• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    北极楚克奇陆架边缘“大西洋水层”钕同位素示踪

    杨映 叶黎明 倪建宇 于晓果 原超 葛倩 宋赛 张泳聪

    杨映, 叶黎明, 倪建宇, 于晓果, 原超, 葛倩, 宋赛, 张泳聪, 2024. 北极楚克奇陆架边缘“大西洋水层”钕同位素示踪. 地球科学, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045
    引用本文: 杨映, 叶黎明, 倪建宇, 于晓果, 原超, 葛倩, 宋赛, 张泳聪, 2024. 北极楚克奇陆架边缘“大西洋水层”钕同位素示踪. 地球科学, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045
    Yang Ying, Ye Liming, Ni Jianyu, Yu Xiaoguo, Yuan Chao, Ge Qian, Song Sai, Zhang Yongcong, 2024. Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin. Earth Science, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045
    Citation: Yang Ying, Ye Liming, Ni Jianyu, Yu Xiaoguo, Yuan Chao, Ge Qian, Song Sai, Zhang Yongcong, 2024. Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin. Earth Science, 49(8): 2938-2951. doi: 10.3799/dqkx.2023.045

    北极楚克奇陆架边缘“大西洋水层”钕同位素示踪

    doi: 10.3799/dqkx.2023.045
    基金项目: 

    自然资源部第二海洋研究所中央级公益性科研院所基本科研业务费专项资金 JG1512

    详细信息
      作者简介:

      杨映,男,硕士研究生,海洋地质专业. ORCID:0000-0001-7274-8067. E-mail:yyingsio@163.com

      通讯作者:

      叶黎明,ORCID:0000-0002-2786-8550.E-mail:lmye@sio.org.cn

    • 中图分类号: P736

    Arctic Neodymium Isotope Traces for the Atlantic Water Layer at the Chukchi Continental Margin

    • 摘要: 温暖的“大西洋水层”为北冰洋提供了重要的热量来源,是决定其海冰状况、冰架分布及周边冰盖稳定性的关键因素. 通过分析M04孔沉积物中稀土元素(REE)的含量及其配分模式和Fe-Mn氧化物组分的钕同位素组成,探讨了晚更新世以来楚克奇陆架边缘REE的富集机制、εNd示踪水团性质的有效性以及“大西洋水层”的强弱变化. 结果表明,间冰期Fe-Mn氧化物是溶解态REE沉淀的主要载体,但冰期缺少Fe-Mn氧化物的灰色层中也富集了大量的溶解态REE. 同时,Fe-Mn氧化物萃取液中εNd介于-5.50~-8.74之间,呈现出冰期高,间冰期低的特点,有效指示了“大西洋水层”在楚克奇陆架边缘的活动. 在间冰期,“大西洋水层”增强,为陆架输入的Fe2+和Mn2+创造了再氧化的条件;而在冰期,“大西洋水层”几乎退出了楚克奇陆架边缘. 参照现代冰川溶水的化学组成,导致冰期M04孔Fe-Mn氧化物萃取液中REE富集和εNd显著正偏的环境要素,很可能是东西伯利亚冰盖的扩张及其冰下排水,而不是海冰排盐形成的“卤水”. 这些发现进一步揭示了北冰洋REE的富集机制,论证了εNd示踪“大西洋水层”的有效性,并深化了对“大西洋水层”演变规律的认知.

       

    • 图  1  研究站位及区域概况

      红色五角星指示M04孔位置;TPD、BG和ACC及虚线箭头分别代表穿极流、波弗特环流和北冰洋沿岸流;橙色、紫色和黄色实线箭头分别指示大西洋输入流、河流和白令海峡穿越流(Talley,2011);红色和黄色实线分别指示MIS4和MIS2期东西伯利亚冰盖及其冰架的北部界线(Ye et al., 2019);椭圆中的数字为不同水体中的εNdDahlqvist et al., 2007Andersson et al., 2008Porcelli et al., 2009Zimmermann et al., 2009);CB、MR、LR和GR分别代表楚克奇盆地、门捷列夫洋脊、罗蒙洛索夫洋脊和盖克尔洋中脊

      Fig.  1.  Core sites and geographic setting of the study areas

      图  2  M04孔沉积地层及元素含量

      B1和B2指示富锰褐色层;W3指示富钙白色层;IRD表示冰阀碎屑(Stein et al., 2010)带数字的黑色箭头指示AMS14C年龄,引自Ye et al.(2019),深海氧同位素阶段(MIS)用白色框(间冰期)和黑色框(冰期)表示,灰色条带指示间冰期

      Fig.  2.  Sedimentary stratigraphy and element contents in Core M04

      图  3  Fe-Mn氧化物萃取液中元素含量及钕同位素组成

      Fig.  3.  Element contents and neodymium isotopic compositions in Fe-Mn oxide leachate

      图  4  不同类型载体中稀土元素配分模式

      a. M04孔沉积物PAAS标准化REE模式;b. M04孔Fe-Mn氧化物萃取液PAAS标准化REE模式;c. 研究区周围河流、海洋沉积物、M04孔PAAS标准化REE模式(Fagel et al., 2014);d. 研究区周围铁锰结核、M04孔Fe-Mn氧化物萃取液PAAS标准化REE模式(Winter et al., 1997Baturin and Dubinchuk, 2011Kolesnik and Kolesnik, 2015

      Fig.  4.  REE distribution patterns in different carriers

      图  5  不同类型载体稀土元素斜率和中稀土异常

      红色圆点代表M04孔Fe-Mn氧化物萃取液;橙色菱形代表M04孔全样沉积物;其他稀土元素来源引自Parker et al.(2022)和其中的文献

      Fig.  5.  REE slopes and MREE anomalies in different carriers

      图  6  北冰洋表层沉积物中锰含量和εNd分布

      锰含量来自全样沉积物,引自Ye et al.(2019)及其中文献;εNd来自Fe-Mn氧化物萃取液,引自Haley et al.(2008)Haley and Polyak(2013)Jang et al.(2013)Meinhardt et al.(2016)

      Fig.  6.  Distributions of Mn and εNd in the Arctic Ocean surface sediments

      图  7  晚更新世以来基于εNd的“大西洋水层”强度变化

      门捷列夫洋脊PS72/410-1孔记录引自Jang et al.(2013);罗蒙诺索夫洋脊PS2185孔记录引自Haley et al.(2007)231Pa/230Th表示AMOC强度,引自Böhm et al.(2014);蓝色表示间冰期,黑白条带表示深海氧同位素阶段

      Fig.  7.  Variations in the Atlantic water layer based on εNd since the Late Pleistocene

      表  1  北冰洋周围主要河流流量及钕同位素组成

      Table  1.   Major river´s discharge and εNd around the Arctic Ocean

      主要大洋及河流 流量(Sv) εNd CNd (pM) Nd通量(10-3 mol/s)
      弗莱姆海峡输入流 9.5 -9.8 26.4 250.8
      巴伦支海输入流 2.3 -10.8 15.5 35.7
      白令海峡穿越流 0.8 -5.0 30 24
      勒拿河 0.017 -14.2 477~826 8.1~14
      麦肯齐河 0.011 -12.9 111 1.2
      科雷马河 0.004 -6.0 129 0.5
      注:弗莱姆海峡和巴伦支海输入流量引自Schauer et al.(2002)εNd值和CNd引自Andersson et al.(2008);太平洋入流水流量引自Roach et al.(1995)εNd值和CNd引自Dahlqvist et al.(2007);勒拿河、科雷马河、麦肯齐河流量引自Holmes et al.(2002); Gordeev(2006)εNd值和CNd引自Porcelli et al.(2009); Zimmermann et al.(2009)
      下载: 导出CSV

      表  2  钕同位素测试结果

      Table  2.   Results of neodymium isotope analysis

      深度(cm) 年龄(ka) 143Nd/144Nd 2SE εNd
      1 2.32 0.512 261 0.000 007 -7.354 117
      9 4.85 0.512 203 0.000 005 -8.489 421
      35 13.05 0.512 268 0.000 005 -7.223 421
      65 17.32 0.512 357 0.000 004 -5.479 500
      105 22.24 0.512 359 0.000 005 -5.450 240
      145 27.16 0.512 326 0.000 004 -6.078 363
      167 30.38 0.512 190 0.000 006 -8.746 913
      185 33.92 0.512 229 0.000 004 -7.974 438
      205 37.85 0.512 312 0.000 009 -6.365 115
      221 41.00 0.512 346 0.000 004 -5.694 077
      241 52.03 0.512 348 0.000 006 -5.664 816
      281 58.40 0.512 346 0.000 004 -5.703 830
      321 60.21 0.512 359 0.000 005 -5.444 388
      401 63.82 0.512 353 0.000 004 -5.551 676
      注:单位:南京聚谱检测科技有限公司;测试者:郭燕;测试手段:Nu Plasma Ⅱ MC-ICP-MS;测试精度:0.000 001;误差:2SE(SE表示标准误差).
      下载: 导出CSV
    • Andersson, P. S., Porcelli, D., Frank, M., et al., 2008. Neodymium Isotopes in Seawater from the Barents Sea and Fram Strait Arctic-Atlantic Gateways. Geochimica et Cosmochimica Acta, 72(12): 2854-2867. https://doi.org/10.1016/j.gca.2008.04.008
      Bassis, J. N., Petersen, S. V., Mac Cathles, L., 2017. Heinrich Events Triggered by Ocean Forcing and Modulated by Isostatic Adjustment. Nature, 542(7641): 332-334. https://doi.org/10.1038/nature21069
      Baturin, G. N., Dubinchuk, V. T., 2011. The Composition of Ferromanganese Nodules of the Chukchi and East Siberian Seas. Doklady Earth Sciences, 440(1): 1258-1264. https://doi.org/10.1134/s1028334x11090029
      Blaser, P., Lippold, J., Gutjahr, M., et al., 2016. Extracting Foraminiferal Seawater Nd Isotope Signatures from Bulk Deep Sea Sediment by Chemical Leaching. Chemical Geology, 439: 189-204. https://doi.org/10.1016/j.chemgeo.2016.06.024
      Böhm, E., Lippold, J., Gutjahr, M., et al., 2014. Strong and Deep Atlantic Meridional Overturning Circulation during the last Glacial Cycle. Nature, 517(7532): 73-76. https://doi.org/10.1038/nature14059
      Cronin, T. M., Dwyer, G. S., Farmer, J., et al., 2012. Deep Arctic Ocean Warming during the Last Glacial Cycle. Nature Geoscience, 5(9): 631-634. https://doi.org/10.1038/ngeo1557
      Dahlqvist, R., Pandersson, P. S., Porcelli, D., 2007. Nd Isotopes in Bering Strait and Chukchi Sea Water. Goldschmidt Conference, A196.
      Deng, K., Yang, S. Y., Guo, Y. L., 2022. A Global Temperature Control of Silicate Weathering Intensity. Nature Communications, 13(1): 1781. https://doi.org/10.1038/s41467-022-29415-0
      Dove, D., Polyak, L., Coakley, B., 2014. Widespread, Multi-Source Glacial Erosion on the Chukchi Margin, Arctic Ocean. Quaternary Science Reviews, 92(6): 112-122. https://doi.org/10.1016/j.quascirev.2013.07.016
      Du, J. H., Haley, B. A., Mix, A. C., 2016. Neodymium Isotopes in Authigenic Phases, Bottom Waters and Detrital Sediments in the Gulf of Alaska and their Implications for Paleo-Circulation Reconstruction. Geochimica et Cosmochimica Acta, 193(Part 3): 14-35. https://doi.org/10.1016/j.gca.2016.08.005
      Fagel, N., Not, C., Gueibe, J., et al., 2014. Late Quaternary Evolution of Sediment Provenances in the Central Arctic Ocean: Mineral Assemblage, Trace Element Composition and Nd and Pb Isotope Fingerprints of Detrital Fraction from the Northern Mendeleev Ridge. Quaternary Science Reviews, 92(5322): 140-154. https://doi.org/10.1016/j.quascirev.2013.12.011
      Gordeev, V. V., 2006. Fluvial Sediment Flux to the Arctic Ocean. Geomorphology, 80(1/2): 94-104. https://doi.org/10.1016/j.geomorph.2005.09.008
      Grenier, M., Brown, K. A., Colombo, M., et al., 2021. Controlling Factors and Impacts of River-Borne Neodymium Isotope Signatures and Rare Earth Element Concentrations Supplied to the Canadian Arctic Archipelago. Earth and Planetary Science Letters, 578: 117341. https://doi.org/10.1016/j.epsl.2021.117341
      Gutjahr, M., Frank, M., Stirling, C. H., et al., 2007. Reliable Extraction of a Deepwater Trace Metal Isotope Signal from Fe-Mn Oxyhydroxide Coatings of Marine Sediments. Chemical Geology, 242(3/4): 351-370. https://doi.org/10.1016/j.chemgeo.2007.03.021
      Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare Earth Elements in Pore Waters of Marine Sediments. Geochimica et Cosmochimica Acta, 68(6): 1265-1279. https://doi.org/10.1016/j.gca.2003.09.012
      Haley, B. A., Frank, M., Spielhagen, R. F., et al., 2007. Influence of Brine Formation on Arctic Ocean Circulation over the Past 15 Million Years. Nature Geoscience, 1(1): 68-72. https://doi.org/10.1038/ngeo.2007.5
      Haley, B. A., Frank, M., Spielhagen, R. F., et al., 2008. Radiogenic Isotope Record of Arctic Ocean Circulation and Weathering Inputs of the Past 15 Million Years. Paleoceanography, 23(1): PA1S13. https://doi.org/10.1029/2007pa001486
      Haley, B. A., Polyak, L., 2013. Pre‐modern Arctic Ocean Circulation from Surface Sediment Neodymium Isotopes. Geophysical Research Letters, 40(5): 893-897. https://doi.org/10.1002/grl.50188
      Holmes, R. M., McClelland, J. W., Peterson, B. J., et al., 2002. A Circumpolar Perspective on Fluvial Sediment Flux to the Arctic Ocean. Global Biogeochemical Cycles, 16(4): 45-1-45-14. https://doi.org/10.1029/2001gb001849
      Jacobsen, S. B., Wasserburg, G. J., 1984. Sm-Nd Isotopic Evolution of Chondrites and Achondrites, Ⅱ. Earth and Planetary Science Letters, 67(2): 137-150. https://doi.org/10.1016/0012-821x(84)90109-2
      Jakobsson, M., Løvlie, R., Al-Hanbali, H., et al., 2000. Manganese and Color Cycles in Arctic Ocean Sediments Constrain Pleistocene Chronology. Geology, 28(1): 23. https://doi.org/10.1130/0091-7613(2000)28<23:maccia>2.0.co;2 doi: 10.1130/0091-7613(2000)28<23:maccia>2.0.co;2
      Jakobsson, M., Nilsson, J., O'Regan, M., et al., 2010. An Arctic Ocean Ice Shelf during MIS 6 Constrained by New Geophysical and Geological Data. Quaternary Science Reviews, 29(25/26): 3505-3517. https://doi.org/10.1016/j.quascirev.2010.03.015
      Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033
      Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7(1): 10365. https://doi.org/10.1038/ncomms10365
      Jang, K., Han, Y., Huh, Y., et al., 2013. Glacial Freshwater Discharge Events Recorded by Authigenic Neodymium Isotopes in Sediments from the Mendeleev Ridge, Western Arctic Ocean. Earth and Planetary Science Letters, 369-370(2): 148-157. https://doi.org/10.1016/j.epsl. 2013. 03.018 doi: 10.1016/j.epsl.2013.03.018
      Johannesson, K. H., Zhou, X. P., 1999. Origin of Middle Rare Earth Element Enrichments in Acid Waters of a Canadian High Arctic Lake. Geochimica et Cosmochimica Acta, 63(1): 153-165. https://doi.org/10.1016/s0016-7037(98)00291-9
      Kim, J., Goldstein, S. L., Pena, L. D., et al., 2021. North Atlantic Deep Water during Pleistocene Interglacials and Glacials. Quaternary Science Reviews, 269(80): 107146. https://doi.org/10.1016/j.quascirev.2021.107146
      Kolesnik, O. N., Kolesnik, A. N., 2015. Rare Earth Elements in Ferromanganese Nodules of the Chukchi Sea. Lithology and Mineral Resources, 50(3): 181-191. https://doi.org/10.1134/s0024490215030050
      Kondo, Y., Obata, H., Hioki, N., et al., 2016. Transport of Trace Metals (Mn, Fe, Ni, Zn and Cd) in the Western Arctic Ocean (Chukchi Sea and Canada Basin) in Late Summer 2012. Deep Sea Research Part I: Oceanographic Research Papers, 116(C10): 236-252. https://doi.org/10.1016/j.dsr.2016.08.010
      Li, X. Y., Wang, N. L., Ding, Y. J., et al., 2022. Globally Elevated Chemical Weathering Rates beneath Glaciers. Nature Communications, 13(1): 407. https://doi.org/10.1038/s41467-022-28032-1
      Liu, X. S., Chen, X. G., Sun, K., et al., 2021. Provenance of U1431 Sediments from the Eastern Subbasin of the South China Sea since Middle Miocene. Earth Science, 46(3): 1008-1022(in Chinese with English abstract).
      Löwemark, L., März, C., O'Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92(2): 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
      Martin, E. E., Blair, S. W., Kamenov, G. D., et al., 2010. Extraction of Nd Isotopes from Bulk Deep Sea Sediments for Paleoceanographic Studies on Cenozoic Time Scales. Chemical Geology, 269(3/4): 414-431. https://doi.org/10.1016/j.chemgeo.2009.10.016
      März, C., Stratmann, A., Matthiessen, J., et al., 2011. Manganese-Rich Brown Layers in Arctic Ocean Sediments: Composition, Formation Mechanisms, and Diagenetic Overprint. Geochimica et Cosmochimica Acta, 75(23): 7668-7687. https://doi.org/10.1016/j.gca.2011.09.046
      Macdonald, R. W., Gobeil, C., 2012. Manganese Sources and Sinks in the Arctic Ocean with Reference to Periodic Enrichments in Basin Sediments. Aquatic Geochemistry, 18(6): 565-591. https://doi.org/10.1007/s10498-011-9149-9
      Meinhardt, A. K., Pahnke, K., Böning, P., et al., 2016. Climate Change and Response in Bottom Water Circulation and Sediment Provenance in the Central Arctic Ocean since the last Glacial. Chemical Geology, 427(C3): 98-108. https://doi.org/10.1016/j.chemgeo.2016.02.019
      Middag, R., de Baar, H. J. W., Laan, P., et al., 2011. Fluvial and Hydrothermal Input of Manganese into the Arctic Ocean. Geochimica et Cosmochimica Acta, 75(9): 2393-2408. https://doi.org/10.1016/j.gca.2011.02.011
      Nance, W. B., Taylor, S. R., 1976. Rare Earth Element Patterns and Crustal Evolution: Ⅰ. Australian Post-Archean Sedimentary Rocks. Geochimica et Cosmochimica Acta, 40(12): 1539-1551. https://doi.org/10.1016/0016-7037(76)90093-4
      Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6(10): 842-846. https://doi.org/10.1038/ngeo1904
      Overeem, I., Nienhuis, J. H., Piliouras, A., 2022. Ice-Dominated Arctic Deltas. Nature Reviews Earth & Environment, 3(4): 225-240. https://doi.org/10.1038/s43017-022-00268-x
      Parker, R. L., Foster, G. L., Gutjahr, M., et al., 2022. Laurentide Ice Sheet Extent over the Last 130 Thousand Years Traced by the Pb Isotope Signature of Weathering Inputs to the Labrador Sea. Quaternary Science Reviews, 287(2): 107564. https://doi.org/10.1016/j.quascirev.2022.107564
      Pnyushkov, A. V., Polyakov, I. V., Ivanov, V. V., et al., 2015. Structure and Variability of the Boundary Current in the Eurasian Basin of the Arctic Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 101(2): 80-97. https://doi.org/10.1016/j.dsr.2015.03.001
      Porcelli, D., Andersson, P. S., Baskaran, M., et al., 2009. The Distribution of Neodymium Isotopes in Arctic Ocean Basins. Geochimica et Cosmochimica Acta, 73(9): 2645-2659. https://doi.org/10.1016/j.gca.2008.11.046
      Poirier, R. K., Cronin, T. M., Briggs, W. M. Jr, et al., 2012. Corrigendum to "Central Arctic Paleoceanography for the last 50 Kyr Based on Ostracode Faunal Assemblages". Marine Micropaleontology, 101: 194. https://doi.org/10.1016/j.marmicro.2012.03.004
      Rachold, V., 1999. "Major, Trace and Rare Earth Element Geochemistry of Suspended Particulate Material of East Siberian Rivers Draining to the Arctic Ocean, " in Land-Ocean Systems in the Siberian Arctic: Dynamics and History, Springer Berlin Heidelberg, 199-222. https://doi.org/10.1007/978-3-642-60134-7_20
      Roach, A. T., Aagaard, K., Pease, C. H., et al., 1995. Direct Measurements of Transport and Water Properties through the Bering Strait. Journal of Geophysical Research: Oceans, 100(C9): 18443-18457. https://doi.org/10.1029/95jc01673
      Schauer, U., Loeng, H., Rudels, B., et al., 2002. Atlantic Water Flow through the Barents and Kara Seas. Deep Sea Research Part I: Oceanographic Research Papers, 49(12): 2281-2298. https://doi.org/10.1016/s0967-0637(02)00125-5
      Stein, R., 2008. Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Developments in Marine Geology, 2: iii. https://doi.org/10.1016/s1572-5480(08)00014-6
      Stein, R., Matthiessen, J., Niessen, F., et al. 2010. Towards a Better (Litho-) Stratigraphy and Reconstruction of Quaternary Paleoenvironment in the Amerasian Basin (Arctic Ocean). Polarforschung, 79(2): 97-121. https://doi.org/10.2312/polarforschung.79.2.97.
      Talley, L. D., 2011. Descriptive Physical Oceanography: An Introduction. Academic Press, New York.
      Tanaka, T., 2000. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chemical Geology, 168(3/4): 279-281. https://doi.org/10.1016/s0009-2541(00)00198-4
      Taylor, P. C., Boeke, R. C., Boisvert, L. N., et al., 2021. Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming. Frontiers in Earth Science, 9: 1391. https://doi.org/10.3389/feart.2021.758361
      Tomczak, M., Godfrey, J. S., 2003. Regional Oceanography: an Introduction. Daya Books, Washington.
      Wang, F., Wu, Y. M., Ding, W. W., 2021. Sedimentary Budget and Controlling Factors of the Northwest and Southwest Sub-Basins, the South China Sea. Earth Science, 46(3): 986-1007(in Chinese with English abstract).
      Weis, D., Kieffer, B., Maerschalk, C., et al., 2006. High‐precision Isotopic Characterization of USGS Reference Materials by TIMS and MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8): 139-149. https://doi.org/10.1029/2006gc001283
      Winter, B. L., Johnson, C. M., Clark, D. L., 1997. Geochemical Constraints on the Formation of Late Cenozoic Ferromanganese Micronodules from the Central Arctic Ocean. Marine Geology, 138(1/2): 149-169. https://doi.org/10.1016/s0025-3227(97)00013-3
      Ye, L. M., März, C., Polyak, L., et al., 2019. Dynamics of Manganese and Cerium Enrichments in Arctic Ocean Sediments: A Case Study from the Alpha Ridge. Frontiers in Earth Science, 6: 236. https://doi.org/10.3389/feart.2018.00236
      Zhang, J. L., Rothrock, D. A., Steele, M., 1998. Warming of the Arctic Ocean by a Strengthened Atlantic Inflow: Model Results. Geophysical Research Letters, 25(10): 1745-1748. https://doi.org/10.1029/98gl01299
      Zimmermann, B., Porcelli, D., Frank, M., et al., 2009. Hafnium Isotopes in Arctic Ocean Water. Geochimica et Cosmochimica Acta, 73(11): 3218-3233. https://doi.org/10.1016/j.gca.2009.02.028
      刘雪松, 陈雪刚, 孙凯, 等, 2021. 南海东部次海盆U1431站位中中新世以来的沉积物来源特征. 地球科学, 46(3): 1008-1022. doi: 10.3799/dqkx.2020.290
      王菲, 吴艳梅, 丁巍伟, 2021. 南海西北与西南次海盆沉积通量及其控制因素. 地球科学, 46(3): 986-1007. doi: 10.3799/dqkx.2020.330
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  326
    • HTML全文浏览量:  130
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-23
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回