• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    板内小位移走滑断裂特征解析:以塔里木、四川及鄂尔多斯盆地为例

    唐大卿 陈红汉 耿锋 齐荣 姜华 古再丽努尔·艾尔肯

    唐大卿, 陈红汉, 耿锋, 齐荣, 姜华, 古再丽努尔·艾尔肯, 2023. 板内小位移走滑断裂特征解析:以塔里木、四川及鄂尔多斯盆地为例. 地球科学, 48(6): 2067-2086. doi: 10.3799/dqkx.2023.037
    引用本文: 唐大卿, 陈红汉, 耿锋, 齐荣, 姜华, 古再丽努尔·艾尔肯, 2023. 板内小位移走滑断裂特征解析:以塔里木、四川及鄂尔多斯盆地为例. 地球科学, 48(6): 2067-2086. doi: 10.3799/dqkx.2023.037
    Tang Daqing, Chen Honghan, Geng Feng, Qi Rong, Jiang Hua, Guzailinuer·Aierken, 2023. Characteristics of Intraplate Small-Displacement Strike-Slip Faults: A Case Study of Tarim, Sichuan and Ordos Basins. Earth Science, 48(6): 2067-2086. doi: 10.3799/dqkx.2023.037
    Citation: Tang Daqing, Chen Honghan, Geng Feng, Qi Rong, Jiang Hua, Guzailinuer·Aierken, 2023. Characteristics of Intraplate Small-Displacement Strike-Slip Faults: A Case Study of Tarim, Sichuan and Ordos Basins. Earth Science, 48(6): 2067-2086. doi: 10.3799/dqkx.2023.037

    板内小位移走滑断裂特征解析:以塔里木、四川及鄂尔多斯盆地为例

    doi: 10.3799/dqkx.2023.037
    基金项目: 

    新疆维吾尔自治区重大科技专项 2022A03009-3

    国家重点基础研究发展计划(973)项目 2012CB214804

    “十三·五”国家科技重大专项 2016ZX05014

    详细信息
      作者简介:

      唐大卿(1974-),男,博士,副教授,主要从事盆地构造分析与油气成藏作用方面的研究工作.ORCID: 0000-0002-5793-7414.E-mail:tangdqcug@sina.com

    • 中图分类号: P618

    Characteristics of Intraplate Small-Displacement Strike-Slip Faults: A Case Study of Tarim, Sichuan and Ordos Basins

    • 摘要: 板内小位移走滑断裂在全球广泛发育,对沉积盆地油气运聚成藏和差异富集具有重要控制作用.在对我国中西部三大含油气盆地内部小位移走滑断裂几何学特征对比分析基础上,揭示了塔里木、四川及鄂尔多斯盆地小位移走滑断裂平剖面特征和走滑构造样式的共性及差异性,进而结合区域动力背景分析了上述三大叠合盆地内部小位移走滑断裂的成因演化.研究表明:(1)我国中西部塔里木、四川和鄂尔多斯盆地小位移走滑断裂十分发育,塔里木盆地主要发育于盆地中北部地区及巴楚隆起、四川盆地主要发育于盆地腹部地区、鄂尔多斯盆地主要发育于南部地区和北部杭锦旗地区;(2)三大盆地走滑断裂线形特征明显,但平面展布具有很大差异,塔里木盆地中北部可划分出5个特征迥异的走滑断裂发育区、四川盆地腹部走滑断裂呈不规则网状、鄂尔多斯盆地泾河地区走滑断裂主要呈北东东向、局部呈北西向.(3)三大盆地走滑断裂剖面均呈高陡产状,均发育纯走滑、张扭、压扭及叠加/反转等走滑构造,其中塔里木盆地花状和直立状走滑断裂均比较普遍;四川盆地腹部走滑断裂多为直立状,花状相对偏少;鄂尔多斯盆地泾河地区走滑断裂多呈复合花状或“花上花”特征且走滑反转特征典型.(4)塔里木、四川及鄂尔多斯盆地小位移走滑断裂都经历了从加里东期-喜山期的多个构造旋回和多期继承、叠加及改造过程,三大盆地内的走滑断裂形成期大致相同,为加里东中期,但终止期具有差异,塔里木盆地塔中地区为海西晚期、塔北为喜山早期,四川盆地为印支早期,鄂尔多斯盆地为喜山期.

       

    • 图  1  塔里木、四川及鄂尔多斯盆地典型走滑断裂平面展布特征

      a.塔里木盆地中北部(雅克拉为T50、其余为T74);b.四川盆地中部高磨地区(灯影组底界面);c.鄂尔多斯盆地南部泾河地区(延长组长7段底界面-T6c

      Fig.  1.  Planar distribution maps of typical strike-slip faults in the Tarim, Sichuan and Ordos basins

      图  2  塔北隆起塔河地区主要地震反射界面断裂体系对比及空间展特征(位置见图 1a)

      Fig.  2.  Comparison and spatial distribution characteristics of fault systems of main seismic reflection interfaces in Tahe area, Tabei uplift (see location in Fig. 1a)

      图  3  塔中隆起主要地震反射界面相干切片与断裂体系对比(位置见图 1a)

      Fig.  3.  Comparison of coherent slices and fault systems of main surfaces in Tazhong uplift (see location in Fig. 1a)

      图  4  四川盆地中部高磨地区主要地层界面断裂展布特征

      a.震旦系灯影组底界面;b.寒武系底界面;c.二叠系龙潭组底界面;d.三叠系底界面

      Fig.  4.  Distribution of main stratigraphic interface faults in Gaomo area, central Sichuan basin

      图  5  鄂尔多斯盆地泾河油田主要地层界面断裂体系分布

      a.Tg (寒武系底面); b.T9 (石炭系底面); c.T6c (延长组长7段底面); d.T5 (延安组底面) : e.T3 (侏罗系顶面)

      Fig.  5.  Distribution of main stratigraphic interface faults in Jinghe oilfield, Ordos basin

      图  6  塔里木、四川及鄂尔多斯盆地典型走滑断裂特征剖面(位置见图 1)

      Fig.  6.  Profiles of typical strike-slip faults in Tarim, Sichuan and Ordos basins (see location in Fig. 1)

      图  7  鄂尔多斯盆地旬邑县城关镇走滑断层(a~c)和张洪镇走滑断层(d~e)特征图

      Fig.  7.  Characteristics of strike-slip fault in Chengguan town (a-c) and in Zhanghong town (d-e), Xunyi county, Ordos basin

      图  8  典型走滑断裂及伴生构造特征综合图(据Cunningham and Mann, 2007)

      Fig.  8.  Comprehensive map of typical strike-slip faults and associated structural features (after Cunningham and Mann, 2007)

      图  9  顺北1号断裂带加里东中期Ⅰ幕演化模式

      Fig.  9.  Evolution model in middle Caledonian period I of Shunbei No.1 fault zone

      图  10  顺北1号走滑断裂带断裂差异活动特征剖面(测线位置见图 9)

      Fig.  10.  Profiles of fault differential activity characteristics of Shunbei No.1 strike-slip fault zone (see location in Fig. 9)

      图  11  泾河油田不同走滑方式下的构造特征

      a.奥陶系顶面(T9)等T0构造图; b.三叠系长7底面(T6c)等T0构造图

      Fig.  11.  Structural characteristics of Jinghe oilfield under different strike-slip modes

      图  12  泾河油田不同走滑方式下的构造发育模式

      Fig.  12.  Structural development pattern of Jinghe oilfield under different strike-slip modes

      图  13  塔里木盆地中北部地区走滑断裂关键活动期次

      a.加里东中期Ⅰ幕;b.加里东晚期-海西早期;c.海西晚期;d.印支-燕山-喜山期

      Fig.  13.  Main evolution stages of strike-slip faults in central and northern areas of Tarim basin

      图  14  四川盆地中部高磨地区走滑断裂演化模式

      Fig.  14.  Evolution model of strike-slip faults in Gaomo area, central Sichuan basin

      图  15  鄂尔多斯及周缘地区现代构造动力作用模式图(据任隽,2012修改)

      Fig.  15.  Model of modern tectonic dynamic action in Ordos and its surrounding areas (modified from Ren, 2012)

      图  16  鄂尔多斯盆地泾河油田典型断裂构造演化剖面图

      Fig.  16.  Evolution profiles of typical fault structures in Jinghe oilfield, Ordos basin

    • Ali, K., 2013. New Field and Seismic Data about the Intraplate Strike-Slip Deformation in Van Region, East Anatolian Plateau, E. Turkey. Journal of Asian Earth Sciences, 62: 586-605. http://dx.doi.org/10.1016/j.jseaes.2012.11.008
      Anderson, H., Walsh, J.J., Cooper, M.R., 2018. The Development of a Regional-Scale Intraplate Strike-Slip Fault System; Alpine Deformation in the North of Ireland. Journal of Structural Geology, 116: 47-63. https://doi.org/10.1016/j.jsg.2018.07.002
      Bhattacharya, F., Chauhan, G., Durga Prasad, A., et al., 2019. Strike-Slip Faults in an Intraplate Setting and Their Significance for Landform Evolution in the Kachchh Peninsula, Western India. Geomorphology, 328: 118-137. https://doi.org/10.1016/j.geomorph.2018.12.006
      Calzolari, G., Rossetti, F., Ault, A.K., et al., 2018. Hematite (U-Th)/He Thermochronometry Constrains Intraplate Strike-Slip Faulting on the Kuh-E-Faghan Fault, Central Iran. Tectonophysics, 728-729: 41-54. https://doi.org/10.1016/j.tecto.2018.01.023
      Cao, Z.C., Lu, Q.H., Gu, Y., et al., 2020. Characteristics of Ordovician Reservoirs in Shunbei 1 and 5 Fault Zones, Tarim Basin. Oil & Gas Geology, 41(5): 975-984(in Chinese with English abstract).
      Chemenda, A.I., Cavalié, O., Vergnolle, M., et al., 2016. Numerical Model of Formation of a 3-D Strike-Slip Fault System. Comptes Rendus Geoscience, 348(1): 61-69. https://doi.org/10.1016/j.crte.2015.09.008
      Chen, J.J., He, D.F., Tian, F.L., et al., 2022. Control of Mechanical Stratigraphy on the Stratified Style of Strike-Slip Faults in the Central Tarim Craton, NW China. Tectonophysics, 830: 229307. https://doi.org/10.1016/j.tecto.2022.229307
      Clendenin, C.W., Diehl, S.F., 1999. Structural Styles of Paleozoic Intracratonic Fault Reactivation: A Case Study of the Grays Point Fault Zone in Southeastern Missouri, USA. Tectonophysics, 305(1-3): 235-248. https://doi.org/10.1016/s0040-1951(99)00007-4
      Cunningham, W. D, Mann, P., 2007. Tectonics of Strike-Slip Restraining and Releasing Bends. Geological Society, Special Publication, London, 290.
      Deng, S., Li, H.L., Zhang, Z.P., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Deng, S., Li, H.L., Zhang, Z.P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract).
      Dooley, T.P., Schreurs, G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics, 574-575: 1-71. https://doi.org/10.1016/j.tecto.2012.05.030
      Guan, S.W., Liang, H., Jiang, H., et al., 2022. Characteristics and Evolution of Main Strike-Slip Fault Zone and Associated Structures in Central Sichuan Basin. Earth Science Frontiers, 29(6): 252-264(in Chinese with English abstract).
      Han, J.F., Su, Z., Chen, L.X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310(in Chinese with English abstract). doi: 10.7623/syxb201911002
      Han, X.Y., Deng, S., Tang, L.J., et al., 2017. Geometry, Kinematics and Displacement Characteristics of Strike-Slip Faults in the Northern Slope of Tazhong Uplift in Tarim Basin: A Study Based on 3D Seismic Data. Marine and Petroleum Geology, 88: 410-427. https://doi.org/10.1016/j.marpetgeo.2017.08.033
      Jia, C.Z., Ma, D.B., Yuan, J.Y., et al., 2022. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strizke-Slip Faults in the Tarim Basin. Natural Gas Industry B, 9(1): 51-62. https://doi.org/10.1016/j.ngib.2021.08.017
      Jiao, F.Z., Yang, Y., Ran, Q., et al., 2022. Distribution and Gas Exploration of the Strike-Slip Faults in the Central Sichuan Basin. Natural Gas Industry B, 9(1): 63-72. https://doi.org/10.1016/j.ngib.2021.08.018
      Kim, N., Park, S.I., Choi, J.H., 2021. Internal Architecture and Earthquake Rupture Behavior of a Long-Lived Intraplate Strike-Slip Fault: A Case Study from the Southern Yangsan Fault, Korea. Tectonophysics, 816: 229006. https://doi.org/10.1016/j.tecto.2021.229006
      Lan, X.D., Lü, X.X., Zhu, Y.M., et al., 2015. The Geometry and Origin of Strike-Slip Faults Cutting the Tazhong Low Rise Megaanticline (Central Uplift, Tarim Basin, China) and Their Control on Hydrocarbon Distribution in Carbonate Reservoirs. Journal of Natural Gas Science and Engineering, 22: 633-645. https://doi.org/10.1016/j.jngse.2014.12.030
      Li, P.J., Chen, H.H., Tang, D.Q., et al., 2017. Coupling Relationship between NE Strike-Slip Faults and Hypogenic Karstification in Middle-Lower Ordovician of Shunnan Area, Tarim Basin, Northwest China. Earth Science, 42(1): 93-104(in Chinese with English abstract).
      Liu, B.Z., 2020. Analysis of Main Controlling Factors of Oil and Gas Differential Accumulation in Shunbei Area, Tarim Basin—Taking Shunbei No. 1 and No. 5 Strike Slip Fault Zones as Examples. China Petroleum Exploration, 25(3): 83-95(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.03.008
      Liu, S.G., Yang, Y., Deng, B., et al., 2021. Tectonic Evolution of the Sichuan Basin, Southwest China. Earth-Science Reviews, 213: 103470. https://doi.org/10.1016/j.earscirev.2020.103470
      Liu, Y.Q., Deng, S., 2022. Structural Analysis of Intraplate Strike-Slip Faults with Small to Medium Displacement: A Case Study of the Shunbei 4 Fault, Tarim Basin. Journal of China University of Mining & Technology, 51(1): 124-136(in Chinese with English abstract).
      Liu, Y.T., Zhou, Y.J., Liu, C.Y., et al., 2020. Structural Characteristics of Concealed Strike-Slip Fault Zone in Ordos Basin and Its Petroleum Geological Significance. Geological Review, 66(Suppl.1): 90-92(in Chinese with English abstract).
      Ma, D.B., Wang, Z.C., Duan, S.F., et al., 2018. Strike-Slip Faults and Their Significance for Hydrocarbon Accumulation in Gaoshiti-Moxi Area, Sichuan Basin, SW China. Petroleum Exploration and Development, 45(5): 795-805(in Chinese with English abstract).
      McKay, L., Lunn, R.J., Shipton, Z.K., et al., 2021. Do Intraplate and Plate Boundary Fault Systems Evolve in a Similar Way with Repeated Slip Events? Earth and Planetary Science Letters, 559: 116757. https://doi.org/10.1016/j.epsl.2021.116757
      Pan, J., Liu, Z.Q., Pu, R.H., et al., 2017. Fault Characteristics and Oil-Controlling Effects in Zhenyuan-Jingchuan District, Southwestern Ordos Basin. Oil Geophysical Prospecting, 52(2): 360-370, 196(in Chinese with English abstract).
      Piquer Romo, J.M., Yáñez, G., Rivera, O., et al., 2019. Long-Lived Crustal Damage Zones Associated with Fault Intersections in the High Andes of Central Chile. Andean Geology, 46(2): 223. https://doi.org/10.5027/andgeov46n2-3106
      Qiu, H.B., Deng, S., Zhang, J.B., et al., 2022. The Evolution of a Strike-Slip Fault Network in the Guchengxu High, Tarim Basin (NW China). Marine and Petroleum Geology, 140: 105655. https://doi.org/10.1016/j.marpetgeo.2022.105655
      Qiu, Z.H., Zhou, L., Chen, X., et al., 2022. Identification of Strike-Slip Faults in Gaoshiti-Moxi Area of Sichuan Basin. Oil Geophysical Prospecting, 57(3): 647-655, 494(in Chinese with English abstract).
      Ren, J., 2012. Probe on the Deep Crustal Structure in Weihe Basin and Tectonics Research of Basin(Dissertation). Chang'an University, Xi'an (in Chinese with English abstract).
      Sakran, S., Said, S.M., 2018. Structural Setting and Kinematics of Nubian Fault System, SE Western Desert, Egypt: an Example of Multi-Reactivated Intraplate Strike-Slip Faults. Journal of Structural Geology, 107: 93-108. https://doi.org/10.1016/j.jsg.2017.12.006
      Shen, Z.Y., Neng, Y., Han, J., et al., 2022. Structural Styles and Linkage Evolution in the Middle Segment of a Strike-Slip Fault: A Case from the Tarim Basin, NW China. Journal of Structural Geology, 157: 104558. https://doi.org/10.1016/j.jsg.2022.104558
      Soumaya, A., Kadri, A., Ayed, N.B., et al., 2020. Deformation Styles Related to Intraplate Strike-Slip Fault Systems of the Saharan-Tunisian Southern Atlas (North Africa): New Kinematic Models. Journal of Structural Geology, 140: 104175. https://doi.org/10.1016/j.jsg.2020.104175
      Sun, N.Q., Jie, P., Zhou, S.B., et al., 2018. Characteristics of Faults and Its Significance in Controlling the Oil Accumulations in Honghe Field, Ordos Basin. Interpretation, 7(1): 1-33. https://doi.org/10.1190/int-2017-0182.1
      Su, N., Yang, W., Yuan, B.G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract).
      Sun, D., Yang, L.S., Wang, H.B., et al., 2015. Strike-Slip Fault System in Halahatang Area of Tarim Basin and Its Control on Reservoirs of Ordovician Marine Carbonate Rock. Natural Gas Geoscience, 26(Suppl.1): 80-87(in Chinese with English abstract).
      Teng, C.Y., Cai, Z.X., Hao, F., et al., 2020. Structural Geometry and Evolution of an Intracratonic Strike-Slip Fault Zone: A Case Study from the North SB5 Fault Zone in the Tarim Basin, China. Journal of Structural Geology, 140: 104159. https://doi.org/10.1016/j.jsg.2020.104159
      Wang, Z., Tang, D.Q., Kang, Z.J., et al., 2022. Development Characteristics and Its Role in Controlling Oil and Gas Accumulation of the Mid-North Part of Shunbei No. 5 Strike-Slip Fault Zone in Tarim Basin. Earth Science(in press) (in Chinese with English abstract).
      Wang, Z.Y., Gao, Z.Q., Fan, T.L., et al., 2022. Architecture of Strike-Slip Fault Zones in the Central Tarim Basin and Implications for Their Control on Petroleum Systems. Journal of Petroleum Science and Engineering, 213: 110432. https://doi.org/10.1016/j.petrol.2022.110432
      Xiao, Y., Wu, G.H., Lei, Y.L., et al., 2017. Analogue Modeling of Through-Going Process and Development Pattern of Strike-Slip Fault Zone. Petroleum Exploration and Development, 44(3): 340-348(in Chinese with English abstract).
      Yang, Y., Tang, L.J., Diao, X.D., et al., 2018. Differential Deformation and Its Control Mechanism of Fault Structures in Yakela Fault-Salient, Tarim Basin. Oil & Gas Geology, 39(1): 89-97(in Chinese with English abstract).
      Yang, Y., Wang, B., Cao, Z.C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257(in Chinese with English abstract).
      Yazıcı, M., Zabcı, C., Sançar, T., et al., 2018. The Role of Intraplate Strike-Slip Faults in Shaping the Surrounding Morphology: The Ovacık Fault (Eastern Turkey) as a Case Study. Geomorphology, 321: 129-145. https://doi.org/10.1016/j.geomorph.2018.08.022
      Yin, A., Zuza, A.V., Pappalardo, R.T., 2016. Mechanics of Evenly Spaced Strike-Slip Faults and Its Implications for the Formation of Tiger-Stripe Fractures on Saturn's Moon Enceladus. Icarus, 266: 204-216. https://doi.org/10.1016/j.icarus.2015.10.027
      Zheng, H.R., Hu, Z.Q., Yun, L., et al., 2022. Development Characteristics and Reservoir Control of Strike-Slip Faults in China Marine Craton Basin. Earth Science Frontiers, 29(6): 224-238(in Chinese with English abstract).
      曹自成, 路清华, 顾忆, 等, 2020. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征. 石油与天然气地质, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htm
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      管树巍, 梁瀚, 姜华, 等, 2022. 四川盆地中部主干走滑断裂带及伴生构造特征与演化. 地学前缘, 29(6): 252-264. doi: 10.13745/j.esf.sf.2022.8.8
      韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. doi: 10.7623/syxb201911002
      李培军, 陈红汉, 唐大卿, 等, 2017. 塔里木盆地顺南地区中-下奥陶统NE向走滑断裂及其与深成岩溶作用的耦合关系. 地球科学, 42(1): 93-104. doi: 10.3799/dqkx.2017.007
      刘宝增, 2020. 塔里木盆地顺北地区油气差异聚集主控因素分析: 以顺北1号、顺北5号走滑断裂带为例. 中国石油勘探, 25(3): 83-95. doi: 10.3969/j.issn.1672-7703.2020.03.008
      刘永涛, 周义军, 刘池洋, 等, 2020. 鄂尔多斯盆地隐蔽型走滑断裂带构造特征及其油气地质意义. 地质论评, 66(增刊1): 90-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2020S1037.htm
      刘雨晴, 邓尚, 2022. 板内中小滑移距走滑断裂发育演化特征精细解析: 以塔里木盆地顺北4号走滑断裂为例. 中国矿业大学学报, 51(1): 124-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202201012.htm
      马德波, 汪泽成, 段书府, 等, 2018. 四川盆地高石梯—磨溪地区走滑断层构造特征与天然气成藏意义. 石油勘探与开发, 45(5): 795-805. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805006.htm
      潘杰, 刘忠群, 蒲仁海, 等, 2017. 鄂尔多斯盆地镇原—泾川地区断层特征及控油意义. 石油地球物理勘探, 52(2): 360-370, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201702021.htm
      邱泽华, 周路, 陈骁, 等, 2022. 四川盆地高石梯—磨溪地区走滑断层识别. 石油地球物理勘探, 57(3): 647-655, 494.
      任隽, 2012. 渭河盆地深部地壳结构探测与盆地构造研究(博士学位论文). 西安: 长安大学.
      苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202
      孙东, 杨丽莎, 王宏斌, 等, 2015. 塔里木盆地哈拉哈塘地区走滑断裂体系对奥陶系海相碳酸盐岩储层的控制作用. 天然气地球科学, 26(增刊1): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2015S1011.htm
      王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学(待刊).
      肖阳, 邬光辉, 雷永良, 等, 2017. 走滑断裂带贯穿过程与发育模式的物理模拟. 石油勘探与开发, 44(3): 340-348. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703004.htm
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      杨勇, 汤良杰, 刁新东, 等, 2018. 塔里木盆地雅克拉断凸断裂差异变形特征及其控制因素. 石油与天然气地质, 39(1): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201801010.htm
      郑和荣, 胡宗全, 云露, 等, 2022. 中国海相克拉通盆地内部走滑断裂发育特征及控藏作用. 地学前缘, 29(6): 224-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202206015.htm
    • 加载中
    图(16)
    计量
    • 文章访问数:  872
    • HTML全文浏览量:  720
    • PDF下载量:  236
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-07
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回