Early Permian Post-Collisional Extension and Crust-Mantle Magmatism in the Central Tianshan Block, Eastern Tianshan: Constraints from the Study of Porphyritic Monzodiorite
-
摘要: 研究区的二长闪长玢岩出露于中天山地块南缘,是东天山地区二叠纪岩浆活动的典型代表. 锆石LA-ICP-MS年代学研究获得其成岩年龄为281.3±1.5 Ma. 岩体Na2O+K2O含量和A/CNK分别介于5.88%~6.62%和0.79~0.80之间,显示出高钾钙碱性和准铝质特征. 二长闪长玢岩具有高的Fe2O3/FeO比值(0.66~0.73),基质中出现榍石-磁铁矿-石英组合,暗示它们形成于高氧逸度环境下. 岩石样品富集大离子亲石元素Rb、K和Ba,而亏损高场强元素Nb、Ta、Ti和重稀土元素. 此外,样品的εNd(t)和ISr值分别集中于-2.72~-3.07和0.706 46~0.706 54之间,锆石的εHf(t)值变化于-3.7~-0.8,Nb/U比值变化于10.3~10.9,表明它们来源于交代的石榴石-尖晶石二辉橄榄岩并混合有少量壳源组分. 综合考虑中天山地块岩石成因及其他地质资料,我们认为东天山地区的中天山地块在早二叠世处于俯冲板片断裂的后碰撞伸展体系.Abstract: As a typical case of the Permian magmatism in the Eastern Tianshan, the porphyritic monzodiorite exposed in the southern margin of the Central Tianshan block. Zircon U-Pb dating on the monzodiorite yields an age of 281.3±1.5 Ma. The monzodiorite shows high-K calc-alkaline and metaluminous affinities, with Na2O+K2O and A/CNK values ranging 5.88‒6.62 wt.% and 0.66‒0.73, respectively. They are characterized by high Fe2O3/FeO ratios (0.66~0.73), and present the assemblage of titanite+quartz+magnetite in the groundmass, suggesting that the monzodiorite formed under a high oxygen fugacity condition. The monzodiorite enriched in LILEs (i.e. Rb, K and Ba), but depleted in HFSEs (i.e. Nb, Ta and Ti) and HREE. In addition, all the study samples have negative εNd(t) (-2.72 to -3.07), high initial 87Sr/86Sr (0.706 46 to 0.706 54) values, and negative zircon εHf(t) (-3.7 to -0.8) values, as well as intermediate Nb/U (10.3 to 10.9) values. These geochemical features indicating that the magmas originated from spinel-garnet lherzolite that metasomatized by subduction-related fluids, and mixed with minor crustal components. Integrating the petrogenesis and other geological evidences, we proposed that the magmatisms in the Central Tianshan block were generated in post-collision extensional setting of slab breakoff during the Early Permian.
-
Key words:
- post-collisional extension /
- slab breakoff /
- Permian /
- Petrogenesis /
- Central Tianshan block /
- geochemistry
-
图 1 天山造山带构造位置简图(据Zhang et al., 2016修编)
Fig. 1. Simplified geological map of the Tianshan orogenic belt (modified after Zhang et al., 2016)
图 2 东天山构造位置简图(据Mao et al., 2005修编)
二叠纪岩浆岩数据来源:①中天山地块:290 Ma的基性岩数据来源于Zhang et al.(2016);天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Song et al.(2011);293 Ma的闪长岩和284 Ma的A型花岗岩数据来源于Du et al.(2018a);磁海及其他A型花岗岩数据分别来源于Zheng et al.(2016);Mao et al.(2021);②阿齐山-雅满苏岛弧带:沙泉子闪长岩和基性岩数据来源于Jiang et al.(2017,2021);花岗岩数据来源于Du et al.(2018b);闪长岩数据来源于Zhang et al.(2020)
Fig. 2. Simplified geological map of the Eastern Tianshan (modified after Mao et al., 2005)
图 4 (a)二长闪长玢岩单颗粒锆石CL图像;(b)单颗粒锆石球粒陨石标准化稀土元素配分模式图(岩浆锆石和热液锆石数据来源于Belousova et al., 2002)
Fig. 4. (a) CL images of zircons from the porphyritic monzodiorite; (b) Chondrite-normalized REE patterns for the zircons (Data of magmatic and hydrothermal zircon are from Belousova et al., 2002)
图 6 (a)侵入岩TAS分类图解(底图据Wilson, 2007);(b)SiO2-K2O图解(底图据Peccerillo and Taylor, 1976);(c)A/NK-A/CNK图解(底图据Maniar and Piccoli, 1989)
Fig. 6. (a) Total alkalis vs. silica diagram (after Wilson, 2007); (b) SiO2 vs. K2O plot (after Peccerillo and Taylor, 1976); (c) A/NK vs. A/CNK diagram (after Maniar and Piccoli, 1989).
图 7 二长闪长玢岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)
OIB、E-MORB、N-MORB数据来源于Sun and McDonough(1989);球粒陨石标准化值据来源于McDonough and Sun(1995);原始地幔标准化值据来源于Sun and McDonough(1989);区域其他闪长岩数据来源于Du et al.,(2018a);塔里木玄武岩数据来源于Zhang and Zhou(2013);星星峡群和卡瓦布拉克群数据分别来源于He et al.(2014)和麦地娜·努尔太等(2017)
Fig. 7. Chondrite-normalized REE patterns (a) and primitive mantle-normalized multi-element diagrams (b)
图 8 (a)87Sr/86Sri-εNd(t)图解(据Sahoo et al., 2020修编);(b)壳幔两端员混合模拟(据Du et al., 2018b修编)
中天山地块290 Ma的基性岩数据来源于Zhang et al.(2016);天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Chai et al.(2008),Song et al.(2011);293 Ma的闪长岩数据来源于Du et al.(2018a);中天山古老基底数据来源于Du et al.(2018b)
Fig. 8. (a) εNd(t) vs. 87Sr/86Sri diagram (modified after Sahoo et al., 2020); (b) Source mixing proportions between crust and mantle (modified after Du et al., 2018b)
图 9 中天山地块早二叠世岩浆岩锆石T-εHf(t)图解(底图据Wen et al., 2018修编)
天宇基性-超基性岩数据来源于Tang et al.(2011);白石泉基性-超基性岩数据来源于Song et al.(2011);磁海A型花岗岩数据来源于Zheng et al.(2016);中天山地块其他A型花岗岩数据来源于Mao et al.(2021)
Fig. 9. Zircons T-εHf(t) diagram of the early Permian magmatic rocks in the Central Tianshan block (modified after Wen et al., 2018)
图 10 (a)单颗粒锆石T-logfO2图解(氧逸度缓冲曲线来源于Myers and Eugster, 1983; Wones, 1989);(b)火成岩氧化还原分类图解(Blevin, 2004)
Fig. 10. (a) Temperature vs. logfO2 diagram for the zircons from the porphyritic monzodiorite (The oxygen fugacity buffer curves are modified from Myers and Eugster, 1983 and Wones, 1989); (b) Redox classification scheme for igneous rocks (Blevin, 2004)
图 12 (a)Nb/Yb与Th/Yb图解(Pearce, 2008);(b)Sc/Ni与La/Yb图解(Bailey, 1981);(c)Th与Ba/Th图解(Hawkesworth et al., 1997);(d)Ba/La与Th/Yb图解(Woodhead et al., 2001)
Fig. 12. (a) Nb/Yb vs. Th/Yb diagram (Pearce, 2008); (b) Sc/N vs. La/Yb diagram (Bailey, 1981); (c) Th vs. Ba/Th diagram (Hawkesworth et al., 1997); (d) Ba/La vs. Th/Yb diagram (Woodhead et al., 2001)
图 13 部分熔融模拟图解
a. La/Yb与Sm/Yb(底图据Zhang et al.,2021);b. La/Sm与Sm/Yb图解(底图据Zhang et al.,2016)
Fig. 13. Modeling of partial melting processes
-
Bailey, J. C., 1981. Geochemical Criteria for a Refined Tectonic Discrimination of Orogenic Andesites. Chemical Geology, 32(1/2/3/4): 139-154. https://doi.org/10.1016/0009-2541(81)90135-2 Bedard, J. H., 1999. Petrogenesis of Boninites from the Betts Cove Ophiolite, Newfoundland, Canada: Identification of Subducted Source Components. Journal of Petrology, 40(12): 1853-1889. https://doi.org/10.1093/petroj/40. 12.1853 doi: 10.1093/petroj/40.12.1853 Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 Blevin, P. L., 2004. Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia: Implications for Gold‐Rich Ore Systems. Resource Geology, 54(3): 241-252. https://doi.org/10.1111/j.1751-3928.2004.tb00205.x Cao, M. J., Qin, K. Z., Li, G. M., et al., 2018. Oxidation State Inherited from the Magma Source and Implications for Mineralization: Late Jurassic to Early Cretaceous Granitoids, Central Lhasa Subterrane, Tibet. Mineralium Deposita, 53(3): 299-309. https://doi.org/10.1007/s00126-017-0739-3 Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2/3/4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014 Chen, Y. J., Pirajno, F., Wu, G., et al., 2012. Epithermal Deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101(4): 889-917. https://doi.org/10.1007/s00531-011-0689-4 Davies, J., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1/2/3/4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s Du, L., Long, X. P., Yuan, C., et al., 2018a. Petrogenesis of Late Paleozoic Diorites and A-Type Granites in the Central Eastern Tianshan, NW China: Response to Post-Collisional Extension Triggered by Slab Breakoff. Lithos, 318-319(3): 47-59. https://doi.org/10.1016/j.lithos. 2018. 08.006 doi: 10.1016/j.lithos.2018.08.006 Du, L., Long, X. P., Yuan, C., et al., 2018b. Mantle Contribution and Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Early Carboniferous to Early Permian Felsic Intrusions. Lithos, 304-307(2): 230-244. https://doi.org/10.1016/j.lithos.2018.02.010 Eby, G. N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 20(7): 641. https://doi.org/10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0641:csotat>2.3.co;2 Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1): 77. https://doi.org/10.1130/g19887.1 Finch, R. J., Hanchar, J. M., 2001. Structure and Chemistry of Zircon and Zircon-Group Minerals. Reviews in Mineralogy and Geochemistry, 53(1): 1-25. https://doi.org/10.2113/0530001 Frost, D. J., McCammon, C. A., 2008. The Redox State of Earth's Mantle. Annual Review of Earth and Planetary Sciences, 36(1): 389-420. https://doi.org/10.1146/annurev.earth.36.031207.124322 Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2011. In-Situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 120(3/4): 547-562. https://doi.org/10.1016/j.lithos.2010.09.019 Han, Y. G., Zhao, G. C., 2018. Final Amalgamation of the Tianshan and Junggar Orogenic Collage in the Southwestern Central Asian Orogenic Belt: Constraints on the Closure of the Paleo-Asian Ocean. Earth-Science Reviews, 186: 129-152. https://doi.org/10.1016/j.earscirev. 2017. 09.012 doi: 10.1016/j.earscirev.2017.09.012 Hawkesworth, C. J., Turner, S. P., McDermott, F., et al., 1997. U-Th Isotopes in Arc Magmas: Implications for Element Transfer from the Subducted Crust. Science, 276(5312): 551-555. https://doi.org/10.1126/science. 276. 5312.551 doi: 10.1126/science.276.5312.551 He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2014. Zircon U-Pb and Hf Isotopic Studies of the Xingxingxia Complex from Eastern Tianshan (NW China): Significance to the Reconstruction and Tectonics of the Southern Central Asian Orogenic Belt. Lithos, 190-191: 485-499. https://doi.org/10.1016/j.lithos.2013.12.023 Hildebrand, R. S., Whalen, J. B., Bowring, S. A., 2018. Resolving the Crustal Composition Paradox by 3.8 Billion Years of Slab Failure Magmatism and Collisional Recycling of Continental Crust. Tectonophysics, 734-735(11): 69-88. https://doi.org/10.1016/j.tecto.2018.04.001 Hoffman, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219-229. https://doi.org/10.1038/385219a0 Jiang, H. J., Han, J. S., Chen, H. Y., et al., 2017. Intra-Continental Back-Arc Basin Inversion and Late Carboniferous Magmatism in Eastern Tianshan, NW China: Constraints from the Shaquanzi Magmatic Suite. Geoscience Frontiers, 8(6): 1447-1467. https://doi.org/10.1016/j.gsf.2017.01.008 Jiang, H. J., Chen, H. Y., Gong, L., et al., 2021. Geochronology and Geochemistry of a Newly Identified Permian Hornblende Gabbro Suite in Aqishan-Yamansu Belt, Eastern Tianshan, NW China: Implications on Petrogenesis and Tectonic Setting. Geological Journal, 56(11): 5506-5530. https://doi.org/10.1002/gj.4254 Jull, M., Kelemen, P. B., 2001. On the Conditions for Lower Crustal Convective Instability. Journal of Geophysical Research: Solid Earth, 106(B4): 6423-6446. https://doi.org/10.1029/2000jb900357 Kay, R. W., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3): 177-189. https://doi.org/10.1016/0040-1951(93)90295-u Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0 Li, D. F., Zhang, L., Chen, H. Y., et al., 2016. Geochronology and Geochemistry of the High Mg Dioritic Dikes in Eastern Tianshan, NW China: Geochemical Features, Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 115: 442-454. https://doi.org/10.1016/j.jseaes.2015.10.018 Li, W. Q., Ma, H. D., Wang, R., et al., 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiolite in Eastern Tianshan, Xinjiang. Acta Petrologica Sinica, 24(4): 773-780 (in Chinese with English abstract). Li, X. M., Yu, J. Y., Wang, G. Q., et al., 2012. Geochronology of Jijitaizi Ophiolite in Beishan Area, Gansu Province, and Its Geological Significance. Geological Bulletin of China, 31(12): 2025-2031 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2012.12.011 Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 Lu, W. J., Chen, H. Y., Zhang, L., et al., 2017. Age and Geochemistry of the Intrusive Rocks from the Shaquanzi-Hongyuan Pb-Zn Mineral District: Implications for the Late Carboniferous Tectonic Setting and Pb-Zn Mineralization in the Eastern Tianshan, NW China. Lithos, 294-295: 97-111(in Chinese with English abstract). doi: 10.1016/j.lithos.2017.10.009 Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. BGC Special Publication, Berkeley. Lugmair, G. W., Marti, K., 1978. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 39(3): 349-357. https://doi.org/10.1016/0012-821x(78)90021-3 Luo, T., Liao, Q. A., Zhang, X. H., et al., 2016. Geochronology and Geochemistry of Carboniferous Metabasalts in Eastern Tianshan, Central Asia: Evidence of a Back-Arc Basin. International Geology Review, 58(6): 756-772. https://doi.org/10.1080/00206814.2015.1114433 MacDonald, A. W., Cohen, J. D., Stenger, V. A., et al., 2000. Dissociating the Role of the Dorsolateral Prefrontal and Anterior Cingulate Cortex in Cognitive Control. Science, 288(5472): 1835-1838. https://doi.org/10.1126/science. 288.5472.1835 doi: 10.1126/science.288.5472.1835 Madina, N., Nijat, A., Muhtar, Z., et al., 2017. Geological Charactersitic and Tectonic Significance of Middle Acidic Rocks from The Kawabulak Complex Central Tianshan, China. China Academic Journal Electronic Publishing House, (10): 107-109(in Chinese with English abstract). Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 Mao, J. W., Goldfarb, R. J., Wang, Y. T., et al., 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23-36. https://doi.org/10.18814/epiiugs/2005/v28i1/003 Mao, Q. G., Ao, S. J., Windley, B. F., et al., 2021. Petrogenesis of Late Carboniferous-Early Permian Mafic-Ultramafic-Felsic Complexes in the Eastern Central Tianshan, NW China: The Result of Subduction-Related Transtension? Gondwana Research, 95: 72-87. doi: 10.1016/j.gr.2021.03.007 Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2010. The Study of Early-Paleozoic Prealuminous Granite (SP) and Its Tectonic Significance in the Xingxingxia Suture Zone, Eastern Tianshan Mountains, Xinjiang, Northwest China. Chinese Journal of Geology, 45(1): 41-56 (in Chinese with English abstract). McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223-253. https://doi.org/10.1016/0009-2541(94)00140-4 Myers, J., Eugster, H. P., 1983. The System Fe-Si-O: Oxygen Buffer Calibrations to 1, 500K. Contributions to Mineralogy and Petrology, 82(1): 75-90. https://doi.org/10.1007/bf00371177 Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1/2/3/4): 14-48. https://doi.org/10.1016/j.lithos.2007.06.016 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745 Pirajno, F., 2010. Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3/4): 325-346. https://doi.org/10.1016/j.jog.2010.01.018 Qiu, J. T, Yu, X. Q., Santosh, M., et al., 2013. Geochronology and Magmatic Oxygen Fugacity of the Tongcun Molybdenum Deposit, Northwest Zhejiang, SE China. Mineralium Deposita, 48(5): 545-556. doi: 10.1007/s00126-013-0456-5 Rudnick, R. L., Gao, S., Holland, H. D., et al., 2003. Composition of the Continental Crust. The Crust, 3: 1-64. Sahoo, S., Rao, N. V. C., Monié, P., et al., 2020. Petro-Geochemistry, Sr Nd Isotopes and 40Ar/39Ar Ages of Fractionated Alkaline Lamprophyres from the Mount Girnar Igneous Complex (NW India): Insights into the Timing of Magmatism and the Lithospheric Mantle beneath the Deccan Large Igneous Province. Lithos, 374-375(1981): 105712. https://doi.org/10.1016/j.lithos. 2020. 105712 doi: 10.1016/j.lithos.2020.105712 Seghedi, I., Downes, H., Pecskay, Z., et al., 2001. Magmagenesis in a Subduction-Related Post-Collisional Volcanic Arc Segment: the Ukrainian Carpathians. Lithos, 57(4): 237-262. doi: 10.1016/S0024-4937(01)00042-1 Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993a. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 Sengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993b. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0 Sengör, A. M. C., Natal'in, B. A., 1996. Paleotectonics of Asia: fragments of synthesis. In: Yin, A., Harrison, T. M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge, Special Publication, 486-640. Shu, L. S., Charvet, J., Lu, H. F., et al., 2002. Paleozoic Accretion-Collision Events and Kinematics of Ductile Deformation in the Eastern Part of the Southern‐Central Tianshan Belt, China. Acta Geologica Sinica-English Edition, 76(3): 308-323. https://doi.org/10.1111/j.1755-6724.2002.tb00547.x Shu, Q. H., Chang, Z. S., Lai, Y., et al., 2019. Zircon Trace Elements and Magma Fertility: Insights from Porphyry (-Skarn) Mo Deposits in NE China. Mineralium Deposita, 54(5): 645-656. https://doi.org/10.1007/s00126-019-00867-7 Song, X. Y., Xie, W., Deng, Y. F., et al., 2011. Slab Break-Off and the Formation of Permian Mafic-ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 127(1/2): 128-143. https://doi.org/10.1016/j.lithos.2011.08.011 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1/2): 84-98. https://doi.org/10.1016/j.lithos.2011.06.007 Tang, D. M., Qin, K. Z., Sun, H., et al., 2009. Lithological, Chronological and Geochemical Characteristics of Tianyu Cu-Ni Deposit: Constraints on Sources and Genesis of Mafic-Ultramafic Intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 24(4): 817-831 (in Chinese with English abstract). Trail, D., Watson, E. B., Tailby, N. D., 2012. Ce and Eu Anomalies in Zircon as Proxies for the Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 97(Suppl. 4): 70-87. https://doi.org/10.1016/j.gca.2012.08.032 Wang, G. Q., Li, X. M., Xu, X. Y., et al., 2014. Ziron U-Pb Chronological Study of the Hongshishan Ophiolite in the Beishan Area and Their Tectonic Significance. Acta Petrologica Sinica, 30(6): 1685-1694 (in Chinese with English abstract). Wang, Y., Sun, G., Li, J., 2010. U-Pb (SHRIMP) and 40Ar/39Ar Geochronological Constraints on the Evolution of the Xingxingxia Shear Zone, NW China: A Triassic Segment of the Altyn Tagh Fault System. Geological Society of America Bulletin, 122(3/4): 487-505. https://doi.org/10.1130/b26347.1 Watson, E. B., Wark, D. A., Thomas, J. B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. https://doi.org/10.1007/s00410-006-0068-5 Wen, D. J., He, Z. Y., Zhang, Z. M., 2018. Geochemistry and Tectonic Implications of Early Permian Granitic Rocks in the Xingxingxia Area of Chinese Central Tianshan Arc Terrane. Geological Journal, 54(3): 1578-1590. https://doi.org/10.1002/gj.3252 Wen, D. J., 2019. Petrogenesis and Tectonic Implications of the Late Paleozoic Granites from the Xingxingxia Area of The Central Tianshan(Dissertation). Chinese Academy of Geological Sciences, Beijing, 1-90 (in Chinese with English abstract). Wilson, B. M., 2007. Igneous Petrogenesis a Global Tectonic Approach. Springer Science & Business Media. Wones, D. R., 1989. Significance of the Assemblage Titanite+Magnetite+Quartz in Granitic Rocks. American Mineralogist, 74(7-8): 744-749. Wood, B. J., Bryndzia, L. T., Johnson, K. E., 1990. Mantle Oxidation State and its Relationship to Tectonic Environment and Fluid Speciation. Science, 248(4953): 337-345. https://doi.org/10.1126/science.248.4953.337 Woodhead, J. D., Hergt, J. M., Davidson, J. P., et al., 2001. Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes. Earth and Planetary Science Letters, 192(3): 331-346. https://doi.org/10.1016/s0012-821x(01)00453-8 Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008 Xiao, W. J., Windley, B. F., Allen, M. B., et al., 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012 Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02 Xu, X. Y., Xia, L. Q., Ma, Z. P., et al., 2006. SHRIMP Zircon U-Pb Geochronology of the Plagiogranites from Bayingou Ophiolite in North Tianshan Mountains and the Petrogenesis of the Ophiolite. Acta Petrologica Sinica, 22(1): 83-94 (in Chinese with English abstract). Yang, D. L., 2020. Petrogenesis of Late Paleozoic Granites from Alatag Region of the Central Tianshan, and Their Geological Significance(Dissertation). China University of Geosciences, Beijing, 1-71 (in Chinese with English abstract). Yang, W. B., Niu, H. C., Shan, Q., et al., 2014. Geochemistry of Magmatic and Hydrothermal Zircon from the Highly Evolved Baerzhe Alkaline Granite: Implications for Zr-REE-Nb Mineralization. Mineralium Deposita, 49(4): 451-470. https://doi.org/10.1007/s00126-013-0504-1 Zhang, C. L., Zou, H. B., 2013. Permian A-Type Granites in Tarim and Western Part of Central Asian Orogenic Belt (CAOB): Genetically Related to a Common Permian Mantle Plume? Lithos, 172-173(B1): 47-60. https://doi.org/10.1016/j.lithos.2013.04.001 Zhang, S. L., Chen, H. Y., Hollings, P., et al., 2020. Tectonic and Magmatic Evolution of the Aqishan-Yamansu Belt: A Paleozoic Arc-Related Basin in the Eastern Tianshan (NW China). GSA Bulletin, 133(5/6): 1320-1344. https://doi.org/10.1130/b35749.1 Zhang, W. F., Deng, X., Tu, B., et al., 2021. Petrogenesis of the Cretaceous Intraplate Mafic Intrusions in the Eastern Tianshan Orogen, NW China. Frontiers in Earth Science, 9: 665610. https://doi.org/10.3389/feart.2021.665610 Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2015. Latest Carboniferous Closure of the Junggar Ocean Constrained by Geochemical and Zircon U-Pb-Hf Isotopic Data of Granitic Gneisses from the Central Tianshan Block, NW China. Lithos, 238: 26-36. https://doi.org/10.1016/j.lithos.2015.09.012 Zhang, X. R., Zhao, G. C., Eizenhöfer, P. R., et al., 2016. Tectonic Transition from Late Carboniferous Subduction to Early Permian Post-Collisional Extension in the Eastern Tianshan, NW China: Insights from Geochronology and Geochemistry of Mafic-Intermediate Intrusions. Lithos, 256-257: 269-281. https://doi.org/10.1016/j.lithos.2016.04.006 Zhao, L. D., Chen, H. Y., Hollings, P., et al., 2019. Tectonic Transition in the Aqishan-Yamansu Belt, Eastern Tianshan: Constraints from the Geochronology and Geochemistry of Carboniferous and Triassic Igneous Rocks. Lithos, 344-345: 247-264. https://doi.org/10.1016/j.lithos.2019.06.023 Zheng, J. H., 2020. A Synthesis of Iron Deposits in the Eastern Tianshan, NW China. Geoscience Frontiers, 11(4): 1271-1287. https://doi.org/10.1016/j.gsf.2019.11.014 Zheng, J. H., Mao, J. W., Chai, F. M., et al., 2016. Petrogenesis of Permian A-Type Granitoids in the Cihai Iron Ore District, Eastern Tianshan, NW China: Constraints on the Timing of Iron Mineralization and Implications for a Non-Plume Tectonic Setting. Lithos, 260(2): 371-383. https://doi.org/10.1016/j.lithos.2016.05.012 Zheng, J. H., Mao, J. W., Yang, F. Q., et al., 2015. The Post-Collisional Cihai Iron Skarn Deposit, Eastern Tianshan, Xinjiang, China. Ore Geology Reviews, 67(3): 244-254. https://doi.org/10.1016/j.oregeorev.2014.12.006 Zhong, S. H., Li, S. Z., Seltmann, R., et al., 2021. The Influence of Fractionation of REE-Enriched Minerals on the Zircon Partition Coefficients. Geoscience Frontiers, 12(3): 101094. https://doi.org/10.1016/j.gsf.2020.10.002 李文铅, 马华东, 王冉, 等, 2008. 东天山康古尔塔格蛇绿岩SHRIMP年龄、Nd‒Sr同位素特征及构造意义. 岩石学报, 24 (4): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804017.htm 李向民, 余吉远, 王国强, 等, 2012. 甘肃北山地区芨芨台子蛇绿岩LA-ICP-MS锆石U-Pb测年及其地质意义. 地质通报, 31(12): 2025-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201212011.htm 麦地娜·努尔太, 尼加提·阿布都逊, 木合塔尔·扎日, 等, 2017. 中天山卡瓦布拉克杂岩带中酸性岩的地质特征及其构造意义. 世界有色金属, (10): 107-109. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201620042.htm 毛启贵, 肖文交, 韩春明, 等, 2010. 东天山星星峡缝合带早古生代强过铝质花岗岩的研究及其地质意义. 地质科学, 45 (1): 41-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201001006.htm 唐冬梅, 秦克章, 孙赫, 等, 2009. 天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征: 对东疆镁铁-超镁铁质岩体源区和成因的制约. 岩石学报, (4): 817-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904008.htm 王国强, 李向民, 徐学义, 等, 2014. 甘肃北山红石山蛇绿岩锆石U-Pb年代学研究及构造意义. 岩石学报, 30(6): 1685-1694. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406011.htm 温定军, 2019. 中天山星星峡地区晚古生代花岗岩的成因和构造意义(博士毕业论文). 北京: 中国地质科学院, 1-90. 徐学义, 夏林圻, 马中平, 等, 2006. 北天山巴音沟蛇绿岩斜长花岗岩SHRIMP锆石U-Pb年龄及蛇绿岩成因研究. 岩石学报, 22(1): 83-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601009.htm 杨德乐, 2020. 中天山阿拉塔格晚古生代花岗岩的岩石成因及地质意义(博士毕业论文). 北京: 中国地质大学, 1-71. -
dqkxzx-49-8-2697-表3.doc
dqkxzx-49-8-2697-表2.doc
dqkxzx-49-8-2697-表1.doc
-