• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于卷积神经网络的土体含水率智能识别

    庞元恩 王智诚 李旭 杜赛朝

    庞元恩, 王智诚, 李旭, 杜赛朝, 2024. 基于卷积神经网络的土体含水率智能识别. 地球科学, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043
    引用本文: 庞元恩, 王智诚, 李旭, 杜赛朝, 2024. 基于卷积神经网络的土体含水率智能识别. 地球科学, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043
    Pang Yuanen, Wang Zhicheng, Li Xu, Du Saizhao, 2024. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks. Earth Science, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043
    Citation: Pang Yuanen, Wang Zhicheng, Li Xu, Du Saizhao, 2024. Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks. Earth Science, 49(5): 1746-1758. doi: 10.3799/dqkx.2023.043

    基于卷积神经网络的土体含水率智能识别

    doi: 10.3799/dqkx.2023.043
    基金项目: 

    国家重点研发计划资助项目 2022YFE0200400

    详细信息
      作者简介:

      庞元恩(2002-),男,本科生,主要从事机器学习在岩土工程应用等方面研究.ORCID:0000-0003-0459-0215. E-mail:yuanenpang@gmail.com

      通讯作者:

      李旭,E-mail: cexuli2012@163.com

    • 中图分类号: P581

    Moisture Content Recognition Model of Unsaturated Soil Based on Convolutional Neural Networks

    • 摘要: 土体含水率是影响细粒土性质的主要因素.土体表层含水率的快速识别是农业和岩土工程中智能监测和智能建造技术发展中的急迫需求.为了克服传统含水率测量或监测方法无法满足土体表层含水率的实时无损监测的局限性,特研发基于图像的含水率智能识别算法.首先在实验室中收集了4种不同类别的土体、在不同含水率下的表面照片,获得了超过1 400张图片的高质量样本库,为机器学习模型构建奠定了数据基础.然后采用经典的卷积神经网络对土体含水率图像数据集进行学习,建立了土体含水率智能识别模型.模型比选结果表明:基于ResNet34架构的土体含水率识别模型效果最佳,在测试集上的含水率预测平均误差约为2%.该模型初步满足了土体表层含水率的实时无损监测需求,能够为农业和岩土工程中智能监测和智能建造技术发展提供重要手段.

       

    • 图  1  技术路线

      Fig.  1.  Research route chart of this paper

      图  2  粉质黏土等试样制备(环刀法)

      a.液压压实器;b.压实土样(青海粉质粘土)

      Fig.  2.  Sample preparation for silty clay soil and other soils (cutting ring method)

      图  3  标准砂试样制备(“小盒”法)

      a.小盒容器;b.标准砂土样

      Fig.  3.  Sample preparation for sandy soil ("small box" method)

      图  4  剪裁处理

      Fig.  4.  Cutting processing

      图  5  数据扩增

      Fig.  5.  Data augmentation

      图  6  各类型土样例展示

      Fig.  6.  Samples display for each soil

      图  7  卷积网络基本架构

      Fig.  7.  Basic structure of convolutional neural network

      图  8  所用神经网络的结构及其修改

      a.简单网络;b. NiN修改;c.VGG16修改;d. ResNet系列修改

      Fig.  8.  The structure of the neutral networks and their modifications in this paper

      图  9  基于CNN的含水率预测模型构建过程

      Fig.  9.  Construction process of moisture content prediction model based on CNN

      图  10  各模型识别结果对比

      Fig.  10.  Comparison of identification results of each model

      图  11  分离数据集与混合数据集训练结果对比

      a.延庆粉质黏土;b.兰州粉土;c.青海粉质黏土;d.标准砂

      Fig.  11.  Comparison of training results between separate and mixed datasets

      图  12  最优模型全土样含水率预测结果

      Fig.  12.  Optimal model prediction results of all types soil moisture content

      图  13  去除异常样本前样本量相对下降率变化情况

      Fig.  13.  Changes in the relative decline rate of sample size before removing abnormal samples

      图  14  去除异常样本后预测结果

      Fig.  14.  Prediction results after removing abnormal samples

      图  15  去除异常样本前后识别效果对比

      Fig.  15.  Comparison of identification effect before and after removing abnormal samples

      表  1  土样基本性质

      Table  1.   Basic properties of each soil

      土壤种类 比重
      Gs(g/cm3)
      最优含水率
      wo(%)
      最大干密度
      $ \rho $d(g/cm3)
      1.延庆粉质黏土 2.73 16.50 1.80
      2.兰州粉土 2.71 14.81 1.78
      3.青海粉质黏土 2.68 15.50 1.75
      4.标准砂 2.65 11.56 1.82
      下载: 导出CSV

      表  2  原数据集总结

      Table  2.   Summary of original dataset

      土壤类型 压实度 平行样本数量(个) 照片数量(张)
      延庆粉质黏土 1.00 2 156
      0.95 1 78
      兰州粉土 1.00 2 216
      0.90 1 108
      0.85 2 216
      青海粉质黏土 0.95 1 132
      0.90 1 132
      0.85 2 264
      标准砂 - 4 108
      下载: 导出CSV

      表  3  分离数据集总结

      Table  3.   Summary of separate dataset

      土壤类型 训练集 测试集
      延庆粉质黏土 1 497 375
      兰州粉土 3 456 864
      青海粉质黏土 3 379 845
      标准砂 173 43
      下载: 导出CSV

      表  4  混合数据集总结

      Table  4.   Summary of mixed dataset

      土壤类型 训练集 测试集
      四种土 8 505 2 127
      下载: 导出CSV

      表  5  五种网络架构模型的复杂度与性能对比

      Table  5.   Complexity and performance comparison of five network architecture models

      模型 模型大小
      (MB)
      训练速度
      (s/epoch)
      简单网络 6.49 13.59
      NiN 32.33 20.57
      VGG16 275.50 99.71
      ResNet18 106.39 36.89
      ResNet34 178.45 53.65
      下载: 导出CSV

      表  6  ResNet34各土样识别结果(%)

      Table  6.   Identification results (%) of soil samples based on ResNet34 model

      土样类型 $ {\gamma }_{1} $ $ {\gamma }_{3} $ $ {\gamma }_{5} $
      延庆粉质黏土 32.55 70.83 86.98
      兰州粉土 37.38 72.34 90.97
      青海粉质黏土 31.37 70.99 88.80
      标准砂 39.29 94.64 100
      下载: 导出CSV

      表  7  异常样本及对比分析

      Table  7.   Abnormal samples and comparative analysis

      土样编号 1 2 3 4
      土样类型 延庆粉质黏土 青海粉质黏土 兰州粉土 兰州粉土
      异常样本
      预测值:26.55% 预测值:16.23% 预测值:14.68% 预测值:22.35%
      真实值:9.05% 真实值:25.95% 真实值:26.20% 真实值:31.85%
      对比样本
      预测值:11.79% 预测值:25.39% 预测值:25.18% 预测值:27.76%
      真实值:9.05% 真实值:25.95% 真实值:26.20% 真实值:31.85%
      下载: 导出CSV
    • Cai, Y., Zheng, W. G., Zhang, X., et al., 2019. Research on Soil Moisture Prediction Model Based on Deep Learning. PLoS One, 14(4): e0214508. https://doi.org/10.1371/journal.pone.0214508
      Canziani, A., Paszke, A., Culurciello, E., 2016. An Analysis of Deep Neural Network Models for Practical Applications. ArXiv, abs/1605.07678. https://doi.org/10.48550/arXiv.1605.07678
      Chang, D., Li, X., Liu, J. K., et al., 2014. Study Progress and Comparison of Soil Moisture Content Measurement Methods. Geotechnical Investigation & Surveying, 42(9): 17-22, 35 (in Chinese with English abstract).
      Chen, T. Q., Moreau, T., Jiang, Z. H., et al., 2018. TVM: An Automated End-to-End Optimizing Compiler for Deep Learning. ArXiv, 1802.04799. http://arxiv.org/abs/1802.04799.pdf
      Cheng, G. J., Li, B., Wan, X. L., et al., 2021. Research on Classification of Rock Section Image Based on Squeezenet Convolutional Neural Network. Mineralogy and Petrology, 41(4): 94-101 (in Chinese with English abstract).
      Dawson, H. L., Dubrule, O., John, C. M., 2023. Impact of Dataset Size and Convolutional Neural Network Architecture on Transfer Learning for Carbonate Rock Classification. Computers & Geosciences, 171: 105284. https://doi.org/10.1016/j.cageo.2022.105284
      Domínguez-Cuesta, M. J., Quintana, L., Valenzuela, P., et al., 2021. Evolution of a Human-Induced Mass Movement under the Influence of Rainfall and Soil Moisture. Landslides, 18(11): 3685-3693. https://doi.org/10.1007/s10346-021-01731-4
      Fan, H. Y., Tian, Z. H., Xu, X. B., et al., 2022. Rockfill Material Segmentation and Gradation Calculation Based on Deep Learning. Case Studies in Construction Materials, 17: e01216. https://doi.org/10.1016/j.cscm.2022.e01216
      Guo, T., Yu, H. B., 2018. Methods of Determination of Soil Water Content. Inner Mongolia Science Technology & Economy, (3): 66-67 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6921.2018.03.035
      He, K. M., Zhang, X. Y., Ren, S. Q., et al., 2016. Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Las Vegas, 770-778. https://doi.org/10.1109/CVPR.2016.90
      Hou, X. L., Feng, Y. H., Wu, G. H., et al., 2016. Application Research on Artificial Neural Network Dynamic Prediction Model of Soil Moisture. Water Saving Irrigation, (7): 70-72, 76 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-4929.2016.07.017
      Huang, G., Liu, Z., Laurens, V., et al., 2016. Densely Connected Convolutional Networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 2261-2269. https://doi.org/10.1109/CVPR.2017.243
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Huang, X. H., Li, T. F., Liu, X. X., et al., 2022. Research on Tracking and Prediction of Rock Fissure Sevelopment Based on Improved Faster R-CNN Algorithm. Journal of Henan Polytechnic University (Natural Science), 41(4): 134-141 (in Chinese with English abstract).
      Krizhevsky, A., Sutskever, I., Hinton, G. E., 2017. ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6): 84-90. https://doi.org/10.1145/3065386
      Lin, M., Chen, Q., Yan, S. C., 2014. Network in Network. ArXiv Preprint ArXiv, 1312.4400. https://doi.org/10.48550/arXiv.1312.4400
      McBratney, A. B., Minasny, B., Viscarra Rossel, R., 2006. Spectral Soil Analysis and Inference Systems: A Powerful Combination for Solving the Soil Data Crisis. Geoderma, 136(1/2): 272-278. https://doi.org/10.1016/j.geoderma.2006.03.051
      Ni, J. P., Gao, M., Wei, C. F., et al., 2009. Effects of Soil Water Content on Soil Shearing Strength to Different Soil Layer of Shallow Landslide. Journal of Soil and Water Conservation, 23(6): 48-50 (in Chinese with English abstract). doi: 10.3321/j.issn:1009-2242.2009.06.012
      Persson, M., 2005. Estimating Surface Soil Moisture from Soil Color Using Image Analysis. Vadose Zone Journal, 4(4): 1119-1122. https://doi.org/10.2136/vzj2005.0023
      Simonyan, K., Zisserman, A., 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. International Conference on Learning Representations (ICLR), San Diago, 1-14. https://doi.org/10.48550/arXiv.1409.1556
      Song, B. H., Chen, W. W., Wu, W. J., et al., 2017. Experimental Study on the Dynamic Properties of Sliding Zone Soil of a Landslide under Varying Water Content. China Earthquake Engineering Journal, 39(4): 744-749, 758 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2017.04.0744
      Sun, Y. L., Qu, Z. Y., Liu, Q. M., et al., 2020. Dynamic Study of Regional Soil Moisture Content Based on Multi-Source Remote Sensing Co-Inversion. Journal of Southwest University (Natural Science Edition), 42(12): 46-53 (in Chinese with English abstract).
      Szegedy, C., Liu, W., Jia, Y., et al., 2015. Going Deeper with Convolutions. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Chicago, 1-9. https://doi.org/10.48550/arXiv.1409.4842
      Tian, X., Daigle, H., 2018. Machine-Learning-Based Object Detection in Images for Reservoir Characterization: A Case Study of Fracture Detection in Shales. The Leading Edge, 37(6): 435-442. https://doi.org/10.1190/tle37060435.1
      Wang, D. L., Shu, Y. G., 2017. Research Progress in Determination Methods for Soil Water Content. Journal of Mountain Agriculture and Biology, 36(2): 61-65 (in Chinese with English abstract).
      Wang, M., Li, X., Chen, L. H., et al., 2020. A Modified Soil Water Content Measurement Technique Using Actively Heated Fiber Optic Sensor. Journal of Rock Mechanics and Geotechnical Engineering, 12(3): 608-619. https://doi.org/10.1016/j.jrmge.2019.11.003
      Wang, Z. L., Wang, X. Y., Sun, L., 2012. Research of Variation Laws of Shear Strength between Invaded and Natural Collapsible Loess—A Case Study for Collapsible Loess in Gongyi of Henan. South-to-North Water Diversion and Water Science & Technology, 10(3): 123-126 (in Chinese with English abstract).
      Yao, L., Wang, Y. R., Chen, Z., et al., 2020. Time-Varying Characteristics of Spatial Variability of Soil Moisture Content in Farmland. Water Saving Irrigation, (3): 33-39 (in Chinese with English abstract).
      Yi, X. F., Li, H., Zhang, R. C., et al., 2022. Rock Mass Structural Surface Trace Extraction Based on Transfer Learning. Open Geosciences, 14(1): 98-110. https://doi.org/10.1515/geo-2022-0337
      Yu, D. C., Ding, P., Yang, Z. Q., et al., 2021. Study on the Influence of Initial Water Content on the Breakout of Loess Landslide Barrier Dam. Mountain Research, 39(3): 367-377 (in Chinese with English abstract).
      Zanetti, S. S., Cecílio, R. A., Alves, E. G., et al., 2015. Estimation of the Moisture Content of Tropical Soils Using Colour Images and Artificial Neural Networks. CATENA, 135: 100-106. https://doi.org/10.1016/j.catena.2015.07.015
      Zhang, H., Wei, W. L., Liu, S. S., et al., 2023. Intelligent Identification Method of Moisture Content of Loess Based on Transfer Convolutional Neural Networks. Journal of Engineering Geology, 31(1): 21-31 (in Chinese with English abstract).
      Zhao, N. Y., Jiang, Y., Song, Y., 2021. Recognition and Classification of Concrete Cracks under Strong Interference Based on Convolutional Neural Network. Traitement Du Signal, 38(3): 911-917. https://doi.org/10.18280/ts.380338
      Zhao, Y. F., Wang, C. S., 2017. Principles and Comparison of Common Methods for Determining Soil Water Content. Horticulture & Seed, 37(10): 70-73 (in Chinese with English abstract).
      Zheng, Z. W., Gao, Z. Z., 2020. Research on Influence of Soil Moisture Content of Farmland on Infiltration Model Parameters. E3S Web of Conferences, 189(3): 01011. https://doi.org/10.1051/e3sconf/202018901011
      Zhou, C., Hu, G. L., Deng, L. Y., et al., 2021. Variation Characteristics of Soil Organic Matter and Water Content in Different Types of Landscape in the Middle Reaches of Heihe River. Journal of Gansu Agricultural University, 56(4): 126-135 (in Chinese with English abstract).
      Zhou, S. G., 2007. Main Geology Disasters Type of Loess Tunnel. Geology and Prospecting, 43(2): 103-107 (in Chinese with English abstract).
      常丹, 李旭, 刘建坤, 等, 2014. 土体含水率测量方法研究进展及比较. 工程勘察, 42(9): 17-22, 35. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201409004.htm
      程国建, 李碧, 万晓龙, 等, 2021. 基于SqueezeNet卷积神经网络的岩石薄片图像分类研究. 矿物岩石, 41(4): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS202104009.htm
      郭焘, 于红博, 2018. 土壤含水量测定方法综述. 内蒙古科技与经济, (3): 66-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NMKJ201803035.htm
      侯晓丽, 冯跃华, 吴光辉, 等, 2016. 基于人工神经网络土壤墒情动态预测模型应用研究. 节水灌溉, (7): 70-72, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU201607017.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
      黄晓红, 李铁锋, 刘祥鑫, 等, 2022. 基于改进Faster R-CNN算法的岩石裂隙发展方向跟踪预测研究. 河南理工大学学报(自然科学版), 41(4): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXB202401009.htm
      倪九派, 高明, 魏朝富, 等, 2009. 土壤含水率对浅层滑坡体不同层次土壤抗剪强度的影响. 水土保持学报, 23(6): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS200906014.htm
      宋丙辉, 谌文武, 吴玮江, 等, 2017. 不同含水率下滑坡滑带土动力特性试验研究. 地震工程学报, 39(4): 744-749, 758. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201704024.htm
      孙宇乐, 屈忠义, 刘全明, 等, 2020. 基于多源遥感协同反演的区域性土壤含水率动态研究. 西南大学学报(自然科学版), 42(12): 46-53. https://www.cnki.com.cn/Article/CJFDTOTAL-XNND202012005.htm
      王大龙, 舒英格, 2017. 土壤含水量测定方法研究进展. 山地农业生物学报, 36(2): 61-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNS201702013.htm
      王志良, 王秀艳, 孙琳, 2012. 湿陷性黄土侵水前后抗剪强度变化规律研究: 以河南巩义地区湿陷性黄土为例. 南水北调与水利科技, 10(3): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201203028.htm
      姚丽, 王仰仁, 陈钊, 等, 2020. 农田土壤含水率空间变异的时变特性研究. 节水灌溉, (3): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGU202003007.htm
      雨德聪, 丁攀, 杨志全, 等, 2021. 初始含水率对黄土滑坡堰塞坝溃决影响研究. 山地学报, 39(3): 367-377. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA202103007.htm
      张晗, 魏文龙, 刘森森, 等, 2023. 基于迁移卷积神经网络的黄土含水率智能识别. 工程地质学报, 31(1): 21-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202301003.htm
      赵宇飞, 王长沙, 2017. 常用土壤含水量测定方法的原理及比较. 园艺与种苗, 37(10): 70-73. https://www.cnki.com.cn/Article/CJFDTOTAL-GNZL201710026.htm
      周川, 胡广录, 邓丽媛, 等, 2021. 黑河中游不同景观类型土壤有机质与含水率变化特征. 甘肃农业大学学报, 56(4): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GSND202104017.htm
      周尚国, 2007. 黄土隧道的主要地质灾害类型. 地质与勘探, 43(2): 103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200702021.htm
    • 加载中
    图(15) / 表(7)
    计量
    • 文章访问数:  699
    • HTML全文浏览量:  268
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-10
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回