Analysis of Dynamic Response and Failure Mode of Bedding Rock Slopes Subject to Strong Earthquakes Based on DEM-FDM Coupling
-
摘要: 基于DEM-FDM耦合,考虑结构面的三维延展情况,分区建立不同岩体结构的顺层岩质边坡数值模型,输入双向地震动,分析强震下不同岩体结构顺层岩质边坡的动力响应及破坏模式,得出了如下结论:(1)地震作用下,边坡加速度存在一定的高程放大效应,边坡底部水平向放大效应强于竖直向放大效应,顶部水平与竖向放大效应不相上下;(2)在32.5~42.5 m高程范围内,层面和节理等结构面的存在,对于地震波的传播有一定阻隔作用. 坡肩相对于其他部位放大效应更强,且节理越发育,坡肩放大效应越强,相比倾向180°的节理,倾向90°的节理对放大效应影响更大;(3)具有不同岩体结构的4个模型分别呈现稳定、局部开裂、滑移-拉裂破坏及滑移-溃散破坏等不同的变形破坏特征,倾向90°的节理是顺层边坡稳定性的主控结构面. 通过与以往研究结果对比可知,耦合方法能较好地揭示不同岩体结构顺层岩质边坡的动力响应及破坏模式,为强震区相关边坡工程提供了一定参考.Abstract: Based on the DEM-FDM coupling method, considering the three-dimensional extension of the structural plane and two directions of seismic wave, a numerical model of bedding rock slope with different structures is established in different areas, focusing on the dynamic response and deformation failure mechanism of bedding rock slope with different structures under strong earthquake. The following conclusions are drawn: (1) Under earthquake, there is a certain elevation amplification effect of slope acceleration, The horizontal amplification effect at the bottom of the slope is stronger than the vertical amplification effect, and the top amplification effect is equal. (2) Within the elevation range of 32.5-42.5 m, the existence of structural planes such as bedding planes and joints has a certain blocking effect on the propagation of seismic waves. The amplification effect of the slope shoulder is stronger than that of other parts, and the more developed the joints are, the stronger the amplification effect of the slope shoulder is. Compared with the joints whose dip-direction is 180°, the joints whose dip-direction is 90° have greater influence on the amplification effect. (3) The four models with different rock mass structures show different deformation and failure characteristics, including stability, local cracking, slip tension failure and slip collapse failure, respectively. Joints inclined to 90 ° are the main structural plane controlling the stability of bedding slope. Compared with the previous researches, the coupling method can better reveal thedynamicresponseand failure mode of bedding rock slopewith orthogonal secondary joints, and provide a certain reference for slope engineering in strong earthquake areas.
-
Key words:
- DEM-FDM coupling /
- bedding rock slope /
- dynamic response /
- failure mechanism /
- engineering geology
-
图 14 模型2地震破坏模式对比分析
a.动力离心模型试验结果(李祥龙,2013);b. 模型2模拟结果
Fig. 14. Comparative analysis of seismic failure mechanism of model 2
图 15 模型4地震破坏模式对比分析
a.数值模拟结果(徐文杰,2010);b.模型4模拟结果
Fig. 15. Comparative Analysis of Seismic Failure Mechanism of Model 4
表 1 岩质边坡颗粒流模型的细观力学参数
Table 1. Micro-parameters of PFC model for rock slope
参数 值 颗粒密度($ \mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3} $) 3 100 颗粒半径$ (\mathrm{m} $) 0.6 颗粒接触模量$ (\mathrm{G}\mathrm{P}\mathrm{a} $) 1.0 颗粒刚度比 0.25 $ \mathrm{颗}\mathrm{粒}\mathrm{摩}\mathrm{擦}\mathrm{系}\mathrm{数} $ 0.7 平行黏结模量$ (\mathrm{G}\mathrm{P}\mathrm{a} $) 10.0 平行黏结刚度比 0.25 平行黏结抗拉强度$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 30 平行黏结粘聚力$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 27 光滑节理法向刚度(N/m) 1e9 光滑节理切向刚度(N/m) 1e9 光滑节理摩擦系数 0.5/0.7(节理/层面) 光滑节理抗拉强度(MPa) 0.3/0.6(节理/层面) 光滑节理粘结强度(MPa) 0.3/0.6(节理/层面) 表 2 岩质边坡颗粒流模型的宏观岩石力学参数
Table 2. Macro rock mechanical parameters of particle flow model for rock slope
参数 值 密度($ \mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3} $) 2 520 单轴抗压强度$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 65.9 巴西劈裂强度$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 11.2 弹性模量$ (\mathrm{G}\mathrm{P}\mathrm{a} $) 30.0 泊松比 0.2 内摩擦角(°) 21.0 黏聚力$ (\mathrm{M}\mathrm{P}\mathrm{a} $) 18.1 -
Bai, Y. F., Li, X. J., Yang, W. M., et al., 2022. Multiscale Analysis of Tunnel Surrounding Rock Disturbance: A PFC3D-FLAC3D Coupling Algorithm with the Overlapping Domain Method. Computers and Geotechnics, 147(2): 104752. https://doi.org/10.1016/j.compgeo.2022.104752 Bian, K., Liu, J., Hu, X. J., et al., 2018. Study on Failure Mode and Dynamic Response of Rock Slope with Non-Persistent Joint Under Earthquake. Rock and Soil Mechanics, 39(8): 9(in Chinese with English abstract). Breugnot, A., Lambert, S., Villard, P., et al., 2016. A Discrete/continuous Coupled Approach for Modeling Impacts on Cellular Geostructures. Rock Mechanics and Rock Engineering, 49(5): 1831-1848. https://doi.org/10.1007/s00603-015-0886-8 Camones, L. A. M., Vargas, E. D. A. Jr, de Figueiredo, R. P., et al., 2013. Application of the Discrete Element Method for Modeling of Rock Crack Propagation and Coalescence in the Step-Path Failure Mechanism. Engineering Geology, 153(3): 80-94. https://doi.org/10.1016/j.enggeo.2012.11.013 Cen, S. F., Huang, D., Huang, R. Q., 2016. Simulation of Deformation and Failure for Blocky Anti-Dip Thick-Layered Rock Slopes Using Particle Flow Code and Analysis on Its Stability. Journal of Central South University(Science and Technology), 47 (3): 984-993(in Chinese with English abstract). Chen, Z. R., Song, D. Q., Liu, X. L., et al., 2022. Seismic Dynamic Response Characteristics of a Layered Slope at Tunnel Entrance Using Shaking Table Test. Earth Science, 47 (6): 2069-2080(in Chinese with English abstract). Chen, G. Q., Xia, M. Y., Thuy, D. T., et al., 2021. A Possible Mechanism of Earthquake-Induced Landslides Focusing on Pulse-Like Ground Motions. Landslides, 18(5): 1641-1657. https://doi.org/10.1007/s10346-020-01597-y Cui, S. H., Yang, Q. W., Pei, X. J., et al., 2020. Geological and Morphological Study of the Daguangbao Landslide Triggered by the Ms. 8.0 Wenchuan Earthquake, China. Geomorphology, 370(1): 107394. https://doi.org/10.1016/j.geomorph.2020.107394 Dong, J. Y., Wang, C., Huang, Z. Q., et al., 2021. Dynamic Response Characteristics and Instability Criteria of a Slope with a Middle Locked Segment. Soil Dynamics and Earthquake Engineering, 150(11): 106899. https://doi.org/10.1016/j.soildyn.2021.106899 Gao, G., Meguid, M. A., Chouinard, L. E., et al., 2021. Dynamic Disintegration Processes Accompanying Transport of an Earthquake-Induced Landslide. Landslides, 18(3): 909-933. https://doi.org/10.1007/s10346-020-01508-1 He, X. W., Liu, Z., Liao, B., et al., 2011. Stability Analysis of Jointed Rock Slopes Based on Discrete Element Method. Rock and Soil Mechanics, 32(7): 2199-2204(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.07.046 He, J. X., Qi, S. W., Zhan, Z. F., et al., 2021. Seismic Response Characteristics and Deformation Evolution of the Bedding Rock Slope Using a Large-Scale Shaking Table. Landslides, 18(8): 2835-2853. https://doi.org/10.1007/s10346-021-01682-w He, J. X., Qi, S. W., Wang, Y. S., et al., 2020. Seismic Response of the Lengzhuguan Slope Caused by Topographic and Geological Effects. Engineering Geology, 265(9): 105431. https://doi.org/10.1016/j.enggeo. 2019. 105431 doi: 10.1016/j.enggeo.2019.105431 Huang, R. Q., 2009. Mechanism and Geomechanical Modes of Landslide Hazards Triggered by Wenchuan 8.0 Earthquake. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1239-1249(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2009.06.021 Huang, D., Cen, D. F., Ma, G. W., et al., 2015. Step-Path Failure of Rock Slopes with Intermittent Joints. Landslides, 12(5): 911-926. https://doi.org/10.1007/s10346-014-0517-6 Itasca Consulting Group, 2008. FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)Theory and Background. Itasca Consulting Group, Inc., Minnesota, USA. Jiang, M. J., Jiang, T., Crosta, G. B., et al., 2015. Modeling Failure of Jointed Rock Slope with Two Main Joint Sets Using a Novel DEM Bond Contact Model. Engineering Geology, 193(4): 79-96. https://doi.org/10.1016/j.enggeo.2015.04.013 Lan, H. X., Peng, J. B., Zhu, Y. B, . et al. 2022a. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science China Earth Sciences, 52(2): 199-221(in Chinese). Lan, H. X., Bao, H., Sun, W. F., et al., 2022b. MultiMinnesota, USAScale Heterogeneity of Rock Mass and Its Mechanical Behavior Journal of Engineering Geology, 30 (1): 37-52(in Chinese with English abstract). Lan, H. X., Zhang, Y. X., Macciotta, R., et al., 2022. The Role of Discontinuities in the Susceptibility, Development, and Runout of Rock Avalanches: A Review. Landslides, 19(6): 1391-1404. https://doi.org/10.1007/s10346-022-01868-w Li, G., 2012. Failure Machanism of Stratiform Rock Slope under Strong Earthquake(Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). Li, X. L., 2013. Research on the Seismic-Induced Failure Mechanism of Layered Rock High Slope(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). Li, L. Q., Ju, N. P., Zhang, S., et al., 2019. Seismic Wave Propagation Characteristic and its Effects on the Failure of Steep Jointed Anti-Dip Rock Slope. Landslides, 16(1): 105-123. https://doi.org/10.1007/s10346-018-1071-4 Li, M., Yu, H., Wang, J., et al., 2015. A Multiscale Coupling Approach between Discrete Element Method and Finite Difference Method for Dynamic Analysis. International Journal for Numerical Methods in Engineering, 102(1): 1-21. https://doi.org/10.1002/nme.4771 Lin, H., Cao, P., Li, J. T., et al., 2010. Numerical Analysis of Failure Mode and Stability of Layered Rock Slope. Rock and Soil Mechanics, 31 (10): 3300-3304(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2010.10.043 Liu, R. L., Han, Y. H., Xiao, J., et al., 2020. Failure Mechanism of TRSS Mode in Landslides Induced by Earthquake. Scientific Reports, 10(1): 1-15. https://doi.org/10.1038/s41598-020-78503-y Luc, A., Fvda, B., 2012. Modelling Progressive Failure in Fractured Rock Masses Using a 3D Discrete Element Method. International Journal of Rock Mechanics and Mining Sciences, 52: 18-30. https://doi.org/10.1016/ j.ijrmms.2012.02.009 doi: 10.1016/j.ijrmms.2012.02.009 Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39 (12): 2377-2389(in Chinese with English abstract). Tu, F. B., 2014. Study on Multiscale Numerical Analysis Methods for Failure Process Soil Mass(Dissertation). Zhejiang University, Zhejiang (in Chinese with English abstract). Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. The Process and Mechanism of Geological Disasters in Luding Section of Sichuan-Tibet Railway Corridor. Earth Science, 47 (3): 950-958(in Chinese with English abstract). Xu, Q., Dong, X. J., 2011. Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake. Earth Science, 36 (6): 1134-1142(in Chinese with English abstract). Xu, Q., Pei, X. J, Huang, R. Q., et al. 2009. Large-Scale Landslides Induced by Wenchuan Earthquake. Science Press, Beijing (in Chinese). Xu, W. J, Chen, Z. Y, He, B. S, et al., 2010. Research on River-Blocking Mechanism of Xiaojiaqiao Landslide and Disasters of Chain Effects. Chinese Journal of Rock Mechanics and Engineering, 29 (5): 933-942(in Chinese with English abstract). Xu, W. J., Wang, L., Cheng, K., 2022. The Failure and River Blocking Mechanism of Large-Scale Anti-Dip Rock Landslide Induced by Earthquake. Rock Mechanics and Rock Engineering, 55(8): 4941-4961. https://doi.org/10.1007/s00603-022-02903-x Yang, G. X., Wu, F. Q., Dong, J. Y., et al., 2012. Study on Dynamic Response Characteristics and Deformation Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31 (4): 696-702(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2012.04.008 Zhen, C., Jian, H. L., Xing, W. F., et al., 2022. Evaluating the Response of a Tunnel Subjected to Strike-Slip Fault Rupture in Conjunction with Model Test and Hybrid Discrete-Continuous Numerical Modeling. Rock Mechanics and Rock Engineering, 55(8): 4743-4764. https://doi.org/10.1007/s00603-022-02900-0 兰恒星, 彭建兵, 祝艳波, 等, 2022a. 黄河流域地质地表过程与重大灾害效应研究与展望. 中国科学: 地球科学, 52(2): 199-221. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202202001.htm 兰恒星, 包含, 孙巍锋, 等, 2022b. 岩体多尺度异质性及其力学行为. 工程地质学报, 30(1), 37-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202201003.htm 林杭, 曹平, 李江腾, 等, 2010. 层状岩质边坡破坏模式及稳定性的数值分析. 岩土力学, 31(10): 3300-3304. doi: 10.3969/j.issn.1000-7598.2010.10.043 卞康, 刘建, 胡训健, 等, 2018. 含顺层断续节理岩质边坡地震作用的破坏模式与动力响应研究. 岩土力学, 39(8): 9. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808038.htm 岑夺丰, 黄达, 黄润秋, 2016. 块裂反倾巨厚层状岩质边坡变形破坏颗粒流模拟及稳定性分析. 中南大学学报(自然科学版), 47(3): 984-993. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201603035.htm 陈志荣, 宋丹青, 刘晓丽, 等, 2022. 等. 隧道口顺层边坡地震动力响应特征振动台试验. 地球科学, 47(6): 2069-2080. doi: 10.3799/dqkx.2021.300 贺续文, 刘忠, 廖彪, 等, 2011. 基于离散元法的节理岩体边坡稳定性分析. 岩土力学, 32(7): 2199-2204. doi: 10.3969/j.issn.1000-7598.2011.07.046 黄润秋, 2009. 汶川8.0级地震触发崩滑灾害机制及其地质力学模式. 岩石力学与工程学报, 28(6): 1239-1249. doi: 10.3321/j.issn:1000-6915.2009.06.021 李果, 2012. 强震条件下层状岩体边坡动力失稳机理研究(博士学位论文). 成都: 成都理工大学. 李祥龙, 2013. 层状节理岩体高边坡地震动力破坏机理研究(博士学位论文). 武汉: 中国地质大学. 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm 涂福彬, 2014. 岩土体灾变过程多尺度数值分析方法研究(博士学位论文). 浙江: 浙江大学. 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制. 地球科学, 47(3): 950-958. doi: 10.3799/dqkx.2022.263 徐文杰, 陈祖煜, 何秉顺, 等, 2010. 肖家桥滑坡堵江机制及灾害链效应研究. 岩石力学与工程学报, 29(5): 933-942. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201005012.htm 许强, 董秀军, 2011. 汶川地震大型滑坡成因模式. 地球科学, 36(6): 1134-1142. doi: 10.3799/dqkx.2011.119 许强, 裴向军, 黄润秋, 等, 2009. 汶川地震大型滑坡研究. 北京: 科学出版社. 杨国香, 伍法权, 董金玉, 等, 2012. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. doi: 10.3969/j.issn.1000-6915.2012.04.008 -