• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    开挖卸荷下顺层岩质滑坡运动距离理论模型

    杨亮 汪洋 张全 高峰 肖兰

    杨亮, 汪洋, 张全, 高峰, 肖兰, 2024. 开挖卸荷下顺层岩质滑坡运动距离理论模型. 地球科学, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054
    引用本文: 杨亮, 汪洋, 张全, 高峰, 肖兰, 2024. 开挖卸荷下顺层岩质滑坡运动距离理论模型. 地球科学, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054
    Yang Liang, Wang Yang, Zhang Quan, Gao feng, Xiao Lan, 2024. A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading. Earth Science, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054
    Citation: Yang Liang, Wang Yang, Zhang Quan, Gao feng, Xiao Lan, 2024. A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading. Earth Science, 49(8): 2851-2861. doi: 10.3799/dqkx.2023.054

    开挖卸荷下顺层岩质滑坡运动距离理论模型

    doi: 10.3799/dqkx.2023.054
    基金项目: 

    资助基金项目:青年科学基金 42107160

    中央高校基本科研业务费专项资金资助项目 CUG2642022006

    国家自然科学基金面上项目 42077277

    详细信息
      作者简介:

      杨亮(1994-),男,博士研究生,主要从事地质灾害风险与防治研究. ORCID:0000-0002-8854-7611. E-mail:Yangl507@cug.edu.cn

      通讯作者:

      汪洋,ORCID: 0000-0002-4854-1223. E-mail: wangyangcug@126.com

    • 中图分类号: TU457

    A Theoretical Model about the Runout Distance of Bedding Rock Landslide under Excavation Uploading

    • 摘要: 顺层岩质滑坡在边坡工程中普遍存在,其运动距离不仅是表征滑坡形态的重要参数,也是风险评价的重要指标。基于顺层岩质滑坡演化过程的分析,推导了其运动距离的理论计算公式,并将公式应用于新嘉南滑坡进行验算。结果表明:开挖卸荷下顺层岩质滑坡的运动距离由三部分组成即块体在空中做自由落体产生的水平距离、与地面碰撞的移动距离以及最后在地面的滑动距离,此外,选取的新嘉南滑坡3个剖面运动距离理论计算值和实际值的相对误差分别为9.99%、2.53%以及0.58%,误差结果较小,表明公式适用性良好。研究成果对该类型滑坡预测与防治有一定的参考价值.

       

    • 图  1  开挖卸荷下顺层岩质滑坡演化过程

      Fig.  1.  Evolution process of bedding rock landslide under excavation unloading

      图  2  边坡失稳前后力学计算模型

      a. 失稳前;b. 运动中;c. 最终平衡时

      Fig.  2.  Mechanical calculation model of slope instability

      图  3  滑体运动距离计算模型

      Fig.  3.  Runout process of sliding body

      图  4  滑坡全貌及基本特征图

      Fig.  4.  Overview and basic characteristics of landslide

      图  5  滑坡工程地质剖面图

      Fig.  5.  Engineering geological profile of landslide

      表  1  不同坡面的恢复系数

      Table  1.   Recovery coefficient of different slopes

      序号 坡表概况 法向恢复系数 切向恢复系数
      1 光滑坚硬表面或铺砌面 0.37~0.42 0.87~0.92
      2 基岩和砾岩 0.33~0.37 0.83~0.87
      3 硬土(少量植被) 0.30~0.33 0.82~0.85
      4 软土(稀少植被覆盖) 0.28~0.30 0.80~0.83
      5 软土(灌木林覆盖) 0.28~0.30 0.78~0.82
      下载: 导出CSV

      表  2  新嘉南滑坡各剖面计算参数

      Table  2.   Calculation parameters of each section of Xinjianan landslide

      剖面编号 γ(kN/m3) b0 (m) h0 (m) L0 (m) W0 (kN/m) d (m) H (m) S0(m)
      1-1’ 21.5 1.5 5.5 196.0 48 800.94 11.2 28.0 48.5
      2-2’ 21.5 1.2 5.5 216.0 48 800.94 13.4 42.6 39.6
      3-3’ 21.5 2.2 3.5 30.0 48 800.94 16.5 21.7 11.6
      下载: 导出CSV

      表  3  滑坡理论计算值与实际值对比

      Table  3.   Comparison between theoretical calculated and actual of landslide

      剖面编号 V边max X0 X1+…X7 X8 X 实际运动(m) 绝对误差 相对误差
      1-1’ 17.36 22.56 37.01 3.05 62.62 69.5 6.88 9.99%
      2-2’ 15.23 28.19 40.03 2.35 70.57 72.4 1.83 2.53%
      3-3’ 9.59 10.15 14.77 0.93 25.85 25.7 0.15 0.58%
      下载: 导出CSV
    • Cheng, Y. G., Wang, Y. F., 2013. Numerical Simulation Analysis on Relaxation and Stability of the Cutting Bedding Slope. Chinese Journal of Underground Space and Engineering, 4: 848-853(in Chinese with English abstract).
      Dai, X. R., Zhao, J. J., Lai, Q. Y., et al., 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944(in Chinese with English abstract).
      Feng, J., Zhou, D. P., Jiang. N., et al., 2007. On the Extent of Bedding Slipping Rock Mass of Consequent Rock Slope. Journal of Mountain Science, 3: 376-380(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2786.2007.03.018
      Fan, X. M., An, J. R., Rossiter, D. G., et al., 2014. Empirical Prediction of Coseismic Landslide Dam Formation. Earth Surface Processes and Landforms, 39(14): 1913-1926. https://doi.org/10.1002/esp.3585
      Guo, D. P., Hamada, M., He, C., et al., 2014. An Empirical Model for Landslide Travel Distance Prediction in Wenchuan Earthquake Area. Landslides, 11(2): 281-291. https://doi.org/10.1007/s10346-013-0444-y
      Ge, Y, F., Tang H, M., Li, Wei., et al, 2016. Evaluation for Deposit Areas of Rock Avalanche Based on Features of Rock Mass Structure. Earth Science, 41(9): 1583-1592 (in Chinese with English abstract).
      Huang, R. Q., Liu, W. H., 2008. Study on the Movement Characteristics of Rolling Rock Blocks on Platform. Advances in Earth Science, (5): 517-523 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-8166.2008.05.012
      He, S. M., Liu, W., Wang, J., 2015. Dynamic Simulation of Landslide Based on Thermo-Poro-Elastic Approach. Computers & Geosciences, 75(10): 24-32. https://doi.org/10.1016/j.cageo.2014.10.013
      Huang, Y., Li, G. Y., Xiong, M., 2020. Stochastic Assessment of Slope Failure Run-Out Triggered by Earthquake Ground Motion. Natural Hazards, 101(1): 87-102. https://doi.org/10.1007/s11069-020-03863-7
      Jiang, P., Chen, J. J., 2016. Displacement Prediction of Landslide Based on Generalized Regression Neural Networks with K-Fold Cross-Validation. Neurocomputing, 198(4): 40-47. https://doi.org/10.1016/j.neucom.2015.08.118
      Liu, Y., Xu, C., Huang, B., et al., 2020. Landslide Displacement Prediction Based on Multi-Source Data Fusion and Sensitivity States. Engineering Geology, 271(1-2): 105608. https://doi.org/10.1016/j.enggeo.2020.105608
      Li, X. P., Tang, X., Zhao, S. X., et al., 2021. MPM Evaluation of the Dynamic Runout Process of the Giant Daguangbao Landslide. Landslides, 18(4): 1509-1518. https://doi.org/10.1007/s10346-020-01569-2
      Li, D. J., Jia, W. T., Cheng, X., et al., 2022. Stability of Stepped Sliding of Bedding Rock Slope with Discontinuous Joints. Chinese Journal of Geotechnical Engineering, 1-10 (in Chinese with English abstract).
      Liu, L. L., Zhang, P., Zhang, S. H., et al., 2022. Efficient Evaluation of Run-Out Distance of Slope Failure under Excavation. Engineering Geology, 306(12): 106751. https://doi.org/10.1016/j.enggeo.2022.106751
      Mu, C. L., 2017. Study on Deformation Instability Evolution Mechanism and Prediction During Excavating Process of Bedded Rock Slope: A Case of Slope as the Studied Object in the Gasoline Construction Site(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Mitchell, A., McDougall, S., Nolde, N., et al., 2020. Rock Avalanche Runout Prediction Using Stochastic Analysis of a Regional Dataset. Landslides, 17(4): 777-792. https://doi.org/10.1007/s10346-019-01331-3
      Sun, Y., Yang, J., Song, E., 2015. Runout Analysis of Landslides Using Material Point Method. IOP Conference Series: Earth and Environmental Science, 26: 012014. https://doi.org/10.1088/1755-1315/26/1/012014
      Scaringi, G., Fan, X. M., Xu, Q., et al., 2018. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: The Case of the Recent Xinmo Landslide (Sichuan, China). Landslides, 15(7): 1359-1375. https://doi.org/10.1007/s10346-018-0953-9
      Su, X., Wei, W. H., Ye, W. L., et al., 2019. Predicting Landslide Sliding Distance Based on Energy Dissipation and Mass Point Kinematics. Natural Hazards, 96(3): 1367-1385. https://doi.org/10.1007/s11069-019-03618-z
      Shi, J. J., Zhang, W., Wang, B., et al., 2020. Simulation of a Submarine Landslide Using the Coupled Material Point Method. Mathematical Problems in Engineering, 2020(c1): 1-14. https://doi.org/10.1155/2020/4392581
      Takahashi, T., 1981. Estimation of Potential Debris Flows and Their Hazardous Zones: Soft Countermeasures for a Disaster. Natural Disaster Science, 3(1): 57-89.
      Tang, G. C., Tang, Q. Y., Hou, J. W., 2013. Research on Instability Mechanism and Reinforcement Measures of a Low-Angle Rock Bedding Landslide. China Survey and Design, 6: 90-94(in Chinese with English abstract).
      Tang, R., Xu, Q., Wu, B., et al. 2017. Method of Sliding Distance Calculation for Translational Landslides. Rock and Soil Mechanics, 39(3): 1009-1019+1070(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202407017.htm
      Tang, C. H., Yu, X. L., Cai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract).
      Wang, Z. D., Xia, Y. Y., Xia, G. B., et al., 2015. Upper Bound Limit Analysis Method for Stability Analysis of Bedding Rock Slopes. Rock and Soil Mechanics, 2: 576-583(in Chinese with English abstract). .
      Wang J Y, Li L, Zheng D G, et al. 2018. Characteristics of Apparent Dip Slide and Movement Process of the "8.12" Shanyang Rockslide. Journa lof Catastrophology, 33(1): 111-116(in Chinese with English abstract). https://www.cnki.com.cn/Article/CJFDTOTAL-NZYJ202311084.htm
      Yu, X., Gong, B., Tang, C., 2021. Study of the Slope Deformation Characteristics and Landslide Mechanisms under Alternating Excavation and Rainfall Disturbance. Bulletin of Engineering Geology and the Environment, 80(9): 7171-7191. https://doi.org/10.1007/s10064-021-02371-7
      Zhang, Y. H., Zhang, M. X., Cheng, Q., 2017. Kinematics Analysis for Calculating Distance ofRockfalls on Typical Loose Media Slope. Journal of Shanghai University(Natural Science), 23(6): 949-960(in Chinese with English abstract).
      Zhang, J. C., Wang, Z. F., Wei, Z. F., et al., 2019. Analysis of Apparent Tendency Instability Mechanism of Bedding: A Case Study of Yishizha Landslide in Guide Rock Slope. Journal of Qinghai University, 5: 52-57(in Chinese with English abstract).
      Zhang, Z. L., Zeng, R. Q., Meng, X. M., et al., 2021. Estimating Landslide Sliding Distance Based on an Improved Heim Sled Model. CATENA, 204(2): 105401. https://doi.org/10.1016/j.catena.2021.105401
      Zhang, C. Y., Yin, Y. P., Yan, H., et al., 2022. Centrifuge Modeling of Multi-Row Stabilizing Piles Reinforced Reservoir Landslide with Different Row Spacings. Landslides, 20(3): 559-577. https://doi.org/10.1007/s10346-022-01994-5
      Zhou, C., Cao, Y., Yin, K. L., et al., 2022. Characteristic Comparison of Seepage-Driven and Buoyancy-Driven Landslides in Three Gorges Reservoir Area, China. Engineering Geology, 301(4): 106590. https://doi.org/10.1016/j.enggeo.2022.106590
      成永刚, 王玉峰, 2013. 顺层挖方边坡松弛区及稳定性数值模拟分析. 地下空间与工程学报, 4: 848-853. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201304024.htm
      代欣然, 赵建军, 赖琪毅, 等, 2022. 青藏高原察达高速远程滑坡运动过程与形成机理. 地球科学, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205
      冯君, 周德培, 江南, 等, 2007. 顺层岩质边坡顺层滑动岩体范围分析. 山地学报, 3: 376-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYA200703017.htm
      葛云峰, 唐辉明, 李伟, 等, 2016. 基于岩体结构特征的高速远程滑坡致灾范围评价. 地球科学, 41(9): 1583-1592. doi: 10.3799/dqkx.2016.117
      黄润秋, 刘卫华, 2008. 滚石在平台上的运动特征分析. 地球科学进展, (5): 517-523. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200805014.htm
      李德建, 贾文韬, 程肖, 等, 2022. 阶梯状滑动断续节理顺层边坡稳定性分析. 岩土工程学报, 1-10. http://kns.cnki.net/kcms/detail/32.1124.TU.2022-0620.1303.002.html
      穆成林, 2017. 顺层岩质高边坡开挖过程变形失稳演化机制及预测评价研究(博士毕业论文). 成都: 成都理工大学.
      唐耿琛, 唐秋元, 侯俊伟, 2013. 缓倾角顺层滑坡失稳机制及加固措施研究. 中国勘察设计, 6: 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KCSJ201306030.htm
      唐然, 许强, 吴斌, 等, 2018. 平推式滑坡运动距离计算模型. 岩土力学39(3): 1009-1019+1070. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803030.htm
      唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960
      王智德, 夏元友, 夏国邦, 等, 2015. 顺层岩质滑坡稳定性极限分析上限法. 岩土力学, 02: 576-583.
      王佳运, 李林, 郑定国, 等, 2018. "8. 12" 山阳滑坡视向滑动特征与运动过程. 灾害学, 33 (1): 111-116.
      张亚辉, 张孟喜, 陈强, 等, 2017. 典型松散体边坡滚石运动距离的运动学分析. 上海大学学报(自然科学版), 23(6): 949-960. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ201706016.htm
      张俊才, 王仲复, 魏正发, 等, 2019. 层岩质斜坡视倾向失稳机制分析——以贵德亦什扎滑坡为例. 青海大学学报, 5: 52-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXZ201905009.htm
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  363
    • HTML全文浏览量:  122
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-09
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回