• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    考虑移动非达西流界面的弱透水层释水固结模型

    赵月春 王全荣

    赵月春, 王全荣, 2023. 考虑移动非达西流界面的弱透水层释水固结模型. 地球科学, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046
    引用本文: 赵月春, 王全荣, 2023. 考虑移动非达西流界面的弱透水层释水固结模型. 地球科学, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046
    Zhao Yuechun, Wang Quanrong, 2023. Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface. Earth Science, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046
    Citation: Zhao Yuechun, Wang Quanrong, 2023. Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface. Earth Science, 48(9): 3494-3503. doi: 10.3799/dqkx.2023.046

    考虑移动非达西流界面的弱透水层释水固结模型

    doi: 10.3799/dqkx.2023.046
    基金项目: 

    国家自然科学基金优秀青年基金项目 42222704

    湖北省自然科学基金项目 2021CFA089

    国家自然科学基金面上项目 41972250

    详细信息
      作者简介:

      赵月春(1997-),女,硕士研究生,主要从事弱透水层固结规律数值模拟研究. ORCID:0000-0001-5860-2897. E-mail:yczhao@cug.edu.cn

      通讯作者:

      王全荣, ORCID: 0000-0002-6560-6340. E-mail: wangqr@cug.edu.cn

    • 中图分类号: P641

    Water Release and Consolidation Model of Aquitard Considering Moving Non-Darcy Flow Interface

    • 摘要: 弱透水层中渗透流速慢,不利于监测其释水过程,于是常借助固结模型来综合评价地面沉降的演化过程.然而,传统的固结模型假定弱透水层中的渗流规律满足达西定律,可能与实际不符合.为此,本研究建立了考虑移动非达西流界面的固结模型,并采用有限差分法建立了该模型的数值解.其中,假设渗透系数与孔隙比都是应力的函数.通过与现有模型和室内实验数据的对比,验证了本研究模型的可靠性.结果表明新模型能更精确地模拟水位瞬时下降诱发的弱透水层固结过程.考虑移动非达西流界面的固结模型会延缓超孔隙水压力的消散过程,但不影响孔隙水压力的总消散量和总沉降量.考虑渗透系数衰减的固结模型,其孔隙水压力的消散与沉降量达到稳定的时间明显延长,且变渗透系数延缓了移动界面达到稳定的时间、致使移动界面稳定位置上移.

       

    • 图  1  水位降深下弱透水层固结沉降的概念模型

      Fig.  1.  Conceptual model of consolidation settlement of aquitard under drawdown

      图  2  迭代计算流程

      Fig.  2.  Iteration flow chart

      图  3  新模型与Liu et al. (2012)模型的超静孔隙水压力对比

      Fig.  3.  Comparison of excess pore water pressure between the new model and Liu et al. (2012) model

      图  4  新模型和Liu et al. (2012)模型与实验数据对比

      a. 新模型与实验数据的超静孔隙水头;b. Liu et al.(2012)模型与实验数据的超静孔隙水头;c. 沉降量

      Fig.  4.  Comparison between the new model, Liu et al. (2012) model and experimental data

      图  5  移动界面对固结性状的影响

      a. 超孔隙水压力;b. 沉降量

      Fig.  5.  Influence of moving interface on consolidation behavior

      图  6  移动界面随时间的变化规律

      Fig.  6.  Change rule of moving interface with time

      图  7  非线性渗透系数对固结性状的影响

      a. 超孔隙水压力;b. 沉降量

      Fig.  7.  Influence of nonlinear permeability coefficient on consolidation behavior

      图  8  移动界面随时间的变化规律

      Fig.  8.  Change rule of moving interface with time

      表  1  模型参数(Liu et al., 2012)

      Table  1.   Parameters used in this study (Liu et al., 2012)

      参数 符号 单位 取值
      粘土层厚度 $ B $ $ \mathrm{c}\mathrm{m} $ 10
      水位变化 $ \Delta h\left(t\right) $ $ \mathrm{c}\mathrm{m} $ 10
      独立弹簧的弹性模量 $ {E}_{0} $ $ \mathrm{M}\mathrm{P}\mathrm{a} $ 2
      Kelvin体弹簧的弹性模量 $ {E}_{1} $ $ \mathrm{M}\mathrm{P}\mathrm{a} $ 5
      Kelvin体牛顿黏壶的粘滞系数 $ {\eta }_{1} $ $ {\mathrm{s}}^{-1} $ $ 5\times {10}^{14} $
      渗透系数 $ {k}_{\mathrm{v}} $ $ \mathrm{m}/\mathrm{s} $ $ 1\times {10}^{-8} $
      下载: 导出CSV

      表  2  试样实测物理力学参数(徐海洋等,2011

      Table  2.   Measured physical and mechanical parameters of sample (Xu et al., 2011)

      参数 符号 单位 取值
      粘土层厚度 B $ \mathrm{c}\mathrm{m} $ 20
      干密度 $ {\rho }_{\mathrm{d}} $ $ \mathrm{g}/\mathrm{c}{\mathrm{m}}^{3} $ 0.883
      饱和密度 $ {\rho }_{\mathrm{s}\mathrm{a}\mathrm{t}} $ $ \mathrm{g}/\mathrm{c}{\mathrm{m}}^{3} $ 1.88
      相对密度 $ d $ 2.71
      水位变化 $ \Delta h\left(t\right) $ $ \mathrm{c}\mathrm{m} $ 120
      孔隙比 $ {e}_{0} $ 1.30
      压缩指数 $ {C}_{\mathrm{c}} $ 0.308
      渗透系数 $ {k}_{\mathrm{v}0} $ $ \mathrm{m}/\mathrm{s} $ $ 5.8\times {10}^{-7} $
      下载: 导出CSV

      表  3  模型最佳拟合参数

      Table  3.   Model best fit parameters in this study

      参数 符号 单位 新模型取值 Liu et al. (2012)模型取值
      独立弹簧的弹性模量 $ {E}_{0} $ $ \mathrm{M}\mathrm{P}\mathrm{a} $ 0.193 0.193
      $ \mathrm{K}\mathrm{e}\mathrm{l}\mathrm{v}\mathrm{i}\mathrm{n} $体弹簧的弹性模量 $ {E}_{1} $ $ \mathrm{M}\mathrm{P}\mathrm{a} $ 0.595 0.595
      $ \mathrm{K}\mathrm{e}\mathrm{l}\mathrm{v}\mathrm{i}\mathrm{n} $体牛顿黏壶的粘滞系数 $ {\eta }_{1} $ $ {\mathrm{s}}^{-1} $ $ 7\times {10}^{9} $ $ 7\times {10}^{9} $
      临界水力梯度 $ {i}_{\mathrm{l}} $ 1.026
      低速非达西流指数 $ m $ 1.5
      渗透指数 $ {C}_{\mathrm{k}} $ 0.36
      下载: 导出CSV
    • Burland, J. B., 1990. On the Compressibility and Shear Strength of Natural Clays. Géotechnique, 40(3): 329-378. https://doi.org/10.1680/geot.1990.40.3.329
      Hansbo, S., 1960. Consolidation of Clay with Special Reference to Influence of Vertical Sand Drains. Swedish Geotechnical Institute Proceeding, 18: 45-50.
      Jin, B. J., Yin, K. L., Gui, L., et al., 2023. Transmission Line Pole Tower Land in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, Online (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.p.20220413.1713.004.html
      Lambe, T. W., Whitman, R. W., 1969. Soil Mechanics. John Wiley and Sons, New York, 553-554.
      Li, C. X., Ma, H. T., Jin, D. D., 2019. Analytical Solution for Rheological Consolidation of Soft Clay with Threshold Hydraulic Gradient. Advanced Engineering Sciences, 51(2): 53-60 (in Chinese with English abstract).
      Li, C. X., Wang, C. J., Wang, S., et al., 2017. Analysis on Nonlinear Consolidation of Structural Soft Soil by Considering Non-Darcian Flow. Journal of Jiangsu University (Natural Science Edition), 38(4): 472-478 (in Chinese with English abstract).
      Li, C. X., Xie, K. H., Hu, A. F., et al., 2012. Analysis of One-Dimensional Non-Linear Consolidation with Exponential Flow. Journal of Central South University (Science and Technology), 43(7): 2789-2795 (in Chinese with English abstract).
      Li, J., Xia, X. H., Li, M. G., et al., 2020. Nonlinear Drainage Model of Viscoelastic Aquitards Considering Non-Darcian Flow. Journal of Hydrology, 587: 124988. https://doi.org/10.1016/j.jhydrol.2020.124988
      Li, Z. D., Shao, Y., 2017. Consolidation Characteristics of Soft Clay Ground Subject to Non-Uniformly Distributed Initial Pore Pressure. Journal of Chongqing Jiaotong University (Natural Science), 36(10): 45-50 (in Chinese with English abstract).
      Liu, J. C., Lei, G. G., Mei, G. X., 2012. One-Dimensional Consolidation of Visco-Elastic Aquitard Due to Withdrawal of Deep-Groundwater. Journal of Central South University, 19(1): 282-286. https://doi.org/10.1007/s11771-012-1002-9
      Liu, Z. Y., Cui, P. L., Zheng, Z. L., et al., 2019. Analysis of One-Dimensional Rheological Consolidation with Flow Described by Non-Newtonian Index and Fractional-Order Merchant's Model. Rock and Soil Mechanics, 40(6): 2029-2038 (in Chinese with English abstract).
      Lo, K. Y., 1961. Secondary Compression of Clays. Journal of the Soil Mechanics and Foundations Division, 87(4): 61-88. https://doi.org/10.1061/jsfeaq.0000365
      Lu, C. R., Cao, Y., Jiang, J., et al., 2017. Long-Term Surface Settlement of Shield Tunnel in Visco-Elastic Soft Soil. Low Temperature Architecture Technology, 39(5): 64-67 (in Chinese with English abstract).
      Luo, Z. J., Wang, X., Dai, J., et al., 2023. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, Online (in Chinese with English abstract). https://kns.cnki.net/kcms/detail/42.1874.p.20220505.1823.006.html
      Song, X. J., Qian, C. F., 2010. Analysis of Hydraulic Gradient of Cohesive Soil in Water Seepage. South-to-North Water Transfers and Water Science & Technology, 8(5): 65-67 (in Chinese with English abstract).
      Sridharan, A., Prakash, K., 2001. Consolidation and Permeability Behavior of Segregated and Homogeneous Sediments. Geotechnical Testing Journal, 24(1): 109-120. https://doi.org/10.1520/gtj11287j
      Tavenas, F., Jean, P., Leblond, P., et al., 1983. The Permeability of Natural Soft Clays. Part Ⅱ: Permeability Characteristics. Canadian Geotechnical Journal, 20(4): 645-660. https://doi.org/10.1139/t83-073
      Taylor, D. W., Merchant, W., 1940. A Theory of Clay Consolidation Accounting for Secondary Compression. Journal of Mathematics and Physics, 19(1-4): 167-185. https://doi.org/10.1002/sapm1940191167
      Terzaghi, K., 1924. Die Theorie der Hydrodynamischen Spannungerscheinungen und Ihr Erdbautechnisches Anwendungsgebiet. Proceedings of the first International Congress for Applied Mechanics, Delft.
      Wang, S., Li, C. X., Jin, D. D., 2018. Analysis on the Consolidation of Non-Homogeneous Soil with Non-Darcian Flow Law. Chinese Journal of Applied Mechanics, 35(2): 285-291, 449 (in Chinese with English abstract).
      Wang, S. Y., 1981. One Dimensional Consolidation of Viscoelastic Material under Variable Load. Hydro-Science and Engineering, (2): 10-17 (in Chinese with English abstract).
      Xie, H. L., Wu, Q., Zhao, Z. M., et al., 2007. Consolidation Computation of Aquitard Considering Non-Darcy Flow. Rock and Soil Mechanics, 28(5): 1061-1065 (in Chinese with English abstract).
      Xie, K. H., 1994. Theory of one Dimensional Consolidation of Double-Layered Ground and Its Applications. Chinese Journal of Geotechnical Engineering, 16(5): 24-35 (in Chinese with English abstract).
      Xu, H. Y., Zhou, Z. F., Gao, Z. Q., 2011. Experimental Research of Hysteresis Effect of Land Subsidence Caused by Water Releasing. Chinese Journal of Rock Mechanics and Engineering, 30(S2): 3595-3601 (in Chinese with English abstract).
      Xu, J., Yang, W. T., Chen, Z., et al., 2021. One-Dimensional Viscoelastic Consolidation Analysis of Aquifer-Aquitard Due to Drawdown of Water Level. Advanced Engineering Sciences, 53(5): 89-97 (in Chinese with English abstract).
      Yang, W. T., Xu, J., Wang, S. W., 2020. Experimental Study on Rheological Models of Saturated Clay with Weak Permeability. Journal of Yantai University (Natural Science and Engineering Edition), 33(2): 225-231 (in Chinese with English abstract).
      金必晶, 殷坤龙, 桂蕾, 等, 2023. 基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价. 地球科学, 在线发表. https://kns.cnki.net/kcms/detail/42.1874.p.20220413.1713.004.html
      李传勋, 马浩天, 金丹丹, 2019. 考虑起始水力坡降的软黏土流变固结解析解. 工程科学与技术, 51(2): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201902007.htm
      李传勋, 王昌建, 王素, 等, 2017. 考虑非达西渗流的结构性软土非线性固结分析. 江苏大学学报(自然科学版), 38(4): 472-478. https://www.cnki.com.cn/Article/CJFDTOTAL-JSLG201704017.htm
      李传勋, 谢康和, 胡安峰, 等, 2012. 基于指数形式渗流下的软土一维非线性固结分析. 中南大学学报(自然科学版), 43(7): 2789-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201207048.htm
      李之达, 邵玉, 2017. 基于初始孔压非均布条件的软黏土地基固结特性分析. 重庆交通大学学报(自然科学版), 36(10): 45-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201710008.htm
      刘忠玉, 崔鹏陆, 郑占垒, 等, 2019. 基于非牛顿指数渗流和分数阶Merchant模型的一维流变固结分析. 岩土力学, 40(6): 2029-2038. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906002.htm
      卢慈荣, 曹奕, 蒋军, 等, 2017. 粘弹性软土中盾构隧道的长期沉降. 低温建筑技术, 39(5): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201705019.htm
      骆祖江, 王鑫, 代敬, 等, 2023. 地面沉降对地下水可采资源影响研究. 地球科学, 在线发表. https://kns.cnki.net/kcms/detail/42.1874.p.20220505.1823.006.html
      宋新江, 钱财富, 2010. 渗流作用下黏性土水力梯度分析. 南水北调与水利科技, 8(5): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201005018.htm
      王素, 李传勋, 金丹丹, 2018. 考虑非达西渗流的单层非均质地基固结分析. 应用力学学报, 35(2): 285-291, 449. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201802011.htm
      王盛源, 1981. 变荷载下的粘弹性体一维固结问题. 水利水运科学研究, (2): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY198102001.htm
      谢海澜, 武强, 赵增敏, 等, 2007. 考虑非达西流的弱透水层固结计算. 岩土力学, 28(5): 1061-1065. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200705041.htm
      谢康和, 1994. 双层地基一维固结理论与应用. 岩土工程学报, 16(5): 24-35. https://cdmd.cnki.com.cn/Article/CDMD-10286-2005033687.htm
      徐海洋, 周志芳, 高宗旗, 2011. 释水条件下地面沉降的滞后效应试验研究. 岩石力学与工程学报, 30(S2): 3595-3601. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2031.htm
      徐进, 杨伟涛, 陈征, 等, 2021. 水位下降诱发含水层‒弱透水层1维黏弹性固结分析. 工程科学与技术, 53(5): 89-97. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202105010.htm
      杨伟涛, 徐进, 王少伟, 2020. 弱透水性饱和黏土流变模型试验研究. 烟台大学学报(自然科学与工程版), 33(2): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-YTSZ202002015.htm
    • 加载中
    图(8) / 表(3)
    计量
    • 文章访问数:  299
    • HTML全文浏览量:  456
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-22
    • 网络出版日期:  2023-10-07
    • 刊出日期:  2023-09-25

    目录

      /

      返回文章
      返回