• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    米兰科维奇旋回定量恢复碳酸盐岩地层剥蚀量:以塔里木盆地轮南古隆起奥陶系为例

    马德波 王媛 陈秀艳 王珊 杨敏 杜德道

    马德波, 王媛, 陈秀艳, 王珊, 杨敏, 杜德道, 2023. 米兰科维奇旋回定量恢复碳酸盐岩地层剥蚀量:以塔里木盆地轮南古隆起奥陶系为例. 地球科学, 48(8): 2933-2946. doi: 10.3799/dqkx.2023.057
    引用本文: 马德波, 王媛, 陈秀艳, 王珊, 杨敏, 杜德道, 2023. 米兰科维奇旋回定量恢复碳酸盐岩地层剥蚀量:以塔里木盆地轮南古隆起奥陶系为例. 地球科学, 48(8): 2933-2946. doi: 10.3799/dqkx.2023.057
    Ma Debo, Wang Yuan, Chen Xiuyan, Wang Shan, Yang Min, Du Dedao, 2023. Quantitative Restoration of Eroded Carbonate Strata Thickness by Milankovitch Cycle: A Case Study of Ordovician Strata in Lunnan Paleo⁃Uplift, Tarim Basin. Earth Science, 48(8): 2933-2946. doi: 10.3799/dqkx.2023.057
    Citation: Ma Debo, Wang Yuan, Chen Xiuyan, Wang Shan, Yang Min, Du Dedao, 2023. Quantitative Restoration of Eroded Carbonate Strata Thickness by Milankovitch Cycle: A Case Study of Ordovician Strata in Lunnan Paleo⁃Uplift, Tarim Basin. Earth Science, 48(8): 2933-2946. doi: 10.3799/dqkx.2023.057

    米兰科维奇旋回定量恢复碳酸盐岩地层剥蚀量:以塔里木盆地轮南古隆起奥陶系为例

    doi: 10.3799/dqkx.2023.057
    基金项目: 

    中国石油天然气股份有限公司“十四五”专项“海相碳酸盐岩致密储层成藏机理、富集规律与勘探评价技术研究” 2021DJ0504

    中国石油天然气股份有限公司科技项目“新区新领域综合地质研究与风险目标评价” 2022KT0406

    详细信息
      作者简介:

      马德波(1983-),男,高级工程师,博士,主要从事含油气盆地构造分析与油气地质研究工作.ORCID:0000-0002-1015-755X. E-mail:315875367@qq.com

    • 中图分类号: P548;P535

    Quantitative Restoration of Eroded Carbonate Strata Thickness by Milankovitch Cycle: A Case Study of Ordovician Strata in Lunnan Paleo⁃Uplift, Tarim Basin

    • 摘要: 剥蚀量定量恢复对盆地构造研究意义重大.以塔里木盆地轮南古隆起奥陶系一间房-鹰山组为例,通过钍钾比(Th/K)曲线的米兰科维奇旋回分析定量恢复碳酸盐岩地层剥蚀量,取得3项认识:(1)一间房-鹰山组米兰科维奇旋回特征清晰,较长偏心率周期(413 ka、125 ka)不发育,短偏心率周期(95 ka)、斜度周期、岁差周期较为发育.(2)一间房-鹰山组发育86个短偏心率周期旋回,通过对比剥蚀区与内幕区短偏心率周期旋回数量差异,定量恢复8口井剥蚀量.(3)一间房-鹰山组剥蚀区位于H6⁃TS2⁃TS1⁃LG36井以北,存在西北部、北部两个剥蚀中心,剥蚀量分别超过300 m和250 m. 研究成果证实米兰科维奇旋回分析可实现碳酸盐岩地层剥蚀量定量恢复,对海相盆地古构造恢复具有良好的借鉴意义.

       

    • 图  1  轮南古隆起奥陶系碳酸盐岩顶面构造图与骨干地震剖面

      a.轮南古隆起奥陶系碳酸盐岩顶面时间构造图;b.过研究区东西向地震剖面(剖面位置见图 1a);c.过研究区北西-南东向地震剖面(剖面位置见图 1a);∈. 寒武系底;O. 奥陶系底;O3t. 上奥陶统吐木休克组底;S. 志留系底;C. 石炭系底;P. 二叠系底;T. 三叠系底;J. 侏罗系底;K. 白垩系底;E. 古近系底

      Fig.  1.  Tectonic unit division of Tabei uplift and location map of the study area

      图  2  AD16井ln(Th/K)曲线与频谱分析结果

      a. ln(Th/K)曲线与最大熵频谱;b. 与中奥陶世固有周期的对应关系

      Fig.  2.  ln (Th / K) curve and spectrum analysis results of well AD16

      图  3  内幕区一间房-鹰山组ln(Th/K)小波变换频谱曲线

      横坐标频率表示单位厚度内地层旋回变化的次数,即厚度为1 m的一段地层中所包含的旋回个数;纵坐标为“功率”或“能量”;a. H6井;b. TS1井;c. TS2井;d. LG36井

      Fig.  3.  ln (Th/K) wavelet transform spectrum of Yijianfang Yingshan formation in inner area

      图  4  剥蚀区一间房-鹰山组米兰科维奇旋回分析

      a.QG5井;b. YQ5井;c. AD16井;d. YQ6井;e. LS2井;f. S88井

      Fig.  4.  Milankovitch cycle analysis of Yijianfang Yingshan formation in denudation area

      图  5  研究区一间房-鹰山组地层剥蚀量平面图

      Fig.  5.  plan of stratum denudation amount of Yijianfang Yingshan formation in the study area

      图  6  研究区中下奥陶统残余厚度图

      Fig.  6.  Residual thickness map of middle and lower Ordovician in the study area

      图  7  关键构造期轮南古隆起分布图

      a. 晚奥陶世;b. 晚泥盆-早石炭世

      Fig.  7.  Distribution map of Lunnan paleo⁃uplift in key tectonic period

      表  1  中奥陶世米兰科维奇旋回周期及相互之间比例关系(据Berger et al., 1992

      Table  1.   Middle Ordovician milankovic cycle cycle cycle and its proportional relationship (according to Berger et al., 1992)

      基准周期 偏心率周期(ka) 斜度周期(ka) 岁差周期(ka)
      413.000(E3) 125.000(E2) 95.000(E1) 36.578(O2) 30.134(O1) 19.131(P2) 16.263(P1
      比值 1.000 0.303 0.230 0.089 0.073 0.046 0.039
      - 1.000 0.760 0.293 0.241 0.153 0.130
      - - 1.000 0.385 0.317 0.201 0.171
      - - - 1.000 0.814 0.517 0.440
      - - - - 1.000 0.635 0.540
      下载: 导出CSV

      表  2  内幕区一间房-鹰山组米兰科维奇旋回厚度计算

      Table  2.   Calculation of Milankovitch cycle thickness of Yijianfang Yingshan formation in inner area

      井名 类别 旋回厚度(m)
      偏心率周期(ka) 斜度周期(ka) 岁差周期(ka)
      413 125 95 36.578 30.134 19.131 16.263
      (E3) (E2) (E1) (O2) (O1) (P2) (P1)
      H6 厚度 8.40 3.19 2.72 1.67 1.48
      比值 1 0.380 0.320 0.200 0.176
      误差 0 1.36% -2.15% 1.09% -3.04%
      TS1 厚度 10.96 4.24 3.92 2.23 1.88
      比值 1 0.386 0.350 0.203 0.172
      误差 0 -0.20% -4.00% -0.20% -0.10%
      TS2 厚度 10 3.92 3.31 1.92 1.75
      比值 1 0.392 0.330 0.192 0.175
      误差 0 -1.86% -4.28% 4.33% -2.59%
      LG36 厚度 7.55 2.79 2.40 1.54 1.28
      比值 1 0.370 0.318 0.205 0.170
      误差 0 3.93% -0.20% -1.76% 0.70%
      下载: 导出CSV

      表  3  剥蚀区一间房-鹰山组米兰科维奇旋回厚度计算表

      Table  3.   Calculation of Milankovitch cycle thickness of Yijianfang Yingshan formation in denudation area

      井名 类别 旋回厚度(m)
      偏心率周期(ka) 斜度周期(ka) 岁差周期(ka)
      413 125 95 36.578 30.134 19.131 16.263
      (E3) (E2) (E1) (O2) (O1) (P2) (P1)
      QG5 厚度 9.04 3.35 2.88 1.79 1.55
      比值 1 0.371 0.319 0.198 0.171
      误差 0 3.53% -0.63% 1.26% -0.03%
      YQ5 厚度 11.70 4.44 3.82 2.38 2.03
      比值 1 0.378 0.325 0.203 0.173
      误差 0 1.72% -2.70% -0.94% -1.07%
      AD16 厚度 10.00 4.06 3.37 2.08 1.77
      比值 1 0.403 0.335 0.206 0.176
      误差 0 -4.68% -5.72% -2.85% -2.86%
      YQ6 厚度 13.14 5.07 4.08 2.67 2.26
      比值 1 0.386 0.310 0.203 0.172
      误差 0 -0.10% 0.70% -0.20% -0.10%
      LS2 厚度 10.50 3.97 3.55 2.10 1.85
      比值 1 0.377 0.337 0.199 0.176
      误差 0 1.90% -6.40% 0.80% -2.90%
      S88 厚度 10.40 3.97 3.30 2.12 1.79
      比值 1 0.381 0.316 0.204 0.172
      误差 0 1% 0.20% -1.50% -0.70%
      YQ4 厚度 41.35 9.60 3.76 3.10 1.89 1.59
      比值 1 0.391 0.323 0.197 0.166
      误差 0 -1.50% -1.90% 1.90% 2.90%
      LX4 厚度 13.40 5.20 4.19 2.75 1.98
      比值 1 0.388 0.313 0.205 0.148
      误差 0 -0.80% 1.30% 2.00% 13.40%
      下载: 导出CSV
    • Berger, A., Loutre, M. F., Laskar, J., 1992. Stability of the Astronomical Frequencies over the Earth's History for Paleoclimate Studies. Science, 255(5044): 560-566. https://doi.org/10.1126/science.255.5044.560
      Da Silva, A. C., Boulvain, F., 2006. Upper Devonian Carbonate Platform Correlations and Sea Level Variations Recorded in Magnetic Susceptibility. Palaeogeography, Palaeoclimatology, Palaeoecology, 240(3/4): 373-388. https://doi.org/10.1016/j.palaeo.2006.02.012
      Du, P. D., Zhao, Z. X., Yang, Z. L., et al., 2017. Distribution and Correlation of Late Ordovician Conodont Taoqupognathus in Tarim Basin. Journal of Stratigraphy, 41(4): 421-427(in Chinese with English abstract).
      Fan, J., Jiang, Y. L., Cui, X. J., et al. 2018. Unconformable Eroded Thickness Recovery by Cycle Analysis Method. Journal of China University of Mining & Technology, 42(2): 323-331(in Chinese with English abstract).
      Fang, Q., Wu, H. C., Wang, X. L., et al., 2019. An Astronomically Forced Cooling Event during the Middle Ordovician. Global and Planetary Change, 173: 96-108. https://doi.org/10.1016/j.gloplacha.2018.12.010
      Guo, C., Zhang, Z. Y., Wu, L., et al. 2022. Mesozoic-Cenozoic Coupling Process of Tianshan Denudation and Sedimentation in the Northern Margin of the Tarim Basin: Evidence from Low-Temperature Thermochronology (Kuqa River Section, Xinjiang). Earth Science, 47(9): 3417-3430(in Chinese with English abstract).
      Guo, Y., Tang, L. J., Yue, Y., et al., 2015. Application of Cycle Analysis Method to Estimate the Denuded Strata Thickness: a Case Study of Middle-Lower Ordovician Yingshan Formation of the Eastern Yubei Area, Tarim Basin. Journal of Chinia University of Mining & Technology, 44 (4): 664-672(in Chinese with English abstract).
      He, D. F., Jia, C. Z., Li, D. S., et al., 2005. Formation and Evolution of Polycyclic Superimposed Tarim Basin. Oil & Gas Geology, 26 (1): 64-77(in Chinese with English abstract).
      Jiang, Q. C., Hu, S. Y., Jiang, H., et al., 2018. Calculation and Inducement of Lacuna in the Mid-Permian Maokou Fm of Sichuan Basin. Natural Gas Industry, 5(4): 351-359(in Chinese with English abstract). doi: 10.1016/j.ngib.2018.01.009
      Jiang, S. H., Xu, X. M., Kang, H. M., et al., 2007. Calculation of the Denuded Amount of the Cenozoic Prototype Basin under the Restriction of the Wave Analysis Method: an Example of Huimin Depression. Periodical of Ocean University of China, 37 (4): 641-646(in Chinese with English abstract).
      Jin, Z. J., Zhang, Y. W., Chen, S. P., 2005. Tectono-Sedimentary Fluctuation Process in Tarim Basin. Science In China (Ser. D Earth Science), 35(6): 530-539(in Chinese with English abstract).
      Li, D. Y., Guo, T. Y., Jiang, X. D., et al., 2015. Erosion Thickness Recovery and Tectonic Evolution Characterization of Southern East China Sea Shelf Basin. Oil & Gas Geology, 36 (6): 913-923(in Chinese with English abstract).
      Li, K., Zhao, X. K., Shen, Z. M., et al., 2007. Application of Trend Thickness Method in Denudation Recovery in the Akekule Lobe of Tarim Basin. Computing Techniques for Geophysical and Geochemical Exploration, 29 (5): 415-419(in Chinese with English abstract).
      Li, M. S., Ogg, J., Zhang, Y., et al., 2016. Astronomical Tuning of the End-Permian Extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, 441: 10-25. https://doi.org/10.1016/j.epsl.2016.02.017
      Liu, C. G., Qi, L. X., Liu, Y. L., et al., 2016. Positive Carbon Isotope Excursions: Global Correlation and Genesis in the Middle-Upper Ordovician in the Northern Tarim Basin, Northwest China. Petroleum Science, 13(2): 192-203. https://doi.org/10.1007/s12182-016-0096-3
      Ma, D. B., Chen, L. X., Tao, X. W., et al., 2018. The Tectonic Evolution and Its Petroleum Geological Significance in Halahatang Area, Tarim Basin. Chinese Journal of Geology, 53 (1): 87-104(in Chinese with English abstract).
      Ma, D. B., Yang, M., Du, D. D., et al., 2020. Analysis of the Superposition Process of Multiphase Active Paleo-Uplift: Taking the Lunnan Paleo-Uplift in the Tarim Basin as an Example. Acta Petrologica Sinica, 36(11): 3523-3536(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.17
      Ma, X. Y., Lu, Y. Z., Fan, R., et al., 2021. Cyclostratigraphic Studies of the Middle-Upper Ordovician at Dawangou Section, Kalpin, Xinjiang and Their Geological Implication. Journal of Stratigraphy, 45 (1): 29-37(in Chinese with English abstract).
      Ma, Y. S., Lou, Z. H., Guo, T. L., et al., 2006. An Exploration on a Technological System of Petroleum Preservation Evaluation for Marine Strata in south China. Acta Geological Sinica, 80 (3): 406-417(in Chinese with English abstract).
      Pang, Y. M., Guo, X. W., Zhang X H, et al., 2019. Denudation of Indosinian Unconformity and Tectonic Evolution in the Central Uplift of South Yellow Sea Basin: Insights from CSDP-2 Well. Geotectonica et Metallogenia, 43 (2): 235-245(in Chinese with English abstract).
      Shang, K., Lv, H. T., Cao, Z. C., et al., 2018. Distribution and Significance of Middle Ordovician Yijianfang Formation in Shuntuoguole Lower Uplift, Tarim Basin. Petroleum Geology & Experiment, 40 (3): 353-361 (in Chinese with English abstract).
      Song, C. Y., Lv, D. W., 2021. Advances in Time Series Analysis Methods for Milankovitch. Acta Sedimentologica Sinica, 40(2): 380-395 (in Chinese with English abstract).
      Spahn, Z. P., Kodama, K. P., Nereo, P., 2013. High-Resolution Estimate for the Depositional Duration of the Triassic Latemar Plateform: A New Magnetostratigraphy and Magnatic Susceptibility Cyclostratigraphy from Basinal Sediments at Rio Sacuz, Italy. Geochemistry Geophysics Geosystems, 14(4): 1245-1257. doi: 10.1002/ggge.20094
      Tian, J. Wu, H. C., Huang, C. J., et al., 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568 (in Chinese with English abstract).
      Wang, J. Q., Li, Z. X., Liu, K., 2021. Restoration of Yanshanian Denudation in the Eastern Qaidam Basin: Evidence from Geophysics and Thermochronology. Earth Science Frontiers, 1-15. https://doi.org/10.13745 /j.esf.sf. 12.6 (in Chinese with English abstract). doi: 10.13745/j.esf.sf.12.6
      Wang, T. G., Dai, S. F., Li, M. J., et al., 2010. Stratigraphic Thermohistory and its Implications for Regional Geoevolution in the Tarim Basin, NW China. Science China Earth Sciences, 53(10): 1495-1505 (in Chinese with English abstract). doi: 10.1007/s11430-010-4069-x
      Wu, H. C., Zhang, S. J, Feng, Q. L., et al., 2011. Theoretical Basis, Research Advancement and Prospects of Cyclostratigraphy. Earth Science, 36 (3): 409-428 (in Chinese with English abstract).
      Yao. Y. M., Xu. X. H., Liu. C. R., et al. 2011. Calculation of Denudation amount with Milankovitch Cycle Method: a Case Study in Biyang Sag. Petroleum Geology & Experiment, 33(5): 460-467 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2011.05.004
      Yuan, Y. S., Zheng, H. R., Tu, W., 2008. Methods of Eroded Strata Thickness Restoration in Sedimentary Basins. Petroleum Geology & Experiment, 30 (6): 636-642 (in Chinese with English abstract).
      Zhang, X. B., Lv, H. T., He, J. J., et al., 2011. Multi-Stage Erosion Restoration of Superimposed Basins and Its Application. Journal of Oil and Gas Technology, 33 (5): 7-11 (in Chinese with English abstract).
      Zhang, Y. B., Zhao, Z. J., Yuan, S. Q., et al., 2011. Application of Spectral Analysis to Identify Milankovitch Cycles and High-Frequency Sequences: Take the Lower Ordovician Yingshan Formation of Mid-Tarim Basin as an Example. Journal of Jilin University (Earth Science Edition), 41(2): 400-410 (in Chinese with English abstract).
      Zhang, Y. W., Jin, Z. J., Liu, G. C., et al., 2000. Study on the Formation of Unconformities and the Amount of Eroded Sedimentation in Tarim Basin. Earth Science Frontiers, 7(4): 449-457 (in Chinese with English abstract).
      Zhao, J., Cao, Q., Fu, X. D., 2018. Recovery of Denuded Strata Thickness Based on Milankovitch Astronomical Cycles. Petroleum Geology & Experiment, 40 (2): 260-267 (in Chinese with English abstract).
      Zhao, Z. J., Chen, X., Pan, M., et al., 2010. Milankovitch Cycles in the Upper Ordovician Lianglitage Formation in the Tazhong-Bachu Area, Tarim Basin. Acta Geologica Sinica, 84 (4): 518-536 (in Chinese with English abstract).
      Zhao, Z. J., Zhao, Z. X., Huang, Z. B., 2006. Ordovician Conodont Zones and Sedimentary Sequences of the Tarim Basin, Xinjiang, NW China. Journal of Stratigraphy, 30 (3): 193-203 (in Chinese with English abstract).
      Zhao, Z. X., Wu, M. Z., Lai, J. R. 2018. Unconformity between Lower Ordovician and Overlying Strata in Tarim Basin. Xingjiang Petroleum Geology, 39 (5): 530-536 (in Chinese with English abstract).
      杜品德, 赵治信, 杨芝林, 等, 2017. 塔里木板块晚奥陶世桃曲坡牙形石属的分布及对比. 地层学杂志, 41(4): 421-427. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201704008.htm
      范婕, 蒋有录, 崔小君, 等, 2018. 恢复不整合剥蚀厚度的旋回分析法. 中国矿业大学学报, 47(2): 323-331. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802013.htm
      郭超, 张志勇, 吴林, 等, 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. doi: 10.3799/dqkx.2022.152
      郭颖, 汤良杰, 岳勇, 等, 2015. 旋回分析法在地层剥蚀量估算中的应用——以塔里木盆地玉北地区东部中下奥陶统鹰山组为例. 中国矿业大学学报, 44(4): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201504011.htm
      何登发, 贾承造, 李德生, 等, 2005. 塔里木多旋回叠合盆地的形成与演化. 石油与天然气地质, 26(1): 64-77. doi: 10.3321/j.issn:0253-9985.2005.01.010
      江青春, 胡素云, 姜华, 等, 2018. 四川盆地中二叠统茅口组地层缺失量计算及成因探讨. 天然气工业, 38(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201801006.htm
      姜素华, 许新明, 康恒茂, 等, 2007. 波动分析约束下的原型盆地剥蚀量恢复——以惠民凹陷为例. 中国海洋大学学报(自然科学版), 37(4): 641-646. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY200704024.htm
      金之钧, 张一伟, 陈书平. 2005. 塔里木盆地构造-沉积波动过程. 中国科学(D辑: 地球科学), 35(6): 530-539. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200506005.htm
      李德勇, 郭太宇, 姜效典, 等, 2015. 东海陆架盆地南部剥蚀厚度恢复及构造演化特征. 石油与天然气地质, 36(6): 913-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201506008.htm
      李坤, 赵锡奎, 沈忠民, 等, 2007. "趋势厚度法"在塔里木盆地阿克库勒凸起地层剥蚀量恢复中的应用. 物探化探计算技术, 29(5): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-WTHT200705008.htm
      马德波, 陈利新, 陶小晚, 等, 2018. 塔里木盆地哈拉哈塘地区构造演化及其油气地质意义. 地质科学, 53(1): 87-104.
      马德波, 杨敏, 杜德道, 等, 2020. 多期活动古隆起复合叠加过程解析——以塔里木盆地轮南古隆起为例. 岩石学报, 36(11): 3523-3536. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011017.htm
      马雪莹, 卢远征, 樊茹, 等, 2021. 新疆柯坪大湾沟中、上奥陶统旋回地层学研究及其地质意义. 地层学杂志, 45(1): 29-37. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202101004.htm
      马永生, 楼章华, 郭彤楼, 等, 2006. 中国南方海相地层油气保存条件综合评价技术体系探讨. 地质学报, 80(3): 406-417. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200603013.htm
      庞玉茂, 郭兴伟, 张训华, 等, 2019. 南黄海中部隆起印支面剥蚀量恢复与演化过程——来自CSDP-2井的证据. 大地构造与成矿学, 43(2): 235-245. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201902004.htm
      尚凯, 吕海涛, 曹自成, 等, 2018. 塔里木盆地顺托果勒低隆起一间房组分布及地质意义. 石油实验地质, 40(3): 353-361. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803008.htm
      宋翠玉, 吕大炜, 2022. 米兰科维奇旋回时间序列分析法研究进展. 沉积学报, 40(2): 380-395. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202202007.htm
      田军, 吴怀春, 黄春菊, 等, 2022. 从40万年长偏心率周期看米兰科维奇旋回理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
      王嘉琦, 李宗星, 刘奎, 2022. 达木盆地东部燕山期剥蚀量恢复: 来自地球物理和低温热年代学的证据. 地学前缘: 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202204031.htm
      王铁冠, 戴世峰, 李美俊, 等, 2010. 盆地台盆区地层有机质热史及其对区域地质演化研究的启迪. 中国科学: 地球科学, 40(10): 1331-1341. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201010005.htm
      吴怀春, 张世红, 冯庆来, 等, 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. doi: 10.3799/dqkx.2011.045
      姚益民, 徐旭辉, 刘翠荣, 等, 2011. 米氏旋回剥蚀量计算方法在泌阳凹陷的应用. 石油实验地质, 33(5): 460-467. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201105006.htm
      袁玉松, 郑和荣, 涂伟等. 2008. 沉积盆地剥蚀量恢复方法. 石油实验地质, 30(6): 636-642. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200806022.htm
      张小兵, 吕海涛, 何建军, 等, 2011. 叠合盆地同层多期剥蚀量恢复研究及应用. 石油天然气学报, 33(5): 7-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201105003.htm
      张一伟, 金之钧, 刘国臣, 等, 2000. 塔里木盆地环满加尔地区主要不整合形成过程及剥蚀量研究. 地学前缘, 7(4): 449-457. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200004020.htm
      张运波, 赵宗举, 袁圣强, 等, 2011. 频谱分析法在识别米兰科维奇旋回及高频层序中的应用——以塔里木盆地塔中-巴楚地区下奥陶统鹰山组为例. 吉林大学学报(地球科学版), 41(2): 400-410. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201102011.htm
      赵军, 曹强, 付宪弟, 等, 2018. 基于米兰科维奇天文旋回恢复地层剥蚀厚度——以松辽盆地X油田青山口组为例. 石油实验地质, 40(2): 260-267. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201802017.htm
      赵治信, 吴美珍, 赖敬容, 2018. 塔里木盆地下奥陶统与上覆地层间的不整合. 新疆石油地质, 39(5): 530-536. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201805005.htm
      赵宗举, 陈轩, 潘懋, 等, 2010. 塔里木盆地塔中-巴楚地区上奥陶统良里塔格组米兰科维奇旋回性沉积记录研究. 地质学报, 84(4): 518-536. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004008.htm
      赵宗举, 赵治信, 黄智斌, 2006. 塔里木盆地奥陶系牙形石带及沉积层序. 地层学杂志, 30(3): 193-203. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ200603000.htm
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  390
    • HTML全文浏览量:  542
    • PDF下载量:  86
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-29
    • 刊出日期:  2023-08-25

    目录

      /

      返回文章
      返回