Multiple Environmental Factors Affect the Nitrite Removal Efficiency of Chemo-Denitrification by Fe2+
-
摘要: 为了提高以Fe2+作为还原剂的NO2-去除工艺在实际应用中的效率,设计了外源阴离子、Fe2+浓度以及反应温度3个环境因素来探明其对Fe2+化学还原NO2-过程的影响. 结果表明,虽然提高Fe2+浓度可以明显促进NO2-的去除速率,但同时降低了Fe2+的利用率,除此以外,升高温度和添加HCO3-/CO32-都可以提高NO2-去除速率和程度. 另外铁氧化所形成的副产物类型也受到温度和HCO3-的调控,温度在55 ℃以下(30 ℃,40 ℃)时铁氧化产物以纤铁矿和针铁矿为主,温度高于55 ℃时铁氧化产生磁铁矿. 而在HCO3-体系中,磁铁矿可以在更低温度(40 ℃)条件下形成. 这些发现对改进Fe2+作用下的化学反硝化应用模式和副产物的二次处理利用提供了实验参考,为推动其在实际工程中应用提供了理论依据.Abstract: To improve the efficiency of the NO2- removal process using Fe2+ as a reducing agent in practical applications, this research designed three environmental factors of exogenous anions, Fe2+ concentration, and reaction temperature to investigate their effects on the chemical reduction of NO2- by Fe2+. The results showed that although increasing the Fe2+ concentration could significantly promote the removal rate of NO2-, it also reduced the utilization rate of Fe2+. In addition, raising the temperature and adding HCO3-/CO32- could both increase the removal rate and extent of NO2-. The type of by-product formed by iron oxidation was also regulated by temperature and HCO3-. At temperatures below 55 ℃ (such as 30 ℃ and 40 ℃), the by-product of iron oxidation was mainly goethite and magnetite. At temperatures above 55 ℃, Magnetite was the only by-product. But magnetite can be formed at a lower temperature (40 ℃) with HCO3-. These results provide experimental references for improving the application mode and by-product secondary treatment utilization of Fe2+-based Chemo-denitrification and provide theoretical basis in actual engineering.
-
Key words:
- nitrite pollution /
- iron oxidation /
- Chemo-denitrification /
- high temperature /
- magnetite
-
表 1 Fe2+作用下的化学反硝化实验组设置
Table 1. Table of chemo-denitrification experimental group setting
实验编号 实验目的 实验基本体系 实验变量 1 阴离子影响 10 mM PIPEs(pH=7),0.1 mM NaNO2,1 mM FeCl2 1 mM CO32-、Cl-、HCO3-或SO42- 2 底物浓度影响 10 mM PIPEs(pH=7),0.2 mM NaNO2 0.2 mM、1.4 mM或4.5 mM FeCl2 3 温度影响 10 mM PIPEs(pH=7),0.2 mM NaNO2,1 mM FeCl2,1 mM NaCl/NaHCO3 30 ℃、40 ℃、55 ℃或75 ℃ 表 2 各反应初始阶段NO2-还原的伪一级动力常数K
Table 2. Pseudo first-order dynamic constant K of NO2- reduction at the initial stage of each reaction
75 ℃ r2 55 ℃ r2 40 ℃ r2 30 ℃ r2 Cl- 0.210 1±0.054 2 0.938 0.042 7±0.009 5 0.953 0.002 9±0.000 1 0.985 0.000 4±0.0000 5 0.825 HCO3- 0.906 2±0.305 4 0.898 0.065 5±0.019 1 0.855 0.006 8±0.000 6 0.944 0.000 5±0.0000 6 0.866 -
Ai, X. F., Wang, H. L., Chen, X. L., et al., 2014. Experiment Research on the Oblem of Nitrite Accumulation in Groundwater during Biological Denitrification. Water Pollution Control, 32: 33-36(in Chinese with English abstract). Bouwman, A. F., Boumans, L. J. M., Batjes, N. H., 2002. Emissions of N2O and NO from Fertilized Fields: Summary of Available Measurement Data. Global Biogeochemical Cycles, 16(4): 6-1-6-13. https://doi.org/10.1029/2001gb001811 Buchwald, C., Grabb, K., Hansel, C. M., et al., 2016. Constraining the Role of Iron in Environmental Nitrogen Transformations: Dual Stable Isotope Systematics of Abiotic NO2- Reduction by Fe(Ⅱ) and its Production of N2O. Geochimica et Cosmochimica Acta, 186: 1-12. https://doi.org/10.1016/j.gca.2016.04.041 Buerge, I. J., Hug, S. J., 1999. Influence of Mineral Surfaces on Chromium(Ⅵ) Reduction by Iron(Ⅱ). Environmental Science & Technology, 33(23): 4285-4291. https://doi.org/10.1021/es981297s Buessecker, S., Imanaka, H., Ely, T., et al., 2022. Mineral-Catalysed Formation of Marine NO and N2O on the Anoxic Early Earth. Nature Geoscience, 15(12): 1056-1063. https://doi.org/10.1038/s41561-022-01089-9 Chen, D. D., Liu, T. X., Li, X. M., et al., 2018. Biological and Chemical Processes of Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation by Pseudogulbenkiania Sp. Strain 2002. Chemical Geology, 476(4): 59-69. https://doi.org/10.1016/j.chemgeo.2017.11.004 Chen, G. J., Zhao, W. Q., Yang, Y., et al., 2021. Chemodenitrification by Fe(Ⅱ) and Nitrite: Effects of Temperature and Dual N O Isotope Fractionation. Chemical Geology, 575(1): 120258. https://doi.org/10.1016/j.chemgeo.2021.120258 Chen, Q., Ni, J. R., Ma, T., et al., 2015. Bioaugmentation Treatment of Municipal Wastewater with Heterotrophic-Aerobic Nitrogen Removal Bacteria in a Pilot-Scale SBR. Bioresource Technology, 183: 25-32. https://doi.org/10.1016/j.biortech.2015.02.022 Cheng, C., Phipps, D., Alkhaddar, R. M., 2006. Thermophilic Aerobic Wastewater Treatment of Waste Metalworking Fluids. Water and Environment Journal, 20(4): 227-232. https://doi.org/10.1111/j.1747-6593.2005.00010.x Cooper, D. C., Picardal, F. W., Schimmelmann, A., et al., 2003. Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella Putrefaciens 200. Applied and Environmental Microbiology, 69(6): 3517-3525. https://doi.org/10.1128/aem.69.6.3517-3525.2003 Dopffel, N., Stein, J., Jamieson, J., et al., 2021. Temperature Dependence of Nitrate-Reducing Fe(Ⅱ) Oxidation by Acidovorax Strain BoFeN1-Evaluating the Role of Enzymatic Vs. Abiotic Fe(Ⅱ) Oxidation by Nitrite. FEMS Microbiology Ecology, 97(12): 1-15. https://doi.org/10.1093/femsec/fiab155 Fahrner, S., 2002. Groundwater Nitrate Removal Using a Bioremediation Trench (Dissertation). University of Western Australia, Perth, 1-86. Fanning, J., 2000. The Chemical Reduction of Nitrate in Aqueous Solution. Coordination Chemistry Reviews, 199(1): 159-179. https://doi.org/10.1016/s0010-8545(99)00143-5 Guo, J. H., Liu, X. J., Zhang, Y., et al., 2010. Significant Acidification in Major Chinese Croplands. Science, 327(5968): 1008-1010. https://doi.org/10.1126/science.1182570 Hu, J. H., Duan, J. C., Gao, Y., et al., 2022. Effects of Nitrite Nitrogen on Hepatoenterocytosis of Shrimp Infected with Ridgetail White Shrimp. Fishweries Science, 41(4): 664-669 (in Chinese). Jones, L. C., Peters, B., Lezama Pacheco, J. S., et al., 2015. Stable Isotopes and Iron Oxide Mineral Products as Markers of Chemodenitrification. . Environmental Science & Technology, 49(6): 3444-3452. https://doi.org/10.1021/es504862x Kampschreur, M. J., Kleerebezem, R., de Vet, W. W. J. M., et al., 2011. Reduced Iron Induced Nitric Oxide and Nitrous Oxide Emission. Water Research, 45(18): 5945-5952. https://doi.org/10.1016/j.watres.2011.08.056 Keeney, D. R., Fillery, I. R., Marx, G. P., 1979. Effect of Temperature on the Gaseous Nitrogen Products of Denitrification in a Silt Loam Soil. Soil Science Society of America Journal, 43(6): 1124-1128. https://doi.org/10.2136/sssaj1979.03615995004300060012x Klueglein, N., Kappler, A., 2013. Abiotic Oxidation of Fe(Ⅱ) by Reactive Nitrogen Species in Cultures of the Nitrate-Reducing Fe(Ⅱ) Oxidizer Acidovorax Sp. Bofen1-Questioning the Existence of Enzymatic Fe(Ⅱ) Oxidation. Geobiology, 11(2): 180-90. https://doi.org/10.1111/gbi.12019. Kopf, S. H., Henny, C., Newman, D. K., 2013. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical Versus Biological Iron Cycling in Anoxic Environments. Environmental Science & Technology, 47(6): 2602-2611. https://doi.org/10.1021/es3049459 Li, Z., Sun, Q., Gao, M. Y., 2004. Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4. Angewandte Chemie International Edition, 44(1): 123-126. https://doi.org/10.1002/anie.200460715 Lin, M. D., Yu, J. J., Liu, X. Q., et al., 2021. Abnormalities, Mechanisms and Effects of Nitrite Nitrogen, Ammonia Nitrogen and Phosphate in Sansha Bay. Earth Science, 46(11): 4107-4117 (in Chinese with English abstract). Liu, H. B., Chen, T. H., Frost, R. L., 2014. An Overview of the Role of Goethite Surfaces in the Environment. Chemosphere, 103(84): 1-11. https://doi.org/10.1016/j.chemosphere.2013.11.065 Liu, T. X., Chen, D. D., Luo, X. B., et al., 2019. Microbially Mediated Nitrate-Reducing Fe(Ⅱ) Oxidation: Quantification of Chemodenitrification and Biological Reactions. Geochimica et Cosmochimica Acta, 256: 97-115. https://doi.org/10.1016/j.gca.2018.06.040 Liu, Y. Q., Phenrat, T., Lowry, G. V., 2007. Effect of TCE Concentration and Dissolved Groundwater Solutes on NZVI-Promoted TCE Dechlorination and H2 Evolution. Environmental Science & Technology, 41(22): 7881-7887. https://doi.org/10.1021/es0711967 Melendres, C. A., Pankuch, M., Li, Y. S., et al., 1992. Surface Enhanced Raman Spectroelectrochemical Studies of the Corrosion Films on Iron and Chromium in Aqueous Solution Environments. Electrochimica Acta, 37(15): 2747-2754. https://doi.org/10.1016/0013-4686(92)85202-v Melton, E. D., Swanner, E. D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347 Moerland, M. J., Castañares Pérez, L., Ruiz Velasco Sobrino, M. E., et al., 2021. Thermophilic (55 ℃) and Hyper-Thermophilic (70 ℃) Anaerobic Digestion as Novel Treatment Technologies for Concentrated Black Water. Bioresource Technology, 340(1-3): 125705. https://doi.org/10.1016/j.biortech.2021.125705 Nelson, D. W., Bremner, J. M., 1970. Gaseous Products of Nitrite Decomposition in Soils. Soil Biology and Biochemistry, 2(3): 203-IN8. https://doi.org/10.1016/0038-0717(70)90008-8 Nikolić, A., Hultman, B., 2005. Chemical Denitrification for Nitrogen Removal from Landfill Leachate. Water Science and Technology, 52(10/11): 509-516. https://doi.org/10.2166/wst.2005.0730 Nömmik, H., 1956. Investigations on Denitrification in Soil. Acta Agriculturae Scandinavica, 6(2): 195-228. https://doi.org/10.1080/00015125609433269 Picetti, R., Deeney, M., Pastorino, S., et al., 2022. Nitrate and Nitrite Contamination in Drinking Water and Cancer Risk: A Systematic Review with Meta-Analysis. Environmental Research, 210: 112988. https://doi.org/10.1016/j.envres.2022.112988 Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract). Saad, O. A. L. O., Conrad, R., 1993. Temperature Dependence of Nitrification, Denitrification, and Turnover of Nitric Oxide in Different Soils. Biology and Fertility of Soils, 15(1): 21-27. https://doi.org/10.1007/bf00336283 Sørensen, J., Thorling, L., 1991. Stimulation by Lepidocrocite (7-FeOOH) of Fe(Ⅱ)-Dependent Nitrite Reduction. Geochimica et Cosmochimica Acta, 55(5): 1289-1294. https://doi.org/10.1016/0016-7037(91)90307-q Tan, Y. Q., Chen, M., Hao, Y. M., 2012. High Efficient Removal of Pb (Ⅱ) by Amino-Functionalized Fe3O4 Magnetic Nano-Particles. Chemical Engineering Journal, 191: 104-111. https://doi.org/10.1016/j.cej.2012.02.075 Tang, C. L., Zhang, Z. Q., Sun, X. N., 2012. Effect of Common Ions on Nitrate Removal by Zero-Valent Iron from Alkaline Soil. Journal of Hazardous Materials, 231-232(2): 114-119. https://doi.org/10.1016/j.jhazmat.2012.06.042 Thomas, C. R., 2021. Abiotic Reduction of Nitrite by Fe(Ⅱ): A Comparison of Rates and N₂O Production. Environmental Science, 23(10): 1531-1541. https://doi.org/10.1039/d1em00222h. Wang, Z., Jiang, Y. H., Awasthi, M. K., et al., 2018. Nitrate Removal by Combined Heterotrophic and Autotrophic Denitrification Processes: Impact of Coexistent Ions. Bioresource Technology, 250(2): 838-845. https://doi.org/10.1016/j.biortech.2017.12.009 Weber, K. A., Picardal, F. W., Roden, E. E., 2001. Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe(Ⅱ) Compounds. Environmental Science & Technology, 35(8): 1644-1650. https://doi.org/10.1021/es0016598 艾小凡, 王鹤立, 陈祥龙, 等, 2014. 地下水硝酸盐污染生物修复中的亚硝态氮积累研究. 环境工程, 32: 33-36. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201401010.htm 胡吉卉, 段健诚, 高阳, 等, 2022. 亚硝态氮对虾肝肠胞虫感染脊尾白虾的影响. 水产科学, 41(4): 664-669. https://www.cnki.com.cn/Article/CJFDTOTAL-CHAN202204019.htm 林沐东, 于俊杰, 刘晓强, 等, 2021. 三沙湾亚硝酸氮、氨氮、磷酸盐的异常、机制及影响. 地球科学, 46(11): 4107-4117. doi: 10.3799/dqkx.2020.368 屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095 -