• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山地区中天山地块早二叠世后碰撞伸展与壳幔岩浆作用:来自二长闪长玢岩的制约

    张维峰 邓新 张利国 王晶 谢国刚 金鑫镖

    张维峰, 邓新, 张利国, 王晶, 谢国刚, 金鑫镖, 2024. 东天山地区中天山地块早二叠世后碰撞伸展与壳幔岩浆作用:来自二长闪长玢岩的制约. 地球科学, 49(8): 2697-2713. doi: 10.3799/dqkx.2023.064
    引用本文: 张维峰, 邓新, 张利国, 王晶, 谢国刚, 金鑫镖, 2024. 东天山地区中天山地块早二叠世后碰撞伸展与壳幔岩浆作用:来自二长闪长玢岩的制约. 地球科学, 49(8): 2697-2713. doi: 10.3799/dqkx.2023.064
    Zhang Weifeng, Deng Xin, Zhang Liguo, Wang Jing, Xie Guogang, Jin Xinbiao, 2024. Early Permian Post-Collisional Extension and Crust-Mantle Magmatism in the Central Tianshan Block, Eastern Tianshan: Constraints from the Study of Porphyritic Monzodiorite. Earth Science, 49(8): 2697-2713. doi: 10.3799/dqkx.2023.064
    Citation: Zhang Weifeng, Deng Xin, Zhang Liguo, Wang Jing, Xie Guogang, Jin Xinbiao, 2024. Early Permian Post-Collisional Extension and Crust-Mantle Magmatism in the Central Tianshan Block, Eastern Tianshan: Constraints from the Study of Porphyritic Monzodiorite. Earth Science, 49(8): 2697-2713. doi: 10.3799/dqkx.2023.064

    东天山地区中天山地块早二叠世后碰撞伸展与壳幔岩浆作用:来自二长闪长玢岩的制约

    doi: 10.3799/dqkx.2023.064
    基金项目: 

    自然科学基金项目 41702099

    中国地质调查局项目 DD20221634

    中国地质调查局项目 DD20190050

    中国地质调查局项目 DD20190374

    详细信息
      作者简介:

      张维峰(1985-),男,副研究员,主要研究岩石、矿物、矿床学. ORCID:0000-0003-3822-8046. E-mail:didazhweifeng@163.com

      通讯作者:

      邓新,E-mail:cugxd@163.com

    • 中图分类号: P581;P597.3

    Early Permian Post-Collisional Extension and Crust-Mantle Magmatism in the Central Tianshan Block, Eastern Tianshan: Constraints from the Study of Porphyritic Monzodiorite

    • 摘要: 研究区的二长闪长玢岩出露于中天山地块南缘,是东天山地区二叠纪岩浆活动的典型代表. 锆石LA-ICP-MS年代学研究获得其成岩年龄为281.3±1.5 Ma. 岩体Na2O+K2O含量和A/CNK分别介于5.88%~6.62%和0.79~0.80之间,显示出高钾钙碱性和准铝质特征. 二长闪长玢岩具有高的Fe2O3/FeO比值(0.66~0.73),基质中出现榍石-磁铁矿-石英组合,暗示它们形成于高氧逸度环境下. 岩石样品富集大离子亲石元素Rb、K和Ba,而亏损高场强元素Nb、Ta、Ti和重稀土元素. 此外,样品的εNdt)和ISr值分别集中于-2.72~-3.07和0.706 46~0.706 54之间,锆石的εHft)值变化于-3.7~-0.8,Nb/U比值变化于10.3~10.9,表明它们来源于交代的石榴石-尖晶石二辉橄榄岩并混合有少量壳源组分. 综合考虑中天山地块岩石成因及其他地质资料,我们认为东天山地区的中天山地块在早二叠世处于俯冲板片断裂的后碰撞伸展体系.

       

    • 图  1  天山造山带构造位置简图(据Zhang et al., 2016修编)

      Fig.  1.  Simplified geological map of the Tianshan orogenic belt (modified after Zhang et al., 2016)

      图  2  东天山构造位置简图(据Mao et al., 2005修编)

      二叠纪岩浆岩数据来源:①中天山地块:290 Ma的基性岩数据来源于Zhang et al.(2016);天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Song et al.(2011);293 Ma的闪长岩和284 Ma的A型花岗岩数据来源于Du et al.(2018a);磁海及其他A型花岗岩数据分别来源于Zheng et al.(2016);Mao et al.(2021);②阿齐山-雅满苏岛弧带:沙泉子闪长岩和基性岩数据来源于Jiang et al.(20172021);花岗岩数据来源于Du et al.(2018b);闪长岩数据来源于Zhang et al.(2020

      Fig.  2.  Simplified geological map of the Eastern Tianshan (modified after Mao et al., 2005)

      图  3  二长闪长玢岩野外及显微镜下照片

      a. 岩脉切穿晚石炭世钾长花岗岩;b. 中-细粒斑状结构,可见斜长石和钾长石斑晶;c.基质中发育的矿物组合;矿物缩写:Bt. 黑云母;Hb. 角闪石;Kfs. 钾长石;Mt. 磁铁矿;Pl. 斜长石;Qz. 石英;Ttn. 榍石

      Fig.  3.  Representative photographs showing the field relations, textural features and mineral assemblages for the porphyritic monzodiorite

      图  4  (a)二长闪长玢岩单颗粒锆石CL图像;(b)单颗粒锆石球粒陨石标准化稀土元素配分模式图(岩浆锆石和热液锆石数据来源于Belousova et al., 2002

      Fig.  4.  (a) CL images of zircons from the porphyritic monzodiorite; (b) Chondrite-normalized REE patterns for the zircons (Data of magmatic and hydrothermal zircon are from Belousova et al., 2002)

      图  5  二长闪长玢岩锆石U-Pb年龄协和图及加权平均年龄

      Fig.  5.  U-Pb diagrams of concordia and weighted mean ages for zircons from the porphyritic monzodiorite

      图  6  (a)侵入岩TAS分类图解(底图据Wilson, 2007);(b)SiO2-K2O图解(底图据Peccerillo and Taylor, 1976);(c)A/NK-A/CNK图解(底图据Maniar and Piccoli, 1989

      Fig.  6.  (a) Total alkalis vs. silica diagram (after Wilson, 2007); (b) SiO2 vs. K2O plot (after Peccerillo and Taylor, 1976); (c) A/NK vs. A/CNK diagram (after Maniar and Piccoli, 1989).

      图  7  二长闪长玢岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)

      OIB、E-MORB、N-MORB数据来源于Sun and McDonough(1989);球粒陨石标准化值据来源于McDonough and Sun(1995);原始地幔标准化值据来源于Sun and McDonough(1989);区域其他闪长岩数据来源于Du et al.,(2018a);塔里木玄武岩数据来源于Zhang and Zhou(2013);星星峡群和卡瓦布拉克群数据分别来源于He et al.(2014)和麦地娜·努尔太等(2017)

      Fig.  7.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized multi-element diagrams (b)

      图  8  (a)87Sr/86Sri-εNd(t)图解(据Sahoo et al., 2020修编);(b)壳幔两端员混合模拟(据Du et al., 2018b修编)

      中天山地块290 Ma的基性岩数据来源于Zhang et al.(2016);天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Chai et al.(2008),Song et al.(2011);293 Ma的闪长岩数据来源于Du et al.(2018a);中天山古老基底数据来源于Du et al.(2018b

      Fig.  8.  (a) εNd(t) vs. 87Sr/86Sri diagram (modified after Sahoo et al., 2020); (b) Source mixing proportions between crust and mantle (modified after Du et al., 2018b)

      图  9  中天山地块早二叠世岩浆岩锆石T-εHf(t)图解(底图据Wen et al., 2018修编)

      天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Song et al.(2011);磁海A型花岗岩数据来源于Zheng et al.(2016);中天山地块其他A型花岗岩数据来源于Mao et al.(2021

      Fig.  9.  Zircons T-εHf(t) diagram of the early Permian magmatic rocks in the Central Tianshan block (modified after Wen et al., 2018)

      图  10  (a)单颗粒锆石T-logfO2图解(氧逸度缓冲曲线来源于Myers and Eugster, 1983; Wones, 1989);(b)火成岩氧化还原分类图解(Blevin, 2004

      Fig.  10.  (a) Temperature vs. logfO2 diagram for the zircons from the porphyritic monzodiorite (The oxygen fugacity buffer curves are modified from Myers and Eugster, 1983 and Wones, 1989); (b) Redox classification scheme for igneous rocks (Blevin, 2004)

      图  11  二长闪长玢岩MgO与Cr、Ni、CaO、TiO2、Fe2O3T和Dy/Yb相关图解

      Fig.  11.  MgO vs. Cr, Ni, CaO, TiO2, Fe2O3T, and Dy/Yb diagrams of the monzodiorite

      图  12  (a)Nb/Yb与Th/Yb图解(Pearce, 2008);(b)Sc/Ni与La/Yb图解(Bailey, 1981);(c)Th与Ba/Th图解(Hawkesworth et al., 1997);(d)Ba/La与Th/Yb图解(Woodhead et al., 2001

      Fig.  12.  (a) Nb/Yb vs. Th/Yb diagram (Pearce, 2008); (b) Sc/N vs. La/Yb diagram (Bailey, 1981); (c) Th vs. Ba/Th diagram (Hawkesworth et al., 1997); (d) Ba/La vs. Th/Yb diagram (Woodhead et al., 2001)

      图  13  部分熔融模拟图解

      a. La/Yb与Sm/Yb(底图据Zhang et al.,2021);b. La/Sm与Sm/Yb图解(底图据Zhang et al.,2016

      Fig.  13.  Modeling of partial melting processes

    • Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1/2/3/4): 139-154. https://doi.org/10.1016/0009-2541(81)90135-2
      Bedard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. Journal of Petrology, 40(12): 1853-1889. https://doi.org/10.1093/petroj/40. 12.1853 doi: 10.1093/petroj/40.12.1853
      Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold‐Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x
      Cao, M. J., Qin, K. Z., Li, G. M., et al., 2018. Oxidation State Inherited from the Magma Source and Implications for Mineralization: Late Jurassic to Early Cretaceous Granitoids, Central Lhasa Subterrane, Tibet. Mineralium Deposita, 53(3): 299-309. https://doi.org/10.1007/s00126-017-0739-3
      Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2/3/4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014
      Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531-011-0689-4
      Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      Du, L., Long, X. P., Yuan, C., et al., 2018a. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318-319(3): 47-59. https://doi.org/10.1016/j.lithos. 2018. 08.006 doi: 10.1016/j.lithos.2018.08.006
      Du, L., Long, X. P., Yuan, C., et al., 2018b. Mantle Contribution and Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Early Carboniferous to Early Permian Felsic Intrusions. Lithos, 304-307(2): 230-244. https://doi.org/10.1016/j.lithos.2018.02.010
      Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2
      Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1
      Finch, R. J., Hanchar, J. M., 2001. Structure and Chemistry of Zircon and Zircon-Group Minerals. Reviews in Mineralogy and Geochemistry, 53(1): 1-25. https://doi.org/10.2113/0530001
      Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36(1): 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322
      Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2011. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3/4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019
      Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev. 2017. 09.012 doi: 10.1016/j.earscirev.2017.09.012
      Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. https://doi.org/10.1126/science. 276. 5312.551 doi: 10.1126/science.276.5312.551
      He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023
      Hildebrand, R. S., Whalen, J. B., Bowring, S. A., 2018. Resolving the Crustal Composition Paradox by 3.8 Billion Years of Slab Failure Magmatism and Collisional Recycling of Continental Crust. Tectonophysics, 734-735(11): 69-88. https://doi.org/10.1016/j.tecto.2018.04.001
      Hoffman, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0
      Jiang, H. J., Han, J. S., Chen, H. Y., et al., 2017. Intra-Continental Back-Arc Basin Inversion and Late Carboniferous Magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi Magmatic Suite. Geoscience Frontiers, 8(6): 1447-1467. https://doi.org/10.1016/j.gsf.2017.01.008
      Jiang, H. J., Chen, H. Y., Gong, L., et al., 2021. Geochronology and Geochemistry of a Newly Identified Permian Hornblende Gabbro Suite in Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Implications on Petrogenesis and Tectonic Setting. Geological Journal, 56(11): 5506-5530. https://doi.org/10.1002/gj.4254
      Jull, M., Kelemen, P. B., 2001. On the Conditions for Lower Crustal Convective Instability. Journal of Geophysical Research: Solid Earth, 106(B4): 6423-6446. https://doi.org/10.1029/2000jb900357
      Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u
      Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0
      Li, D. F., Zhang, L., Chen, H. Y., et al., 2016. Geochronology and Geochemistry of the High Mg Dioritic Dikes in Eastern Tianshan, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 115: 442-454. https://doi.org/10.1016/j.jseaes.2015.10.018
      Li, W. Q., Ma, H. D., Wang, R., et al., 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiolite in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 24(4): 773-780 (in Chinese with English abstract).
      Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2012. Geochronology of Jijitaizi Ophiolite in Beishan Area, Gansu Province, and Its Geological Significance. Geological Bulletin of China, 31(12): 2025-2031 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.12.011
      Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
      Lu, W. J., Chen, H. Y., Zhang, L., et al., 2017. Age and Geochemistry of the Intrusive Rocks from the Shaquanzi-Hongyuan Pb-Zn Mineral District: Implications for the Late Carboniferous Tectonic Setting and Pb-Zn Mineralization in the Eastern Tianshan, NW China. Lithos, 294-295: 97-111(in Chinese with English abstract). doi: 10.1016/j.lithos.2017.10.009
      Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley.
      Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3
      Luo, T., Liao, Q. A., Zhang, X. H., et al., 2016. Geochronology and Geochemistry of Carboniferous Metabasalts in Eastern Tianshan, Central Asia: Evidence of a Back-Arc Basin. International Geology Review, 58(6): 756-772. https://doi.org/10.1080/00206814.2015.1114433
      MacDonald, A. W., Cohen, J. D., Stenger, V. A., et al., 2000. Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288(5472): 1835-1838. https://doi.org/10.1126/science. 288.5472.1835 doi: 10.1126/science.288.5472.1835
      Madina, N., Nijat, A., Muhtar, Z., et al., 2017. Geological Charactersitic and Tectonic Significance of Middle Acidic Rocks from The Kawabulak Complex Central Tianshan, China. China Academic Journal Electronic Publishing House, (10): 107-109(in Chinese with English abstract).
      Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Mao, J. W., Goldfarb, R. J., Wang, Y. T., et al., 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23-36. https://doi.org/10.18814/epiiugs/2005/v28i1/003
      Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. doi: 10.1016/j.gr.2021.03.007
      Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2010. The Study of Early-Paleozoic Prealuminous Granite (SP) and Its Tectonic Significance in the Xingxingxia Suture Zone, Eastern Tianshan Mountains, Xinjiang, Northwest China. Chinese Journal of Geology, 45(1): 41-56 (in Chinese with English abstract).
      McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Myers, J., Eugster, H. P., 1983. The System Fe-Si-O: Oxygen Buffer Calibrations to 1, 500K. Contributions to Mineralogy and Petrology, 82(1): 75-90. https://doi.org/10.1007/bf00371177
      Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016
      Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
      Pirajno, F., 2010. Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3/4): 325-346. https://doi.org/10.1016/j.jog.2010.01.018
      Qiu, J. T, Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. doi: 10.1007/s00126-013-0456-5
      Rudnick, R. L., Gao, S., Holland, H. D., et al., 2003. Composition of the Continental Crust. The Crust, 3: 1-64.
      Sahoo, S., Rao, N. V. C., Monié, P., et al., 2020. Petro-Geochemistry, Sr Nd Isotopes and 40Ar/39Ar Ages of Fractionated Alkaline Lamprophyres from the Mount Girnar Igneous Complex (NW India): Insights into the Timing of Magmatism and the Lithospheric Mantle beneath the Deccan Large Igneous Province. Lithos, 374-375(1981): 105712. https://doi.org/10.1016/j.lithos. 2020. 105712 doi: 10.1016/j.lithos.2020.105712
      Seghedi, I., Downes, H., Pecskay, Z., et al., 2001. Magmagenesis in a Subduction-Related Post-Collisional Volcanic Arc Segment: the Ukrainian Carpathians. Lithos, 57(4): 237-262. doi: 10.1016/S0024-4937(01)00042-1
      Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993a. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993b. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      Sengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: fragments of synthesis. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, Special Publication, 486-640.
      Shu, L. S., Charvet, J., Lu, H. F., et al., 2002. Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern‐Central Tianshan Belt, China. Acta Geologica Sinica-English Edition, 76(3): 308-323. https://doi.org/10.1111/j.1755-6724.2002.tb00547.x
      Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7
      Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-Off and the Formation of Permian Mafic-ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1/2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1/2): 84-98. https://doi.org/10.1016/j.lithos.2011.06.007
      Tang, D. M., Qin, K. Z., Sun, H., et al., 2009. Lithological, Chronological and Geochemical Characteristics of Tianyu Cu-Ni Deposit: Constraints on Sources and Genesis of Mafic-Ultramafic Intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 24(4): 817-831 (in Chinese with English abstract).
      Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97(Suppl. 4): 70-87. https://doi.org/10.1016/j.gca.2012.08.032
      Wang, G. Q., Li, X. M., Xu, X. Y., et al., 2014. Ziron U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance. Acta Petrologica Sinica, 30(6): 1685-1694 (in Chinese with English abstract).
      Wang, Y., Sun, G., Li, J., 2010. U-Pb (SHRIMP) and 40Ar/39Ar Geochronological Constraints on the Evolution of the Xingxingxia Shear Zone, NW China: A Triassic Segment of the Altyn Tagh Fault System. Geological Society of America Bulletin, 122(3/4): 487-505. https://doi.org/10.1130/b26347.1
      Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5
      Wen, D. J., He, Z. Y., Zhang, Z. M., 2018. Geochemistry and Tectonic Implications of Early Permian Granitic Rocks in the Xingxingxia Area of Chinese Central Tianshan Arc Terrane. Geological Journal, 54(3): 1578-1590. https://doi.org/10.1002/gj.3252
      Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of The Central Tianshan(Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-90 (in Chinese with English abstract).
      Wilson, B. M., 2007. Igneous Petrogenesis a Global Tectonic Approach. Springer Science & Business Media.
      Wones, D. R., 1989. Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks. American Mineralogist, 74(7-8): 744-749.
      Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337
      Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
      Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
      Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
      Xu, X. Y., Xia, L. Q., Ma, Z. P., et al., 2006. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83-94 (in Chinese with English abstract).
      Yang, D. L., 2020. Petrogenesis of Late Paleozoic Granites from Alatag Region of the Central Tianshan, and Their Geological Significance(Dissertation). China University of Geosciences, Beijing, 1-71 (in Chinese with English abstract).
      Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1
      Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173(B1): 47-60. https://doi.org/10.1016/j.lithos.2013.04.001
      Zhang, S. L., Chen, H. Y., Hollings, P., et al., 2020. Tectonic and Magmatic Evolution of the Aqishan-Yamansu Belt: A Paleozoic Arc-Related Basin in the Eastern Tianshan (NW China). GSA Bulletin, 133(5/6): 1320-1344. https://doi.org/10.1130/b35749.1
      Zhang, W. F., Deng, X., Tu, B., et al., 2021. Petrogenesis of the Cretaceous Intraplate Mafic Intrusions in the Eastern Tianshan Orogen, NW China. Frontiers in Earth Science, 9: 665610. https://doi.org/10.3389/feart.2021.665610
      Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2015. Latest Carboniferous Closure of the Junggar Ocean Constrained by Geochemical and Zircon U-Pb-Hf Isotopic Data of Granitic Gneisses from the Central Tianshan Block, NW China. Lithos, 238: 26-36. https://doi.org/10.1016/j.lithos.2015.09.012
      Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006
      Zhao, L. D., Chen, H. Y., Hollings, P., et al., 2019. Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from the Geochronology and Geochemistry of Carboniferous and Triassic Igneous Rocks. Lithos, 344-345: 247-264. https://doi.org/10.1016/j.lithos.2019.06.023
      Zheng, J. H., 2020. A Synthesis of Iron Deposits in the Eastern Tianshan, NW China. Geoscience Frontiers, 11(4): 1271-1287. https://doi.org/10.1016/j.gsf.2019.11.014
      Zheng, J. H., Mao, J. W., Chai, F. M., et al., 2016. Petrogenesis of Permian A-Type Granitoids in the Cihai Iron Ore District, Eastern Tianshan, NW China: Constraints on the Timing of Iron Mineralization and Implications for a Non-Plume Tectonic Setting. Lithos, 260(2): 371-383. https://doi.org/10.1016/j.lithos.2016.05.012
      Zheng, J. H., Mao, J. W., Yang, F. Q., et al., 2015. The Post-Collisional Cihai Iron Skarn Deposit, Eastern Tianshan, Xinjiang, China. Ore Geology Reviews, 67(3): 244-254. https://doi.org/10.1016/j.oregeorev.2014.12.006
      Zhong, S. H., Li, S. Z., Seltmann, R., et al., 2021. The Influence of Fractionation of REE-Enriched Minerals on the Zircon Partition Coefficients. Geoscience Frontiers, 12(3): 101094. https://doi.org/10.1016/j.gsf.2020.10.002
      李文铅, 马华东, 王冉, 等, 2008. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd‒Sr同位素特征及构造意义. 岩石学报, 24 (4): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804017.htm
      李向民, 余吉远, 王国强, 等, 2012. 甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 31(12): 2025-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212011.htm
      麦地娜·努尔太, 尼加提·阿布都逊, 木合塔尔·扎日, 等, 2017. 中天山卡瓦布拉克杂岩带中酸性岩的地质特征及其构造意义. 世界有色金属, (10): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201620042.htm
      毛启贵, 肖文交, 韩春明, 等, 2010. 东天山星星峡缝合带早古生代强过铝质花岗岩的研究及其地质意义. 地质科学, 45 (1): 41-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001006.htm
      唐冬梅, 秦克章, 孙赫, 等, 2009. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, (4): 817-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904008.htm
      王国强, 李向民, 徐学义, 等, 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义. 岩石学报, 30(6): 1685-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406011.htm
      温定军, 2019. 中天山星星峡地区晚古生代花岗岩的成因和构造意义(博士毕业论文). 北京: 中国地质科学院, 1-90.
      徐学义, 夏林圻, 马中平, 等, 2006. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究. 岩石学报, 22(1): 83-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601009.htm
      杨德乐, 2020. 中天山阿拉塔格晚古生代花岗岩的岩石成因及地质意义(博士毕业论文). 北京: 中国地质大学, 1-71.
    • dqkxzx-49-8-2697-表3.doc
      dqkxzx-49-8-2697-表2.doc
      dqkxzx-49-8-2697-表1.doc
    • 加载中
    图(13)
    计量
    • 文章访问数:  593
    • HTML全文浏览量:  203
    • PDF下载量:  120
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-08
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回