥石流危险性. 通过计算不同重现期下锄头沟泥石流的动力参数、拦挡坝稳定系数. 定量分析拦挡坝与泥石流危险性之间的控制关系. 结果表明:增加动力特征参数的泥石流危险性评价方法能考虑其动力破坏、泥石流强度作用,结合改进的熵值法能够获取较为科学、合理的评价结果;若拦挡措施安全稳定,由于停淤作用使坝后冲出量减少,使100~10年一遇泥石流危险性降低12.27%~43.75%不等. 考虑拦挡坝抗灾能力进行泥石流危险性评价,能有效对防灾减灾决策、土地规划利用等资源的合理调配提供指导.

       

    • 图  1  锄头沟泥石流物源及防治工程分布情况

      Fig.  1.  Location of materials of debris flow and engineering measures in Chutou gully

      图  2  1#拦挡坝沟道断面形态

      Fig.  2.  Section characteristics of 1# retaining dam in Chutou gully

      图  3  不同重现周期下锄头沟泥石流流量过程线

      Fig.  3.  Flow hydrograph of the Chutou gully debris flow for different return periods (10, 20, 50 and 100 years)

      图  4  2019年8.20泥石流对锄头沟1#拦挡坝和下游桥梁造成的影响

      Fig.  4.  Impact of August 20, 2019 debris flow on prevention engineering and infrastructure, (a) retaining dam is buried by "8.20" debris flow, (b) bridge damage caused by debris flow

      表  1  泥石流的动力特征参数计算结果

      Table  1.   Dynamic characteristic parameters of debris flow

      频率P参数 1%(100年一遇) 2%(50年一遇) 5%(20年一遇) 10%(10年一遇)
      锄头沟泥石流动力参数 泥深(m) 2.06 1.86 1.55 1.23
      流速Vc(m/s) 4.32 4.03 3.56 3.05
      泥石流整体压力(kN) 44.12 38.38 30.04 22.06
      大块石冲击力(kN) 243.25 226.87 200.72 171.9
      动水压力(kN) 33.85 29.45 23.05 16.91
      水的水平水压力(kN) 592.90(空库) 148.22(半库)
      震前设计1#拦挡坝受力 泥石流土体水平压力(kN) 1 162.40(满库) 290.60(半库)
      泥石流土体竖向压力(kN) 1 010.90(满库) 252.74(半库)
      扬压力(kN) 448.10(空库) 246.43(半库)
      2014年6月后灾后重建1#拦挡坝受力 水的水平水压力(kN) 2 822.40(空库) 705.60(半库)
      泥石流土体水平压力(kN) 3 607.11(满库) 901.78(半库)
      泥石流土体竖向压力(kN) 3 137.20(满库) 784.30(半库)
      扬压力(kN) 2 486.75(空库) 1367.71(半库)
      下载: 导出CSV

      表  2  泥石流拦挡坝稳定性计算结果

      Table  2.   Calculation results of retaining dam stability of debris flow

      抗滑移稳定性系数 抗倾覆稳定性系数 抗滑安全系数 抗倾覆安全系数 稳定情况
      频率 满库过流 半库过流 空库过流 满库过流 半库过流 空库过流
      震前设计1#拦挡坝 1% 0.94 0.82 0.73 1.30 1.13 1.01 1.25 1.6 倾倒破坏
      2% 0.96 0.84 0.75 1.32 1.15 1.04 1.25 1.5 倾倒破坏
      5% 0.99 0.87 0.79 1.36 1.20 1.09 1.15 1.4 倾倒破坏
      10% 1.02 0.91 0.83 1.41 1.25 1.15 1.10 1.3 倾倒破坏
      2014年6月后灾后重建1#拦挡坝 1% 1.57 1.44 1.32 1.98 1.65 1.47 1.25 1.6 安全稳定
      2% 1.59 1.45 1.31 2.10 1.67 1.51 1.25 1.5 安全稳定
      5% 1.60 1.53 1.42 2.13 1.69 1.56 1.15 1.4 安全稳定
      10% 5.03 4.95 4.76 2.15 1.71 1.59 1.10 1.3 安全稳定
      下载: 导出CSV

      表  3  锄头沟泥石流危险性评价因子熵值和权重

      Table  3.   Value of entropy and weight of evaluation factors of debris flow in Chutou gully

      评价因子 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
      熵值 1 1 1 1 1 0.86 0.89 0.86 0.75 0.87 0.94
      权重 0 0 0 0 0 0.17 0.14 0.16 0.30 0.15 0.08
      下载: 导出CSV

      表  4  有无拦挡措施情况下锄头沟泥石流危险性结果

      Table  4.   Debris flow hazard evaluation of Chutou gully both with and without the condition of retaining dam

      无拦挡措施 拦挡措施失效 拦挡措施安全稳定
      频率 危险性评价值 危险性级别 危险性评价值 危险性级别 危险值变化 危险性评价值 危险性级别 危险值变化
      1% 0.79 极高危险 0.79 极高危险 0% 0.71 极高危险 -12.27%
      2% 0.62 高度危险 0.62 高度危险 0% 0.53 高度危险 -16.98%
      5% 0.40 高度危险 0.40 高度危险 0% 0.33 中度危险 -21.21%
      10% 0.23 中度危险 0.23 中度危险 0% 0.16 低度危险 -43.75%
      下载: 导出CSV
    • Chen, F. F., Yao, L. H., Zhao, H. L., et al., 2018. Discussion on the Risk Assessment of Debris Flow. Science Technology and Engineering, 18(32): 114-123 (in Chinese with English abstract).
      Gu, F. Y., Xu, L. R., Li, Y. W., 2022. Evaluation of Vulnerability of Diversion Dike Suffering from Debris Flow Disasters. Journal of Civil and Environmental Engineering, 45(1): 145-154 (in Chinese with English abstract).
      Guo, X. G., 1998. Application of Improved Entropy Method in Evaluation of Economic Result. System Engineering Theory and Practice, (12): 99-103(in Chinese with English abstract).
      Hou, L. G., Cui, P., 2004. The Study on Assessment of Debris Flow Hazards in the Solo Channel. Research of Soil and Water Conservation, (2): 125-128 (in Chinese with English abstract).
      Huang, Q. L., Chen, W., Fu, X. D., 2018. AHP-RBF Assessment Model of Regional Debris Flow Hazard Supported by Unit Slope. Journal of Zhejiang University(Engineering Science), 52(9): 1667-1675 (in Chinese with English abstract).
      Jiang, Z. X., 2015. The Concise Engineering Design for Geo-Hazard Mitigation after Earthquke. Southwest Jiaotong University Press, Chengdu (in Chinese).
      Li, X. L., Song, G. H., Xiang, L. Z., 2021. Hazard Analysis of Debris Flows Based on Different Evaluation Unit Sand Disaster Entropy: A Case Study in Wudu Section of the Bailong River Basin. The Chinese Journal of Geological Hazard and Control, 32(6): 107-115 (in Chinese with English abstract).
      Li, Y. W., Xu, L. R., Gu, F. Y., 2022. Influence of Disaster-Pregnant Factors on Debris Flow Hazard. Earth Science, 1-12 (in Chinese with English abstract).
      Liang, W., Zhuang, D., Jiang, D., et al., 2012. Assessment of Debris Flow Hazards Using a Bayesian Network. Geomorphology, 171: 94-100. https://doi.org/10.1016/j.geomorph.2012.05.008
      Liu, X. L., Tang, C., 1995. Debris Flow Hazard Assessment. Science Press, Beijing (in Chinese).
      Liu, B., Hu, X., Ma, G., et al., 2021. Back Calculation and Hazard Prediction of a Debris Flow in Wenchuan Meizoseismal Area, China. Bulletin of Engineering Geology and the Environment. 80: 3457-3474. https://doi.org/10.1007/s10064-021-02127-3
      Liu, F. Z., Cui, C., Wang, J. C., 2020. Hazard Assessment of Debris Flow Based on the Certainty Factor Rate and the Logistic Regression Model. Journal of Safety and Environment, (4): 79-84(in Chinese with English abstract).
      Lu, Y., Xu, L. R., 2014. Chen Shuyang, et al. Combined Weight Method Based on Game Theory for Debris Flow Hazard Risk Assessment. Journal of Catastrophology, 29(1): 194-200 (in Chinese with English abstract).
      Luo, G., Cheng, Q. G., Shen, W. G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934 (in Chinese with English abstract).
      Qian, X., Chen, J. P., Xiang, L. J., et al., 2016. A Novel Hybrid KPCA and SVM with PSO Model for Identifying Debris Flow Hazard Degree: a Case Study in Southwest China. Environmental Earth Sciences, 75(11): 1-16 https://doi.org/10.1007/s12665-016-5774-3
      Shen, S., Liao, W., Nie, L., et al. 2018. Debris Flow Hazard Assessment at Dongmatun Village in Laomao Mountainous Area of Dalian, Northeast China. Arabian Journal of Geosciences, 11: 1-12. https://doi.org/10.1007/s12517-018-3953-0
      Sichuan Provincial Department of Water Resources. 1984. Handbook of Calculation for Rainstorm and Flood in Small and Medium-Sized Watersheds in Sichuan Province. Sichuan Provincial Department of Water Resources, Chengdu(in Chinese).
      Song, G. H., Zhang, J., Yang, Z. X., 2022. Effectiveness Evaluation and Problems Analysis of Debris Flow Control Project after Earthquake. Joumal of Catastrophology, 37(1): 58-67 (in Chinese with English abstract).
      Tang, C., Huang, R. Q., Huang, D., et al., 2006. Impacts of Debris Flows on the Reservoir of a Hydropower Station in the Meigu River of Jinshajiang. Joumal of Engineering Geology, (2): 145-151(in Chinese with English abstract).
      Tang, C., Zhu, J., L, i W., et al., 2009. Rainfall-Triggered Debris Flows Following the Wenchuan Earthquake. Bulletin of Engineering Geology and the Environment, 68(2). https://doi.org/10.1007/s10064-009-0201-6
      Tang, C., Li, W. L., Ding, J., et al., 2011. Field Investigation and Research on Giant Debris Flow on August 14, 2010 in Yingxiu Town, Epicenter of Wenchuan Earthquake. Earth Science, 36(1): 172-180 (in Chinese with English abstract).
      Tian, S. J., Zhang, J., Zhang, S. S., 2020. Effectiveness Evaluation of Disaster Reduction for Debris Flows Control Engineering after Wenchuan Earthquake. Joural of Catastrophology, 35(3): 102-109 (in Chinese with English abstract).
      Tian, S., Hu, G., Chen, N., et al., 2022. Extreme Climate and Tectonic Controls on the Generation of a Large-Scale, Low-Frequency Debris Flow. Catena, 212: 106086. https://doi.org/10.1016/j.catena.2022.106086
      Tie, Y. B., Tang, C., 2006. Application of AHP in Single Debris Flow Risk Assessment. The Chinese Journal of Geological Hazard and Control, (4): 79-84 (in Chinese with English abstract).
      Wang, B. Y., Yang, H. S., Yang, Z. Y., 2016. Calculation of Dynamic Characteristic Parameters of Debris Flow at Different Frequency in Zili Gull. Journal of Geological Hazards and Environment Preservation, 2016, 27(4): 26-30 (in Chinese with English abstract).
      Wang X, Liu C, Chen S, et al. 2020. Impact of Coal Sector's De-Capacity Policy on Coal Price. Applied Energy, 2020, 265: 114802. https://doi.org/10.1016/j.apenergy.2020.114802
      Yuan, L., Zhang, Q., Li, W., et al., 2006. Debris Flow Hazard Assessment Based on Support Vector Machine. 2006 IEEE International Symposium on Geoscience and Remote Sensing. IEEE, 4221-4224. https://doi.org/10.1109/IGARSS.2006.1083
      Zhang, Y. Y., Zhong, L., Fan, X. Y., et al., 2021. The Disaster Model of Debns Fows after Earhquake at Chutou Gully of Minjiang River Valley, China. Mountain Research, 2021, 39(5): 756-766 (in Chinese with English abstract).
      Zhang, S. H., Wu, G., 2019. Debris Flow Susceptibility and Its Reliability Based on Random Forest and GIS. Earth Science, 44(9): 3115-3134 (in Chinese with English abstract).
      Zhang, X., Wu, Y., Zhai, E., et al. 2021. Coupling Analysis of the Heat-Water Dynamics and Frozen Depth in a Seasonally Frozen Zone. Journal of Hydrology, 593: 125603. https://doi.org/10.1016/j.jhydrol.2020.125603
      Zheng, G. G., 2020. Implementing and Deepening the Understanding of President Xi's Keynoter Remarks on Disaster Prevention and Mitigation: A Comprehensive Push for Strengthening Natural Disaster Management in China. The Weekly Standard, (5): 14-16(in Chinese).
      陈飞飞, 姚磊华, 赵宏亮, 等. 2018. 泥石流危险性评价问题的探讨. 科学技术与工程, 18(32): 114-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201832018.htm
      郭显光, 1998. 改进的熵值法及其在经济效益评价中的应用. 系统工程理论与实践, (12): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL812.018.htm
      谷丰宇, 徐林荣, 李永威, 2022. 导流堤遭受泥石流灾害的易损性评价. 土木与环境工程学报(中英文), 45 (1): 145-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN202301015.htm
      黄启乐, 陈伟, 傅旭东, 2018. 斜坡单元支持下区域泥石流危险性AHP-RBF评价模型. 浙江大学学报(工学版), 52(9): 1667-1675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201809006.htm
      侯兰功, 崔鹏, 2004. 单沟泥石流灾害危险性评价研究. 水土保持研究, (2): 125-128. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200402040.htm
      蒋忠信, 2015. 震后山地地质灾害治理工程设计概要. 成都: 西南交通大学出版社.
      李永威, 徐林荣, 谷丰宇, 2022. 孕灾环境对泥石流危险性影响. 地球科学, 1-12.
      李小龙, 宋国虎, 向灵芝, 等, 2021. 基于不同评价单元和灾害熵的泥石流危险性分析—以白龙江流域武都段为例. 中国地质灾害与防治学报, 32(6): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202106013.htm
      刘希林, 唐川, 1995. 泥石流危险性评价. 北京: 科学出版社.
      刘福臻, 崔超, 王军朝, 等, 2020. 基于CF与LR模型的泥石流危险性评价. 安全与环境学报, 21(4): 1693-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202104040.htm
      罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
      路遥, 徐林荣, 陈舒阳, 等, 2014. 基于博弈论组合赋权的泥石流危险度评价. 灾害学, 29(1): 194-200. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU201401035.htm
      宋国虎, 张继, 杨桢贤, 2022. 震后泥石流治理工程有效性评价及存在问题分析. 灾害学, 37(1): 58-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201011.htm
      四川省水利厅, 1984. 四川省中小流域暴雨洪水计算手册. 成都: 四川省水利厅.
      唐川, 黄润秋, 黄达, 等, 2006. 金沙江美姑河牛牛坝水电站库区泥石流对工程影响分析. 工程地质学报, (2): 145-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200602000.htm
      唐川, 李为乐, 丁军, 等, 2011. 汶川震区映秀镇"8·14"特大泥石流灾害调查. 地球科学, 36(1): 172-180. doi: 10.3799/dqkx.2011.018
      铁永波, 唐川, 2006. 层次分析法在单沟泥石流危险度评价中的应用. 中国地质灾害与防治学报, (4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200604017.htm
      田述军, 张静, 张珊珊, 2020. 震后泥石流防治工程减灾效益评价研究. 灾害学, 35(3): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202003021.htm
      王邦阳, 杨华舒, 杨在月, 2016. 不同爆发频率下的泥石流动力特征参数计算. 地质灾害与环境保护, 2016, 27(4): 26-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201604005.htm
      张友谊, 钟磊, 樊晓一, 等, 2021. 岷江河谷锄头沟震后泥石流致灾模式. 山地学报, 39(5): 756-766. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202105014.htm
      郑国光, 2020. 深入学习贯彻习近平总书记防灾减灾救灾重要论述全面提高我国自然灾害防治能力. 旗帜, (5): 14-16 https://www.cnki.com.cn/Article/CJFDTOTAL-ZIGU202005007.htm
      张书豪, 吴光, 2019. 随机森林与GIS的泥石流易发性及可靠性. 地球科学, 44(9): 3115-3134. doi: 10.3799/dqkx.2019.081
    • 加载中
    图(4) / 表(4)
    计量
    • 文章访问数:  382
    • HTML全文浏览量:  171
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-04
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回