Fluid-Rock Interaction in Subduction Zones: Mineralogical Evidence of Metamorphic Rock from Southwestern Tianshan
-
摘要: 西南天山(超)高压变质带内发育有大规模被流体交代的变质岩,其脉体和围岩记录了重要的俯冲带流体信息.在以往对有脉体发育的俯冲带变质岩全岩地球化学研究的基础上,进一步对该样品脉体和围岩中的石榴石、帘石、绿辉石、多硅白云母等矿物成分进行原位分析,对比同一矿物在脉体和围岩中的成分区别,以深入理解脉体和围岩的全岩成分差异、俯冲带水岩相互作用中相关元素的地球化学行为及流体性质.根据岩石学特征,该样品分为富蓝闪石脉体、富帘石和碳酸盐的过渡部分及富绿辉石内部.元素储库计算揭示全岩的元素组成和元素赋存矿物及其丰度具有一致性,脉体中更高的中重稀土元素(M-HREE)含量显示该部分更多的石榴石对M-HREE的赋存,过渡部分更高的REE-Th-U-Pb-Sr等元素含量反映了大量存在的帘石族矿物、碳酸盐对这些元素的控制,富绿辉石内部更高的K-Rb-Ba-Cs等元素含量则反映了这部分更多的白云母对这些元素的控制.另外,同一矿物在样品不同部分的成分差异可直接反映元素在不同变质阶段和不同水化程度下的地球化学变化,相较于受流体改造较少的富绿辉石内部,富蓝闪石脉体和过渡部分的多硅白云母和绿辉石丰度降低但更富集K-Rb-Ba-Cs等元素;石榴石丰度升高但其所含的HREE含量更低;帘石丰度升高但其所含的Th-U-轻稀土元素(LREE)含量更低.结合过渡部分出现的大量碳酸盐矿物,推测外来流体为含碳酸盐的蛇纹岩衍生流体.水岩相互作用后,流体的LILE含量显著升高,碳酸盐组分明显降低,其余元素含量变化不大.Abstract: Southwestern Tianshan HP-UHP metamorphic belt developed subduction-zone metamorphic rocks affected by large-scale fluid flows, its veins and host rocks provide important informations about the infiltrating fluid in subduction zone. Based on the previous bulk-rock geochemical studies on metamorphic rocks developed veins in the subduction zone, We have conducted an in situ element study of glaucophane, garnet, omphacite, phengite and other minerals in the veins and host rocks of the metamorphic rock samples to compare the compositional differences of the same mineral in veins and host rocks. This study aims to deeply understand the differences of bulk rock compositions between veins and host rocks, and the geochemical behaviors of related elements in the fluid-rock interaction and fluid properties in subduction zones. According to the petrological characteristics, the samples can be divided into glaucophane-rich veins, epidote and carbonate-rich transitional part and the omphacite-rich interiors.The calculation of element budgets reveal that the relationship between the difference of bulk-rock compositions and host minerals and their abundances. The higher contents of medium-heavy rare earth element (M-HREE) in veins reflects the occurrence of M-HREE by more garnets in veins; and the higher contents of rare earth elements-Th-U-Pb-Sr in the transitional part reflects a large number of epidote group minerals and carbonates controlthese elements; the higher contents of K-Rb-Ba-Cs in omphacite-rich interiors reflects the control of these elements by phengite. On the other hand, the compositional differences of the same mineral in different parts of the rock samples can reflect the geochemical changes of elements in different metamorphic stages and different rehydration degrees directly.Compared with the omphacite-rich interior representing the least fluidinfiltration, the rehydration of external fluid decreased the abundances of phengite and omphacite in the veins and transitional part, and enriched K-Rb-Ba-Cs-Pb-Sr; increased abundance of garnet butdepleted HREE; increased abundance of epidote but depleted in Th-U-light rare earth elements (LREE). Combined with the large amount of carbonates in transitional part, it is speculated that the external fluid is carbonate-bearing serpentinite-derived fluid. After the fluid- rock interaction, the contents of LILE increased and the carbonate component of the fluid decreased significantly in fluid, but the contents of other elements show less variation.
-
图 6 球粒陨石标准化矿物成分元素蛛网图(标准化值来自Sun and McDonough, 1989)
Fig. 6. Chondrite normalized mineral composition distributed diagrams(normalization values from Sun and McDonough, 1989)
图 7 西南天山变质岩块体流体-岩石相互作用示意图
第一期流体使得变质岩块普遍富集多硅白云母,第二期流体使得变质岩块发生不同程度的水化,A部分的蓝闪石、石榴石含量占比增加,多硅白云母与磷灰石含量占比降低;B部分的蓝闪石、帘石、石榴石和碳酸盐矿物占比增加,多硅白云母和磷灰石含量占比降低;C部分几乎未受到第二期流体的影响;据Xiao et al.(2017)
Fig. 7. Schematic illustration of fluid-rock interaction of metamorphic rock block from Southwestern Tianshan
图 10 三部分石榴石和帘石族矿物的元素含量变化图(a~d)和帘石核边部元素分配对比图(e~f)
a~b. 石榴石HREE-Y的含量变化图及中重稀土元素配分图;c~d. 帘石族矿物的Pb-Th,Th-La含量对比图;e. 帘石核-边的球粒陨石标准化稀土元素蛛网图;f. 同一帘石颗粒核部、边部微量元素变化图
Fig. 10. Co-variation diagrams for element contents of garnet and epidote group minerals from three parts (a-d) and comparison diagrams of element distribution at the edge and core of epidote (e-f)
-
Ague, J. J., 2011. Extreme Channelization of Fluid and the Problem of Element Mobility during Barrovian Metamorphism. American Mineralogist, 96(2/3): 333-352. https://doi.org/10.2138/am.2011.3582 Bebout, G. E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260(3/4): 373-393. https://doi.org/10.1016/j.epsl. 2007. 05.050 doi: 10.1016/j.epsl.2007.05.050 Beinlich, A., Klemd, R., John, T., et al., 2009. Trace-Element Mobilization during Ca-Metasomatism along a Major Fluid Conduit: Eclogitization of Blueschist as a Consequence of Fluid-Rock Interaction. Geochimica et Cosmochimica Acta, 74(6): 1892-1922. https://doi.org/10.1016/j.gca.2009.12.011 Chen, S., Wang, X. H., Niu, Y. L., et al., 2017. Simple and Cost-Effective Methods for Precise Analysis of Trace Element Abundances in Geological Materials with ICP-MS. Science Bulletin, 62(4): 277-289. https://doi.org/10.1016/j.scib.2017.01.004 Gao, J., Klemd, R., 2001. Primary Fluids Entrapped at Blueschist to Eclogite Transition: Evidence from the Tianshan Meta-Subduction Complex in Northwestern China. Contributions to Mineralogy and Petrology, 142(1): 1-14. https://doi.org/10.1007/s004100100275 Gao, J., Klemd, R., 2003. Formation of HP-LT Rocks and their Tectonic Implications in the Western Tianshan Orogen, NW China: Geochemical and Age Constraints. Lithos, 66(1/2): 1-22. https://doi.org/10.1016/s0024-4937(02)00153-6 Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3/4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018 Herms, P., John, T., Bakker, R. J., et al., 2012. Evidence for Channelized External Fluid Flow and Element Transfer in Subducting Slabs (Raspas Complex, Ecuador). Chemical Geology, 310-311: 79-96. https://doi.org/10.1016/j.chemgeo.2012.03.023 Huang, H. W., 2021. The Formation Mechanism of the Omphacite Veins in Blueschists from Southwestern Tianshan (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). John, T., Gussone, N., Podladchikov, Y. Y., et al., 2012. Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs. Nature Geoscience, 5(7): 489-492. https://doi.org/10.1038/ngeo1482 John, T., Klemd, R., Gao, J., et al., 2008. Trace-Element Mobilization in Slabs Due to Non Steady-State Fluid-Rock Interaction: Constraints from an Eclogite-Facies Transport Vein in Blueschist (Tianshan, China). Lithos, 103(1): 1-24. https://doi.org/10.1016/j.lithos.2007.09.005 Klemd, R., Bröcker, M., Hacker, B. R., et al., 2005. New Age Constraints on the Metamorphic Evolution of the High‐Pressure/Low‐Temperature Belt in the Western Tianshan Mountains, NW China. The Journal of Geology, 113(2): 157-168. https://doi.org/10.1086/427666 Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332-333(4): 328-339. https://doi.org/10.1016/j.lithos.2019.02.024 Li, J. L., Gao, J., John, T., et al., 2013. Fluid-Mediated Metal Transport in Subduction Zones and Its Link to Arc-Related Giant Ore Deposits: Constraints from a Sulfide-Bearing Hp Vein in Lawsonite Eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120: 326-362. https://doi.org//10.1016/j.gca.2013.06.023 Li, J. L., John, T., Gao, J., et al., 2017. Subduction Channel Fluid-Rock Interaction and Mass Transfer: Constraints from a Retrograde Vein in Blueschist (SW Tianshan, China). Chemical Geology, 456: 28-42. https://doi.org/10.1016/j.chemgeo.2017.03.003 Li, J. L., Klemd, R., Gao, J., et al., 2012. Coexisting Carbonate-Bearing Eclogite and Blueschist in SW Tianshan, China: Petrology and Phase Equilibria. Journal of Asian Earth Sciences, 60: 174-187. https://doi.org/10.1016/j.jseaes.2012.08.015 Lü, Z., Bucher, K., 2018. The Coherent Ultrahigh-Pressure Terrane of the Tianshan Meta-Ophiolite Belt, NW China. Lithos, 314-315: 260-273. https://doi.org/10.1016/j.lithos.2018.06.004 Lü, Z., Zhang, L., Du, J., et al., 2012. Petrology of Hp Metamorphic Veins in Coesite-Bearing Eclogite from Western Tianshan, China: Fluid Processes and Elemental Mobility During Exhumation in a Cold Subduction Zone. LITHOS, 136-139: 168-186. https://doi.org/10.1016/j.lithos.2011.10.011 Peng, W. G., Zhang, L. F., Shen, T. T., 2018. Implications for the Deep Carbon Cycle from the Carbonation in Subduction Zones: A Case Study of Carbonated Micaschists from Chinese Southwestern Tianshan. Acta Petrologica Sinica, 34(4): 1204-1218 (in Chinese with English abstract). Shen, T. T., Hermann, J., Zhang, L. F., et al., 2015. UHP Metamorphism Documented in Ti-Chondrodite- and Ti-Clinohumite-Bearing Serpentinized Ultramafic Rocks from Chinese Southwestern Tianshan. Journal of Petrology, 56(7): 1425-1458. https://doi.org/10.1093/petrology/egv042 Straaten, F. v. d., Halama, R., John, T., et al., 2012. Tracing the Effects of High-Pressure Metasomatic Fluids and Seawater Alteration in Blueschist-Facies Overprinted Eclogites: Implications for Subduction Channel Processes. Chemical Geology, 292-293: 69-87. https://doi.org/10.1016/j.chemgeo.2011.11.008 Straaten, F. v. d., Volker, S., Timm, J., et al., 2008. Blueschist-Facies Rehydration of Eclogites (Tian Shan, NW-China): Implications for Fluid-Rock Interaction in the Subduction Channel. Chemical Geology, 255: 195-219. https://doi.org/10.1016/j.chemgeo.2008.06.037 Su, W., Gao, J., Klemd, R., et al., 2010. U-Pb Zircon Geochronology of Tianshan Eclogites in NW China: Implication for the Collision between the Yili and Tarim Blocks of the Southwestern Altaids. European Journal of Mineralogy, 22(4): 473-478. https://doi.org/10.1127/0935-1221/2010/0022-2040 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 Syracuse, E. M., Abers, G. A., 2006. Global Compilation of Variations in Slab Depth beneath Arc Volcanoes and Implications. Geochemistry, Geophysics, Geosystems, 7(5): 1-15. https://doi.org/10.1029/2005gc001045 Tan, Z., Agard, P., Gao, J., et al., 2017. P-T-Time-Isotopic Evolution of Coesite-Bearing Eclogites: Implications for Exhumation Processes in SW Tianshan. Lithos, 278-281: 1-25. https://doi.org/10.1016/j.lithos.2017.01.010 Wang, L., Zhang, G. B., 2023. Fractionation Behavior of Stable Isotopes (Fe-K-Li-B-Ba) in Subducted Plates. Earth Science, 49(2): 685-699(in Chinese with English abstract). Wei, C., Wang, W., Clarke, G. L., et al., 2009. Metamorphism of High/Utrahigh-Pressure Pelitic-Felsic Schist in the South Tianshan Orogen, NW China: Phase Equilibria and P-T Path. Journal of Petrology, 50(10): 1973-1991. https://doi.org/10.1093/petrology/egp064 Wu, K., Yuan, H. L., Lyu, N., et al., 2020. The Behavior of Fluid Mobile Elements during Serpentinization and Dehydration of Serpentinites in Subduction Zones. Acta Petrologica Sinica, 36(1): 141-153 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.14 Wu, W. W., Yang, J. S., 2022. How is the Deep Subducted Crustal Material Recycled to Earth Surface? Earth Science, 47(10): 3772-3775 (in Chinese with English abstract). Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02 Xiao, Y. Y., An, Z., Chen, S., et al., 2020. Mineral Compositions of Syn-Collisional Granitoids and their Implications for the Formation of Juvenile Continental Crust and Adakitic Magmatism. Journal of Petrology, 61(3). https://doi.org/10.1093/petrology/egaa038 Xiao, Y., Niu, Y., Li, H., et al., 2014. Trace Element Budgets and (Re-) Distribution During Subduction-Zone Ultrahigh Pressure Metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 365: 54-68. https://doi.org/10.1016/j.chemgeo.2013.12.005 Xiao, Y. Y., Niu, Y. L., Wang, K. L., et al., 2017. Different Stages of Chemical Alteration on Metabasaltic Rocks in the Subduction Channel: Evidence from the Western Tianshan Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 145(2-3): 111-122. https://doi.org/10.1016/j.jseaes.2017.06.001 Xiao, Y., Niu, Y., Wang, K. L., et al., 2016. Geochemical Behaviours of Chemical Elements During Subduction-Zone Metamorphism and Geodynamic Significance. International Geology Review, 58(10): 1253-1277. https://doi.org/10.1080/00206814.2016.1147987 Yang, X., Zhang, L. F., Tian, Z. L., et al., 2013. Petrology and U-Pb Zircon Dating of Coesite-Bearing Metapelite from the Kebuerte Valley, Western Tianshan, China. Journal of Asian Earth Sciences, 70-71: 295-307. https://doi.org/10.1016/j.jseaes.2013.03.020 Zack, T., John, T., 2007. An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239(3/4): 199-216. https://doi.org/10.1016/j.chemgeo.2006.10.020 Zhang, L. F., Chu, X., Zhang, L., et al., 2018. The Early Exhumation History of the Western Tianshan UHP Metamorphic Belt, China: New Constraints from Titanite U-Pb Geochronology and Thermobarometry. Journal of Metamorphic Geology, 36(5): 631-651. https://doi.org/10.1111/jmg.12422 Zheng, Y. F., Chen, R. X., Xu, Z., et al., 2016. The Transport of Water in Subduction Zones. Science China Earth Sciences, 59(4): 651-682. https://doi.org/10.1007/s11430-015-5258-4 黄宏炜, 2021. 西南天山蓝片岩中绿辉石脉体的形成机制(硕士毕业论文). 北京: 中国地质大学(北京), 64. 彭卫刚, 张立飞, 申婷婷, 等, 2018. 俯冲带碳酸盐化对深部碳循环的启示: 以中国西南天山碳酸盐化云母片岩为例. 岩石学报, 34(4): 1204-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201804021.htm 王琳, 张贵宾, 2023. 俯冲板片稳定同位素(Fe-K-Li-B-Ba)的分馏行为. 地球科学, 49(2): 685-699 doi: 10.3799/dqkx.2022.176 吴凯, 袁洪林, 吕楠, 等, 2020. 蛇纹石化和俯冲带蛇纹岩变质脱水过程中流体活动性元素的行为. 岩石学报, 36(1): 141-153. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001014.htm 吴魏伟, 杨经绥, 2022. 深俯冲地壳物质如何循环至地表? 地球科学, 47(10): 3772-3775. doi: 10.3799/dqkx.2022.803 -
dqkxzx-49-8-2751-附表1.docx
dqkxzx-49-8-2751-附表3.zip
dqkxzx-49-8-2751-附表2.zip
-