• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多重环境因素对Fe2+作用下化学反硝化去除亚硝的影响

    李林鑫 蒋宏忱 黄柳琴

    李林鑫, 蒋宏忱, 黄柳琴, 2024. 多重环境因素对Fe2+作用下化学反硝化去除亚硝的影响. 地球科学, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060
    引用本文: 李林鑫, 蒋宏忱, 黄柳琴, 2024. 多重环境因素对Fe2+作用下化学反硝化去除亚硝的影响. 地球科学, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060
    Li Linxin, Jiang Hongchen, Huang Liuqin, 2024. Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+. Earth Science, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060
    Citation: Li Linxin, Jiang Hongchen, Huang Liuqin, 2024. Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+. Earth Science, 49(8): 2891-2900. doi: 10.3799/dqkx.2023.060

    多重环境因素对Fe2+作用下化学反硝化去除亚硝的影响

    doi: 10.3799/dqkx.2023.060
    基金项目: 

    国家自然科学基金 42172340

    详细信息
      作者简介:

      李林鑫(1999-),女,硕士研究生,主要从事环境科学研究. ORCID:0000-0003-0293-9006. E-mail:1202011470llx@cug.edu.cn

      通讯作者:

      黄柳琴, E-mail: huanglq@cug.edu.cn

    • 中图分类号: P66

    Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+

    • 摘要: 为了提高以Fe2+作为还原剂的NO2-去除工艺在实际应用中的效率,设计了外源阴离子、Fe2+浓度以及反应温度3个环境因素来探明其对Fe2+化学还原NO2-过程的影响. 结果表明,虽然提高Fe2+浓度可以明显促进NO2-的去除速率,但同时降低了Fe2+的利用率,除此以外,升高温度和添加HCO3-/CO32-都可以提高NO2-去除速率和程度. 另外铁氧化所形成的副产物类型也受到温度和HCO3-的调控,温度在55 ℃以下(30 ℃,40 ℃)时铁氧化产物以纤铁矿和针铁矿为主,温度高于55 ℃时铁氧化产生磁铁矿. 而在HCO3-体系中,磁铁矿可以在更低温度(40 ℃)条件下形成. 这些发现对改进Fe2+作用下的化学反硝化应用模式和副产物的二次处理利用提供了实验参考,为推动其在实际工程中应用提供了理论依据.

       

    • 图  1  阴离子(CO32-、Cl-、HCO3-以及SO42-)对Fe2+作用下的化学反硝化过程NO2-去除的影响

      Fig.  1.  Effects of CO32-, Cl-, HCO3- and SO42- on nitrite removal by chemo-denitrification

      图  2  不同浓度(0.2, 1.4, 4.5 mM)Fe2+对Fe2+作用下的化学反硝化过程中(a)NO2-去除程度和(b)NO2-∶Fe2+消耗比例的影响

      黑色和灰色的柱子分别代表NO2-和Fe2+的消耗量

      Fig.  2.  (a)Nitrite removal degree under different concentrations of Fe2+ (0.2, 1.4, 4.5 mM); (b)Consumption ratio of NO2- to Fe2+ by chemo-denitrification

      图  3  温度对添加(a) Cl-和(b) HCO3-体系的Fe2+作用下的化学反硝化过程的影响

      Fig.  3.  Effect of temperature on the chemical denitrification process of (a) Cl- and (b) HCO3- systems

      图  4  温度梯度下(a)Cl-和(b)HCO3-体系中的Fe2+作用下的化学反硝化形成铁矿物XRD图谱

      Fig.  4.  XRD patterns of minerals produced by chemodenitrification in (a) Cl- and (b) HCO3- systems under temperature gradient

      图  5  温度梯度下(a)Cl-和(b)HCO3-体系中的Fe2+作用下的化学反硝化形成铁矿物的FTIR图谱

      Fig.  5.  FTIR absorption spectraof mineral by chemodenitrification in (a) Cl- and (b) HCO3- systems under temperature gradient

      表  1  Fe2+作用下的化学反硝化实验组设置

      Table  1.   Table of chemo-denitrification experimental group setting

      实验编号 实验目的 实验基本体系 实验变量
      1 阴离子影响 10 mM PIPEs(pH=7),0.1 mM NaNO2,1 mM FeCl2 1 mM CO32-、Cl-、HCO3-或SO42-
      2 底物浓度影响 10 mM PIPEs(pH=7),0.2 mM NaNO2 0.2 mM、1.4 mM或4.5 mM FeCl2
      3 温度影响 10 mM PIPEs(pH=7),0.2 mM NaNO2,1 mM FeCl2,1 mM NaCl/NaHCO3 30 ℃、40 ℃、55 ℃或75 ℃
      下载: 导出CSV

      表  2  各反应初始阶段NO2-还原的伪一级动力常数K

      Table  2.   Pseudo first-order dynamic constant K of NO2- reduction at the initial stage of each reaction

      75 ℃ r2 55 ℃ r2 40 ℃ r2 30 ℃ r2
      Cl- 0.210 1±0.054 2 0.938 0.042 7±0.009 5 0.953 0.002 9±0.000 1 0.985 0.000 4±0.0000 5 0.825
      HCO3- 0.906 2±0.305 4 0.898 0.065 5±0.019 1 0.855 0.006 8±0.000 6 0.944 0.000 5±0.0000 6 0.866
      下载: 导出CSV
    • Ai, X. F., Wang, H. L., Chen, X. L., et al., 2014. Experiment Research on the Oblem of Nitrite Accumulation in Groundwater during Biological Denitrification. Water Pollution Control, 32: 33-36(in Chinese with English abstract).
      Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., 2002. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data. Global Biogeochemical Cycles, 16(4): 6-1-6-13. https://doi.org/10.1029/2001gb001811
      Buchwald, C., Grabb, K., Hansel, C. M., et al., 2016. Constraining the Role of Iron in Environmental Nitrogen Transformations: Dual Stable Isotope Systematics of Abiotic NO2- Reduction by Fe(Ⅱ) and its Production of N2O. Geochimica et Cosmochimica Acta, 186: 1-12. https://doi.org/10.1016/j.gca.2016.04.041
      Buerge, I. J., Hug, S. J., 1999. Influence of Mineral Surfaces on Chromium(Ⅵ) Reduction by Iron(Ⅱ). Environmental Science & Technology, 33(23): 4285-4291. https://doi.org/10.1021/es981297s
      Buessecker, S., Imanaka, H., Ely, T., et al., 2022. Mineral-Catalysed Formation of Marine NO and N2O on the Anoxic Early Earth. Nature Geoscience, 15(12): 1056-1063. https://doi.org/10.1038/s41561-022-01089-9
      Chen, D. D., Liu, T. X., Li, X. M., et al., 2018. Biological and Chemical Processes of Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Pseudogulbenkiania Sp. Strain 2002. Chemical Geology, 476(4): 59-69. https://doi.org/10.1016/j.chemgeo.2017.11.004
      Chen, G. J., Zhao, W. Q., Yang, Y., et al., 2021. Chemodenitrification by Fe(Ⅱ) and Nitrite: Effects of Temperature and Dual N O Isotope Fractionation. Chemical Geology, 575(1): 120258. https://doi.org/10.1016/j.chemgeo.2021.120258
      Chen, Q., Ni, J. R., Ma, T., et al., 2015. Bioaugmentation Treatment of Municipal Wastewater with Heterotrophic-Aerobic Nitrogen Removal Bacteria in a Pilot-Scale SBR. Bioresource Technology, 183: 25-32. https://doi.org/10.1016/j.biortech.2015.02.022
      Cheng, C., Phipps, D., Alkhaddar, R. M., 2006. Thermophilic Aerobic Wastewater Treatment of Waste Metalworking Fluids. Water and Environment Journal, 20(4): 227-232. https://doi.org/10.1111/j.1747-6593.2005.00010.x
      Cooper, D. C., Picardal, F. W., Schimmelmann, A., et al., 2003. Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella Putrefaciens 200. Applied and Environmental Microbiology, 69(6): 3517-3525. https://doi.org/10.1128/aem.69.6.3517-3525.2003
      Dopffel, N., Stein, J., Jamieson, J., et al., 2021. Temperature Dependence of Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Strain BoFeN1-Evaluating the Role of Enzymatic Vs. Abiotic Fe(Ⅱ) Oxidation by Nitrite. FEMS Microbiology Ecology, 97(12): 1-15. https://doi.org/10.1093/femsec/fiab155
      Fahrner, S., 2002. Groundwater Nitrate Removal Using a Bioremediation Trench (Dissertation). University of Western Australia, Perth, 1-86.
      Fanning, J., 2000. The Chemical Reduction of Nitrate in Aqueous Solution. Coordination Chemistry Reviews, 199(1): 159-179. https://doi.org/10.1016/s0010-8545(99)00143-5
      Guo, J. H., Liu, X. J., Zhang, Y., et al., 2010. Significant Acidification in Major Chinese Croplands. Science, 327(5968): 1008-1010. https://doi.org/10.1126/science.1182570
      Hu, J. H., Duan, J. C., Gao, Y., et al., 2022. Effects of Nitrite Nitrogen on Hepatoenterocytosis of Shrimp Infected with Ridgetail White Shrimp. Fishweries Science, 41(4): 664-669 (in Chinese).
      Jones, L. C., Peters, B., Lezama Pacheco, J. S., et al., 2015. Stable Isotopes and Iron Oxide Mineral Products as Markers of Chemodenitrification. . Environmental Science & Technology, 49(6): 3444-3452. https://doi.org/10.1021/es504862x
      Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M., et al., 2011. Reduced Iron Induced Nitric Oxide and Nitrous Oxide Emission. Water Research, 45(18): 5945-5952. https://doi.org/10.1016/j.watres.2011.08.056
      Keeney, D. R., Fillery, I. R., Marx, G. P., 1979. Effect of Temperature on the Gaseous Nitrogen Products of Denitrification in a Silt Loam Soil. Soil Science Society of America Journal, 43(6): 1124-1128. https://doi.org/10.2136/sssaj1979.03615995004300060012x
      Klueglein, N., Kappler, A., 2013. Abiotic Oxidation of Fe(Ⅱ) by Reactive Nitrogen Species in Cultures of the Nitrate-Reducing Fe(Ⅱ) Oxidizer Acidovorax Sp. Bofen1-Questioning the Existence of Enzymatic Fe(Ⅱ) Oxidation. Geobiology, 11(2): 180-90. https://doi.org/10.1111/gbi.12019.
      Kopf, S. H., Henny, C., Newman, D. K., 2013. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical Versus Biological Iron Cycling in Anoxic Environments. Environmental Science & Technology, 47(6): 2602-2611. https://doi.org/10.1021/es3049459
      Li, Z., Sun, Q., Gao, M. Y., 2004. Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4. Angewandte Chemie International Edition, 44(1): 123-126. https://doi.org/10.1002/anie.200460715
      Lin, M. D., Yu, J. J., Liu, X. Q., et al., 2021. Abnormalities, Mechanisms and Effects of Nitrite Nitrogen, Ammonia Nitrogen and Phosphate in Sansha Bay. Earth Science, 46(11): 4107-4117 (in Chinese with English abstract).
      Liu, H. B., Chen, T. H., Frost, R. L., 2014. An Overview of the Role of Goethite Surfaces in the Environment. Chemosphere, 103(84): 1-11. https://doi.org/10.1016/j.chemosphere.2013.11.065
      Liu, T. X., Chen, D. D., Luo, X. B., et al., 2019. Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation: Quantification of Chemodenitrification and Biological Reactions. Geochimica et Cosmochimica Acta, 256: 97-115. https://doi.org/10.1016/j.gca.2018.06.040
      Liu, Y. Q., Phenrat, T., Lowry, G. V., 2007. Effect of TCE Concentration and Dissolved Groundwater Solutes on NZVI-Promoted TCE Dechlorination and H2 Evolution. Environmental Science & Technology, 41(22): 7881-7887. https://doi.org/10.1021/es0711967
      Melendres, C. A., Pankuch, M., Li, Y. S., et al., 1992. Surface Enhanced Raman Spectroelectrochemical Studies of the Corrosion Films on Iron and Chromium in Aqueous Solution Environments. Electrochimica Acta, 37(15): 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-v
      Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
      Moerland, M. J., Castañares Pérez, L., Ruiz Velasco Sobrino, M. E., et al., 2021. Thermophilic (55 ℃) and Hyper-Thermophilic (70 ℃) Anaerobic Digestion as Novel Treatment Technologies for Concentrated Black Water. Bioresource Technology, 340(1-3): 125705. https://doi.org/10.1016/j.biortech.2021.125705
      Nelson, D. W., Bremner, J. M., 1970. Gaseous Products of Nitrite Decomposition in Soils. Soil Biology and Biochemistry, 2(3): 203-IN8. https://doi.org/10.1016/0038-0717(70)90008-8
      Nikolić, A., Hultman, B., 2005. Chemical Denitrification for Nitrogen Removal from Landfill Leachate. Water Science and Technology, 52(10/11): 509-516. https://doi.org/10.2166/wst.2005.0730
      Nömmik, H., 1956. Investigations on Denitrification in Soil. Acta Agriculturae Scandinavica, 6(2): 195-228. https://doi.org/10.1080/00015125609433269
      Picetti, R., Deeney, M., Pastorino, S., et al., 2022. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environmental Research, 210: 112988. https://doi.org/10.1016/j.envres.2022.112988
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Saad, O. A. L. O., Conrad, R., 1993. Temperature Dependence of Nitrification, Denitrification, and Turnover of Nitric Oxide in Different Soils. Biology and Fertility of Soils, 15(1): 21-27. https://doi.org/10.1007/bf00336283
      Sørensen, J., Thorling, L., 1991. Stimulation by Lepidocrocite (7-FeOOH) of Fe(Ⅱ)-Dependent Nitrite Reduction. Geochimica et Cosmochimica Acta, 55(5): 1289-1294. https://doi.org/10.1016/0016-7037(91)90307-q
      Tan, Y. Q., Chen, M., Hao, Y. M., 2012. High Efficient Removal of Pb (Ⅱ) by Amino-Functionalized Fe3O4 Magnetic Nano-Particles. Chemical Engineering Journal, 191: 104-111. https://doi.org/10.1016/j.cej.2012.02.075
      Tang, C. L., Zhang, Z. Q., Sun, X. N., 2012. Effect of Common Ions on Nitrate Removal by Zero-Valent Iron from Alkaline Soil. Journal of Hazardous Materials, 231-232(2): 114-119. https://doi.org/10.1016/j.jhazmat.2012.06.042
      Thomas, C. R., 2021. Abiotic Reduction of Nitrite by Fe(Ⅱ): A Comparison of Rates and N₂O Production. Environmental Science, 23(10): 1531-1541. https://doi.org/10.1039/d1em00222h.
      Wang, Z., Jiang, Y. H., Awasthi, M. K., et al., 2018. Nitrate Removal by Combined Heterotrophic and Autotrophic Denitrification Processes: Impact of Coexistent Ions. Bioresource Technology, 250(2): 838-845. https://doi.org/10.1016/j.biortech.2017.12.009
      Weber, K. A., Picardal, F. W., Roden, E. E., 2001. Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe(Ⅱ) Compounds. Environmental Science & Technology, 35(8): 1644-1650. https://doi.org/10.1021/es0016598
      艾小凡, 王鹤立, 陈祥龙, 等, 2014. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究. 环境工程, 32: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201401010.htm
      胡吉卉, 段健诚, 高阳, 等, 2022. 亚硝态氮对虾肝肠胞虫感染脊尾白虾的影响. 水产科学, 41(4): 664-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CHAN202204019.htm
      林沐东, 于俊杰, 刘晓强, 等, 2021. 三沙湾亚硝酸氮、氨氮、磷酸盐的异常、机制及影响. 地球科学, 46(11): 4107-4117. doi: 10.3799/dqkx.2020.368
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  412
    • HTML全文浏览量:  141
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-15
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回