The Prediction Method of Large-Scale Land Subsidence Based on Multi-Temporal InSAR and Machine Learning
-
摘要: 地面沉降是由自然因素和人为因素综合作用下形成的地面标高损失,为预防这种累进性的缓变地质灾害,高效的大范围地面沉降预测显得尤为重要.现有的预测方法忽略了地面沉降的空间特征,且基于单点循环预测存在高耗时现象.针对上述问题,提出了一种基于时序InSAR与机器学习的大范围地面沉降预测方法.首先,利用SBAS-InSAR技术获取大范围的地面沉降时序信息;其次,采用经验正交函数(empirical orthogonal function,EOF)提取时序信息的空间模态及对应的主成分(principal components,PCs);最后,采用基于误差反馈的岭多项式神经网络(ridge polynomial neural network with error-output feedbacks,RPNN-EOF)模型训练与预测PCs,将预测结果重构回地面沉降时序.以延安新区2018年8月至2021年5月的84景Sentinel-1A数据为例,获取了新区的地面沉降时序.同时,EOF所提取的空间模态能清晰地表达整个新区的空间变化特征.预测结果显示,相较于传统点循环模式以及主流的时间序列预测方法,本文方法的均方根误差至少降低了22.7%,建模耗时至少降低了27.5%,因此该方法具有良好的实用性.Abstract: Land subsidence is the loss of land elevation formed by a combination of natural and human factors. To prevent the delayed progressive geohazards, it is essential to predict large-scale land subsidence with high efficiency. However, the current prediction methods usually neglect spatial characteristics of land subsidence, which are time-consuming due to the issue of single-point cycle. To address the problem, a new prediction method of large-scale land subsidence based on multi-temporal InSAR and machine learning is proposed. Firstly, the large-scale land subsidence time series information is obtained by the SBAS-InSAR technique. Secondly, the spatial modes and the consistent principal components (PCs) are extracted from the time series information with the empirical orthogonal function (EOF). Finally, the PCs are trained and predicted by predictive model based on the ridge polynomial neural network with error-output feedbacks (RPNN-EOF), and the outcomes are reconstructed back to the land subsidence time series. The 84-view Sentinel-1A data from August 2018 to May 2021 of Yan'an New District were adopted in the land subsidence time seriesacquisition. Simultaneously, the spatial modes extracted by EOF can clearly reveal the spatial variation characteristics of the whole new district. The prediction results show that the root mean square error and modeling time of the proposed method is reduced by at least 22.7% and 27.5% respectively, in comparison with that by the single-point cycle pattern and the prevailing time series methods. Thus it has good practicality and applicability.
-
表 1 预测残差的统计情况
Table 1. The statistics of predicted residuals
预测日期 中位数 25%分位数 75%分位数 极值 20210401 ‒0.033 7 0.593 5 ‒0.599 0 ‒9.579 9 20210413 ‒0.133 8 0.484 0 ‒0.800 2 ‒7.208 4 20210425 ‒0.241 0 0.505 2 ‒1.043 3 7.302 9 20210507 ‒0.180 6 0.869 5 ‒1.171 7 ‒9.606 3 20210519 ‒0.815 3 0.210 3 ‒1.794 9 ‒12.270 8 注:单位(mm). 表 2 不同预测模型的试验结果
Table 2. The test results of different prediction models
方法 指标 预测日期 建模耗时(s) 20210401 20210413 20210425 20210507 20210519 EOF-RPNN-EOF MAE 0.757 7 0.814 4 0.940 2 1.299 1 1.471 6 142 RMSE 1.013 3 1.079 8 1.189 5 1.685 7 1.897 2 NMSE 0.000 7 0.000 8 0.001 0 0.002 1 0.002 4 EOF-LSTM MAE 1.019 1 1.243 4 1.618 6 1.922 9 2.118 5 196 RMSE 1.311 8 1.512 2 1.972 0 2.298 1 2.870 3 NMSE 0.001 2 0.001 6 0.002 8 0.003 8 0.005 5 MLR MAE 1.086 7 1.391 1 1.822 9 2.198 0 2.759 7 398 RMSE 1.446 8 1.663 6 2.137 6 2.444 1 3.111 3 NMSE 0.001 5 0.002 2 0.003 3 0.004 7 0.006 8 注:MAE,RMSE单位为:mm;NMSE单位为:mm2. -
Chen, Y., He, Y., Zhang, L. F., et al., 2021. Prediction of InSAR Deformation Time-Series Using a Long Short-Term Memory Neural Network. International Journal of Remote Sensing, 42(18): 6919-6942. https://doi.org/10.1080/01431161.2021.1947540 Ding, Q., Shao, Z. F., Huang, X., et al., 2021. Monitoring, Analyzing and Predicting Urban Surface Subsidence: A Case Study of Wuhan City, China. International Journal of Applied Earth Observation and Geoinformation, 102: 102422. https://doi.org/10.1016/j.jag.2021.102422 Fan, Z. L., Zhang, Y. H., 2019. Research Progress on Intelligent Algorithms Based Ground Subsidence Prediction. Geomatics & Spatial Information Technology, 42(5): 183-188 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-5867.2019.05.054 Gao, H., Song, Q. C., Huang, J., 2016. Subgrade Settlement Prediction Based on Least Square Support Vector Regession and Real-Coded Quantum Evolutionary Algorithm. International Journal of Grid and Distributed Computing, 9(7): 83-90. https://doi.org/10.14257/ijgdc.2016.9.7.09 Gers, F. A., Schmidhuber, J., Cummins, F., 2000. Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12(10): 2451-2471. https://doi.org/10.1162/089976600300015015 Hill, P., Biggs, J., Ponce-López, V., et al., 2021. Time Series Prediction Approaches to Forecasting Deformation in Sentinel 1 InSAR Data. Journal of Geophysical Research (Solid Earth), 126(3): e2020JB020176. https://doi.org/10.1029/2020JB020176 Jin, B. J., Yin, K. L., Gui, L., et al., 2022. Evaluation of Ground Subsidence Susceptibility of Transmission Line Towers in Salt Lake Area Based on Remote Sensing Interpretation. Earth Science, 1-13 (in Chinese with English abstract). Li, H. J., Zhu, L., Dai, Z. X., et al., 2021. Spatiotemporal Modeling of Land Subsidence Using a Geographically Weighted Deep Learning Method Based on PS-InSAR. Science of the Total Environment, 799: 149244. https://doi.org/10.1016/j.scitotenv.2021.149244 Li, L., 2014. Study on Forecasting Model of Land Subsidence and Its Application (Dissertation). Chang'an University, Chang'an (in Chinese with English abstract). Li, X., Li, L. C., Song, Y. X., et al., 2019. Characterization of the Mechanisms Underlying Loess Collapsibility for Land-Creation Project in Shaanxi Province, China—A Study from a Micro Perspective. Engineering Geology, 249: 77-88. https://doi.org/10.1016/j.enggeo.2018.12.024 Liu, Q. H., Zhang, Y. H., Deng, M., et al., 2021. Time Series Prediction Method of Large-Scale Surface Subsidence Based on Deep Learning. Acta Geodaetica et Cartographica Sinica, 50(3): 396-404 (in Chinese with English abstract). Lorenz, E. N., 1956. Empirical Orthogonal Functions and Statistical Weather Prediction. Massachusetts Institute of Technology Department of Meteorology, Cambridge, 31-69. Luo, Z. J., Wang, X., Dai, J., et al., 2022. Research on the Influence of Land Subsidence on the Minable Groundwater Resources. Earth Science, 49(1) : 238-252 (in Chinese with English abstract). Nikolopoulos, K., Goodwin, P., Patelis, A., et al., 2007. Forecasting with Cue Information: A Comparison of Multiple Regression with Alternative Forecasting Approaches. European Journal of Operational Research, 180(1): 354-368. https://doi.org/10.1016/j.ejor.2006.03.047 Phi, T. H., Strokova, L. A., 2015. Prediction Maps of Land Subsidence Caused by Groundwater Exploitation in Hanoi, Vietnam. Resource-Efficient Technologies, 1(2): 80-89. https://doi.org/10.1016/j.reffit.2015.09.001 Pu, C. H., Xu, Q., Zhao, K. Y., et al., 2021. Land Uplift Monitoring and Analysis in Yan'an New District Based on SBAS-InSAR Technology. Geomatics and Information Science of Wuhan University, 46(7): 983-993 (in Chinese with English abstract). Shahin, M. A., Maier, H. R., Jaksa, M. B., 2003. Settlement Prediction of Shallow Foundations on Granular Soils Using B-Spline Neurofuzzy Models. Computers and Geotechnics, 30(8): 637-647. https://doi.org/10.1016/j.compgeo.2003.09.004 Shao, Q., Li, W., Han, G. J., et al., 2021. A Deep Learning Model for Forecasting Sea Surface Height Anomalies and Temperatures in the South China Sea. Journal of Geophysical Research: Oceans, 126(7): e2021JC017515. https://doi.org/10.1029/2021JC017515 Shearer, T. R., 1998. A Numerical Model to Calculate Land Subsidence, Applied at Hangu in China. Engineering Geology, 49(2): 85-93. https://doi.org/10.1016/S0013-7952(97)00074-4 Shi, L. Y., Gong, H. L., Chen, B. B., et al., 2020. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sensing, 12(24): 4044. https://doi.org/10.3390/rs12244044 Shi, X. Q., Wu, J. C., Ye, S. J., et al., 2008. Regional Land Subsidence Simulation in Su-Xi-Chang Area and Shanghai City, China. Engineering Geology, 100(1/2): 27-42. https://doi.org/10.1016/j.enggeo.2008.02.011 Shin, Y., Ghosh, J., 1995. Ridge Polynomial Networks. IEEE Transactions on Neural Networks, 6(3): 610-622. https://doi.org/10.1109/72.377967 Su, H. Y., Hu, Z. Z., 1980. Review of Land Subsidence Research abroad. Geology of Shanghai, 1(2): 65-77 (in Chinese with English abstract). Waheeb, W., Ghazali, R., 2020. A Novel Error-Output Recurrent Neural Network Model for Time Series Forecasting. Neural Computing and Applications, 32(13): 9621-9647. https://doi.org/10.1007/s00521-019-04474-5 Waheeb, W., Ghazali, R., Herawan, T., 2016. Ridge Polynomial Neural Network with Error Feedback for Time Series Forecasting. PLoS One, 11(12): e0167248. https://doi.org/10.1371/journal.pone.0167248 Waheeb, W., Ghazali, R., Hussain, A. J., 2018. Dynamic Ridge Polynomial Neural Network with Lyapunov Function for Time Series Forecasting. Applied Intelligence, 48(7): 1721-1738. https://doi.org/10.1007/s10489-017-1036-7 Wang, Y., Yang, G., 2014. Prediction of Composite Foundation Settlement Based on Multi-Variable Gray Model. Applied Mechanics and Materials, 580/581/582/583: 669-673. https://doi.org/10.4028/www.scientific.net/amm.580-583.669 Williams, R. J., Zipser, D., 1989. A Learning Algorithm for Continually Running Fully Recurrent Neural Networks. Neural Computation, 1(2): 270-280. https://doi.org/10.1162/neco.1989.1.2.270 Yin, Y. P., Zhang, Z. C., Zhang, K. J., 2005. Land Subsidence and Countermeasures for Its Prevention in China. The Chinese Journal of Geological Hazard and Control, 16(2): 1-8 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2005.02.001 Zhang, H. X., 2021. Research on Monitoring and Prediction of Subsidence in Yan'an New Area Based on InSAR and Machine Learning (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). Zhang, Y. L., Zhang, Y. H., 2013. Land Subsidence Prediction Method of Power Cables Pipe Jacking Based on the Peck Theory. Advanced Materials Research, 634/635/636/637/638: 3721-3724. https://doi.org/10.4028/www.scientific.net/amr.634-638.3721 Zhou, C. D., Lan, H. X., Bürgmann, R., et al., 2022. Application of an Improved Multi-Temporal InSAR Method and Forward Geophysical Model to Document Subsidence and Rebound of the Chinese Loess Plateau Following Land Reclamation in the Yan'an New District. Remote Sensing of Environment, 279: 113102. https://doi.org/10.1016/j.rse.2022.113102 范泽琳, 张永红, 2019. 智能算法在地面沉降预测中的应用综述. 测绘与空间地理信息, 42(5): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201905055.htm 金必晶, 殷坤龙, 桂蕾, 等, 2022. 基于遥感解译的盐湖地区输电线路杆塔地面沉降易发性评价. 地球科学, 1-13. doi: 10.3799/dqkx.2022.109 李丽, 2014. 地面沉降预测模型及其应用研究(硕士学位论文). 西安: 长安大学. 刘青豪, 张永红, 邓敏, 等, 2021. 大范围地表沉降时序深度学习预测法. 测绘学报, 50(3): 396-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202103012.htm 骆祖江, 王鑫, 代敬, 等, 2024. 地面沉降对地下水可采资源影响研究. 地球科学, 49(1) : 238-252. doi: 10.3799/dqkx.2022.143 蒲川豪, 许强, 赵宽耀, 等, 2021. 利用小基线集InSAR技术的延安新区地面抬升监测与分析. 武汉大学学报(信息科学版), 46(7): 983-993. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202107003.htm 苏河源, 胡兆璋, 1980. 国外地面沉降研究状况述评. 上海地质, 1(2): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD198002008.htm 殷跃平, 张作辰, 张开军, 2005. 我国地面沉降现状及防治对策研究. 中国地质灾害与防治学报, 16(2): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200502001.htm 张宏雪, 2021. 基于InSAR与机器学习的延安新区沉降监测与预测研究(硕士学位论文). 兰州: 兰州大学. -