• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲带水岩相互作用: 来自西南天山(超)高压变质岩的矿物学证据

    窦萍 肖媛媛 林晋炎 姚永祥

    窦萍, 肖媛媛, 林晋炎, 姚永祥, 2024. 俯冲带水岩相互作用: 来自西南天山(超)高压变质岩的矿物学证据. 地球科学, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066
    引用本文: 窦萍, 肖媛媛, 林晋炎, 姚永祥, 2024. 俯冲带水岩相互作用: 来自西南天山(超)高压变质岩的矿物学证据. 地球科学, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066
    Dou Ping, Xiao Yuanyuan, Lin Jinyan, Yao Yongxiang, 2024. Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan. Earth Science, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066
    Citation: Dou Ping, Xiao Yuanyuan, Lin Jinyan, Yao Yongxiang, 2024. Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan. Earth Science, 49(8): 2751-2765. doi: 10.3799/dqkx.2023.066

    俯冲带水岩相互作用: 来自西南天山(超)高压变质岩的矿物学证据

    doi: 10.3799/dqkx.2023.066
    基金项目: 

    崂山实验室科技创新项目 LSKJ202204104

    详细信息
      作者简介:

      窦萍(1998-),女,硕士研究生,主要从事俯冲带元素地球化学行为研究. ORCID: 0009-0007-0638-127X. E-mail: 1806744022@qq.com

    • 中图分类号: P595; P67

    Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan

    • 摘要: 西南天山(超)高压变质带内发育有大规模被流体交代的变质岩,其脉体和围岩记录了重要的俯冲带流体信息.在以往对有脉体发育的俯冲带变质岩全岩地球化学研究的基础上,进一步对该样品脉体和围岩中的石榴石、帘石、绿辉石、多硅白云母等矿物成分进行原位分析,对比同一矿物在脉体和围岩中的成分区别,以深入理解脉体和围岩的全岩成分差异、俯冲带水岩相互作用中相关元素的地球化学行为及流体性质.根据岩石学特征,该样品分为富蓝闪石脉体、富帘石和碳酸盐的过渡部分及富绿辉石内部.元素储库计算揭示全岩的元素组成和元素赋存矿物及其丰度具有一致性,脉体中更高的中重稀土元素(M-HREE)含量显示该部分更多的石榴石对M-HREE的赋存,过渡部分更高的REE-Th-U-Pb-Sr等元素含量反映了大量存在的帘石族矿物、碳酸盐对这些元素的控制,富绿辉石内部更高的K-Rb-Ba-Cs等元素含量则反映了这部分更多的白云母对这些元素的控制.另外,同一矿物在样品不同部分的成分差异可直接反映元素在不同变质阶段和不同水化程度下的地球化学变化,相较于受流体改造较少的富绿辉石内部,富蓝闪石脉体和过渡部分的多硅白云母和绿辉石丰度降低但更富集K-Rb-Ba-Cs等元素;石榴石丰度升高但其所含的HREE含量更低;帘石丰度升高但其所含的Th-U-轻稀土元素(LREE)含量更低.结合过渡部分出现的大量碳酸盐矿物,推测外来流体为含碳酸盐的蛇纹岩衍生流体.水岩相互作用后,流体的LILE含量显著升高,碳酸盐组分明显降低,其余元素含量变化不大.

       

    • 图  1  中国天山造山带西段构造格架简图(a)和西南天山造山带高压-超高压变质带地质简图(b)

      据Wei et al.(2009);Lü et al.2012);Xiao et al.2017)修改

      Fig.  1.  Tectonic framework of the western part of the Chinese Tianshan Mountains(a) and geological sketch of the Southwestern Tianshan HP-UHP metamorphic belt(b)

      图  2  变质岩样品野外照片(a~b)、三部分的关系图(c)和岩石薄片照片(d~f)

      a~c. 根据矿物组合将变质岩块体依次分为富蓝闪石脉体、过渡部分和富绿辉石内部;d~f. 根据三部分的薄片照片可以清楚地看到由富蓝闪石脉体(d)到过渡部分(e)到富绿辉石内部(f),蓝闪石(蓝色)和帘石(黄绿)的含量逐渐减少,而绿辉石(绿色)的含量逐渐增加

      Fig.  2.  Fieldphotographsof metamorphic rock samples (a-b), sketch for relationship of three sections (c)and relevant slides(d-f)

      图  3  显微镜下照片

      a~c. 富绿辉石内部,多硅白云母和绿辉石以基质的形式出现,帘石较为常见;d. 富绿辉石内部(右)与过渡部分(左)的分界;e~f.过渡部分以帘石和蓝闪石为主,出现碳酸盐矿物;g. 富蓝闪石脉体部分(右)与过渡部分(左)的分界;h~i. 富蓝闪石脉体部分,以蓝闪石和石榴石为主. Omp.绿辉石;Ph.多硅白云母;Ap.磷灰石;Ep.帘石;Ca.碳酸盐矿物;Gln.蓝闪石;Grt.石榴石;Ttn.榍石

      Fig.  3.  Microscopic features

      图  4  不同部分的矿物组成模式图

      Omp.绿辉石;Grt.石榴石;Ttn.榍石;Gln.蓝闪石;Ep.帘石;Ca.碳酸盐矿物;Ph.多硅白云母;Ap.磷灰石

      Fig.  4.  Modal amounts of mineral assemblages

      图  5  原始地幔标准化微量元素蛛网图(a)和全岩K/Th-Ba/Th图(b)

      a中原始地幔标准化值来自Sun and McDonough(1989);b据Straaten et al.2008)修改;a中灰色区域和b中灰色菱形的数据来自Xiao et al.(2017

      Fig.  5.  Primitive mantle-normalized trace elements patterns (a) and covariation diagrams for Ba/Th-K/Th of bulk rocks (b)

      图  6  球粒陨石标准化矿物成分元素蛛网图(标准化值来自Sun and McDonough, 1989

      Fig.  6.  Chondrite normalized mineral composition distributed diagrams(normalization values from Sun and McDonough, 1989)

      图  7  西南天山变质岩块体流体-岩石相互作用示意图

      第一期流体使得变质岩块普遍富集多硅白云母,第二期流体使得变质岩块发生不同程度的水化,A部分的蓝闪石、石榴石含量占比增加,多硅白云母与磷灰石含量占比降低;B部分的蓝闪石、帘石、石榴石和碳酸盐矿物占比增加,多硅白云母和磷灰石含量占比降低;C部分几乎未受到第二期流体的影响;据Xiao et al.2017

      Fig.  7.  Schematic illustration of fluid-rock interaction of metamorphic rock block from Southwestern Tianshan

      图  8  样品三部分的元素储库示意图

      本图中将碳酸盐矿物(Ca)分为白云石(Dol)和方解石(Cal)

      Fig.  8.  The diagrams of element budgets for three parts

      图  9  三部分多硅白云母及绿辉石的元素含量变化图

      a~c. 多硅白云母的K2O-Ba,Cs-K2O和Pb-Sr含量对比图;d~f. 绿辉石CaO-Sr、Cs-Ba和Ba-K2O的含量变化;图9c中有两个C部分的多硅白云母样品(2-C-2和2-C-4)的Pb含量低于检测限

      Fig.  9.  Co-variation diagrams for element contents of phengite and omphacite from three parts

      图  10  三部分石榴石和帘石族矿物的元素含量变化图(a~d)和帘石核边部元素分配对比图(e~f)

      a~b. 石榴石HREE-Y的含量变化图及中重稀土元素配分图;c~d. 帘石族矿物的Pb-Th,Th-La含量对比图;e. 帘石核-边的球粒陨石标准化稀土元素蛛网图;f. 同一帘石颗粒核部、边部微量元素变化图

      Fig.  10.  Co-variation diagrams for element contents of garnet and epidote group minerals from three parts (a-d) and comparison diagrams of element distribution at the edge and core of epidote (e-f)

    • Ague, J. J., 2011. Extreme Channelization of Fluid and the Problem of Element Mobility during Barrovian Metamorphism. American Mineralogist, 96(2/3): 333-352. https://doi.org/10.2138/am.2011.3582
      Bebout, G. E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260(3/4): 373-393. https://doi.org/10.1016/j.epsl. 2007. 05.050 doi: 10.1016/j.epsl.2007.05.050
      Beinlich, A., Klemd, R., John, T., et al., 2009. Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit: Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction. Geochimica et Cosmochimica Acta, 74(6): 1892-1922. https://doi.org/10.1016/j.gca.2009.12.011
      Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277-289. https://doi.org/10.1016/j.scib.2017.01.004
      Gao, J., Klemd, R., 2001. Primary Fluids Entrapped at Blueschist to Eclogite Transition: Evidence from the Tianshan Meta-Subduction Complex in Northwestern China. Contributions to Mineralogy and Petrology, 142(1): 1-14. https://doi.org/10.1007/s004100100275
      Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1/2): 1-22. https://doi.org/10.1016/s0024-4937(02)00153-6
      Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3/4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018
      Herms, P., John, T., Bakker, R. J., et al., 2012. Evidence for Channelized External Fluid Flow and Element Transfer in Subducting Slabs (Raspas Complex, Ecuador). Chemical Geology, 310-311: 79-96. https://doi.org/10.1016/j.chemgeo.2012.03.023
      Huang, H. W., 2021. The Formation Mechanism of the Omphacite Veins in Blueschists from Southwestern Tianshan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      John, T., Gussone, N., Podladchikov, Y. Y., et al., 2012. Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs. Nature Geoscience, 5(7): 489-492. https://doi.org/10.1038/ngeo1482
      John, T., Klemd, R., Gao, J., et al., 2008. Trace-Element Mobilization in Slabs Due to Non Steady-State Fluid-Rock Interaction: Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China). Lithos, 103(1): 1-24. https://doi.org/10.1016/j.lithos.2007.09.005
      Klemd, R., Bröcker, M., Hacker, B. R., et al., 2005. New Age Constraints on the Metamorphic Evolution of the High‐Pressure/Low‐Temperature Belt in the Western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157-168. https://doi.org/10.1086/427666
      Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332-333(4): 328-339. https://doi.org/10.1016/j.lithos.2019.02.024
      Li, J. L., Gao, J., John, T., et al., 2013. Fluid-Mediated Metal Transport in Subduction Zones and Its Link to Arc-Related Giant Ore Deposits: Constraints from a Sulfide-Bearing Hp Vein in Lawsonite Eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326-362. https://doi.org//10.1016/j.gca.2013.06.023
      Li, J. L., John, T., Gao, J., et al., 2017. Subduction Channel Fluid-Rock Interaction and Mass Transfer: Constraints from a Retrograde Vein in Blueschist (SW Tianshan, China). Chemical Geology, 456: 28-42. https://doi.org/10.1016/j.chemgeo.2017.03.003
      Li, J. L., Klemd, R., Gao, J., et al., 2012. Coexisting Carbonate-Bearing Eclogite and Blueschist in SW Tianshan, China: Petrology and Phase Equilibria. Journal of Asian Earth Sciences, 60: 174-187. https://doi.org/10.1016/j.jseaes.2012.08.015
      Lü, Z., Bucher, K., 2018. The Coherent Ultrahigh-Pressure Terrane of the Tianshan Meta-Ophiolite Belt, NW China. Lithos, 314-315: 260-273. https://doi.org/10.1016/j.lithos.2018.06.004
      Lü, Z., Zhang, L., Du, J., et al., 2012. Petrology of Hp Metamorphic Veins in Coesite-Bearing Eclogite from Western Tianshan, China: Fluid Processes and Elemental Mobility During Exhumation in a Cold Subduction Zone. LITHOS, 136-139: 168-186. https://doi.org/10.1016/j.lithos.2011.10.011
      Peng, W. G., Zhang, L. F., Shen, T. T., 2018. Implications for the Deep Carbon Cycle from the Carbonation in Subduction Zones: A Case Study of Carbonated Micaschists from Chinese Southwestern Tianshan. Acta Petrologica Sinica, 34(4): 1204-1218 (in Chinese with English abstract).
      Shen, T. T., Hermann, J., Zhang, L. F., et al., 2015. UHP Metamorphism Documented in Ti-Chondrodite- and Ti-Clinohumite-Bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan. Journal of Petrology, 56(7): 1425-1458. https://doi.org/10.1093/petrology/egv042
      Straaten, F. v. d., Halama, R., John, T., et al., 2012. Tracing the Effects of High-Pressure Metasomatic Fluids and Seawater Alteration in Blueschist-Facies Overprinted Eclogites: Implications for Subduction Channel Processes. Chemical Geology, 292-293: 69-87. https://doi.org/10.1016/j.chemgeo.2011.11.008
      Straaten, F. v. d., Volker, S., Timm, J., et al., 2008. Blueschist-Facies Rehydration of Eclogites (Tian Shan, NW-China): Implications for Fluid-Rock Interaction in the Subduction Channel. Chemical Geology, 255: 195-219. https://doi.org/10.1016/j.chemgeo.2008.06.037
      Su, W., Gao, J., Klemd, R., et al., 2010. U-Pb Zircon Geochronology of Tianshan Eclogites in NW China: Implication for the Collision between the Yili and Tarim Blocks of the Southwestern Altaids. European Journal of Mineralogy, 22(4): 473-478. https://doi.org/10.1127/0935-1221/2010/0022-2040
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Syracuse, E. M., Abers, G. A., 2006. Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications. Geochemistry, Geophysics, Geosystems, 7(5): 1-15. https://doi.org/10.1029/2005gc001045
      Tan, Z., Agard, P., Gao, J., et al., 2017. P-T-Time-Isotopic Evolution of Coesite-Bearing Eclogites: Implications for Exhumation Processes in SW Tianshan. Lithos, 278-281: 1-25. https://doi.org/10.1016/j.lithos.2017.01.010
      Wang, L., Zhang, G. B., 2023. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685-699(in Chinese with English abstract).
      Wei, C., Wang, W., Clarke, G. L., et al., 2009. Metamorphism of High/Utrahigh-Pressure Pelitic-Felsic Schist in the South Tianshan Orogen, NW China: Phase Equilibria and P-T Path. Journal of Petrology, 50(10): 1973-1991. https://doi.org/10.1093/petrology/egp064
      Wu, K., Yuan, H. L., Lyu, N., et al., 2020. The Behavior of Fluid Mobile Elements during Serpentinization and Dehydration of Serpentinites in Subduction Zones. Acta Petrologica Sinica, 36(1): 141-153 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.14
      Wu, W. W., Yang, J. S., 2022. How is the Deep Subducted Crustal Material Recycled to Earth Surface? Earth Science, 47(10): 3772-3775 (in Chinese with English abstract).
      Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
      Xiao, Y. Y., An, Z., Chen, S., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3). https://doi.org/10.1093/petrology/egaa038
      Xiao, Y., Niu, Y., Li, H., et al., 2014. Trace Element Budgets and (Re-) Distribution During Subduction-Zone Ultrahigh Pressure Metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 365: 54-68. https://doi.org/10.1016/j.chemgeo.2013.12.005
      Xiao, Y. Y., Niu, Y. L., Wang, K. L., et al., 2017. Different Stages of Chemical Alteration on Metabasaltic Rocks in the Subduction Channel: Evidence from the Western Tianshan Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 145(2-3): 111-122. https://doi.org/10.1016/j.jseaes.2017.06.001
      Xiao, Y., Niu, Y., Wang, K. L., et al., 2016. Geochemical Behaviours of Chemical Elements During Subduction-Zone Metamorphism and Geodynamic Significance. International Geology Review, 58(10): 1253-1277. https://doi.org/10.1080/00206814.2016.1147987
      Yang, X., Zhang, L. F., Tian, Z. L., et al., 2013. Petrology and U-Pb Zircon Dating of Coesite-Bearing Metapelite from the Kebuerte Valley, Western Tianshan, China. Journal of Asian Earth Sciences, 70-71: 295-307. https://doi.org/10.1016/j.jseaes.2013.03.020
      Zack, T., John, T., 2007. An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239(3/4): 199-216. https://doi.org/10.1016/j.chemgeo.2006.10.020
      Zhang, L. F., Chu, X., Zhang, L., et al., 2018. The Early Exhumation History of the Western Tianshan UHP Metamorphic Belt, China: New Constraints from Titanite U-Pb Geochronology and Thermobarometry. Journal of Metamorphic Geology, 36(5): 631-651. https://doi.org/10.1111/jmg.12422
      Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4): 651-682. https://doi.org/10.1007/s11430-015-5258-4
      黄宏炜, 2021. 西南天山蓝片岩中绿辉石脉体的形成机制(硕士毕业论文). 北京: 中国地质大学(北京), 64.
      彭卫刚, 张立飞, 申婷婷, 等, 2018. 俯冲带碳酸盐化对深部碳循环的启示: 以中国西南天山碳酸盐化云母片岩为例. 岩石学报, 34(4): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804021.htm
      王琳, 张贵宾, 2023. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为. 地球科学, 49(2): 685-699 doi: 10.3799/dqkx.2022.176
      吴凯, 袁洪林, 吕楠, 等, 2020. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为. 岩石学报, 36(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001014.htm
      吴魏伟, 杨经绥, 2022. 深俯冲地壳物质如何循环至地表? 地球科学, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803
    • dqkxzx-49-8-2751-附表1.docx
      dqkxzx-49-8-2751-附表3.zip
      dqkxzx-49-8-2751-附表2.zip
    • 加载中
    图(10)
    计量
    • 文章访问数:  563
    • HTML全文浏览量:  315
    • PDF下载量:  89
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-11
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回