• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    数据和知识融合的Bayesian-MCMC三维地质建模

    王丽芳 刘肖莉 徐坤 杜林泽 徐章皓 张宝一

    王丽芳, 刘肖莉, 徐坤, 杜林泽, 徐章皓, 张宝一, 2024. 数据和知识融合的Bayesian-MCMC三维地质建模. 地球科学, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069
    引用本文: 王丽芳, 刘肖莉, 徐坤, 杜林泽, 徐章皓, 张宝一, 2024. 数据和知识融合的Bayesian-MCMC三维地质建模. 地球科学, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069
    Wang Lifang, Liu Xiaoli, Xu Kun, Du Linze, Xu Zhanghao, Zhang Baoyi, 2024. Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069
    Citation: Wang Lifang, Liu Xiaoli, Xu Kun, Du Linze, Xu Zhanghao, Zhang Baoyi, 2024. Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion. Earth Science, 49(8): 3056-3070. doi: 10.3799/dqkx.2023.069

    数据和知识融合的Bayesian-MCMC三维地质建模

    doi: 10.3799/dqkx.2023.069
    基金项目: 

    有色金属成矿预测与地质环境监测教育部重点实验室(中南大学)开放研究基金项目 2022YSJS06

    国家自然科学基金项目 42072326

    国家自然科学基金项目 41772348

    中国地质调查局项目 DD20190156

    详细信息
      作者简介:

      王丽芳(1979-),女,工程师,博士,从事测绘地理信息技术研究及相关教学工作.ORCID:0000-0001-8950-4069. E-mail:csuwlf@139.com

      通讯作者:

      张宝一,ORCID: 0000-0001-6075-9359. E-mail: zhangbaoyi@csu.edu.cn

    • 中图分类号: P628+.3

    Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion

    • 摘要: 为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯-马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识. 首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价. 以桂西南地区凌念-那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.

       

    • 图  1  研究区平面地质图

      Fig.  1.  Geological map of study area

      图  2  建模图切地质剖面图

      Fig.  2.  Geological cross-sections for 3D modeling

      图  3  基于Bayesian-MCMC的三维地质模型推断框架

      Fig.  3.  Bayesian-MCMC based 3D geological model inference framework

      图  4  由平面地质图和剖面地质图来提取建模数据

      Fig.  4.  Extracted modeling data from geological map and cross-section

      图  5  数据与知识融合的三维地质建模贝叶斯网络

      Fig.  5.  Bayesian network for 3D geological modeling fusing data and knowledge

      图  6  模型参数迭代轨迹(a)和后验分布图(b)

      Fig.  6.  (a)Iterative trajectories and (b) posterior distributions of model parameter

      图  7  三维地质模型

      a. 显式建模(张宝一等,2017);b. 无约束建模;c. 约束建模

      Fig.  7.  Three-dimensional geological models

      图  8  三维地质模型的沿Y轴剖面

      a. 无约束建模;b. 约束建模

      Fig.  8.  Cross-sections along Y axis of 3D geological models

      图  9  三维信息熵模型对比

      a. 无约束建模;b. 约束建模

      Fig.  9.  Comparison of 3D information entropy models

      图  10  信息熵模型剖面对比

      a. 无约束建模;b. 约束建模

      Fig.  10.  Comparison of information entropy cross-sections

      图  11  统计建模结果信息熵直方图对比

      Fig.  11.  Comparison of information entropy histograms of stochastic modeling results

      表  1  地层厚度似然表达

      Table  1.   Likelihood expression of formation thickness

      地层厚度似然表达 均值(m) 标准差(m)
      百逢组 717 45
      马脚岭组 778 30
      茅口阶 170 50
      栖霞组 219 30
      石炭系上统 223 15
      石炭系中统 311 10
      下载: 导出CSV

      表  2  倾角似然表达

      Table  2.   Inclination Likelihood Expression

      倾角似然表达 均值(°) 标准差(°)
      百逢组下段 29.61 6
      马脚岭组 26.10 6
      茅口阶 25.55 6
      栖霞组 25.31 5
      石炭系上统 26.07 5
      石炭系中统 26.39 5
      石炭系下统 26.16 5
      断层 72.00 3
      下载: 导出CSV
    • Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi.org/10.1016/j.jappgeo.2012.05.003
      Bistacchi, A., Massironi, M., Dal Piaz, G. V., et al., 2008. 3D Fold and Fault Reconstruction with an Uncertainty Model: An Example from an Alpine Tunnel Case Study. Computers & Geosciences, 34(4): 351-372. https://doi.org/10.1016/j.cageo.2007.04.002
      Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013
      Carlin, C. B. P., 1996. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. Journal of the American Statistical Association, 91(434): 883-904. https://doi.org/10.1080/01621459.1996.10476956
      Daniel, S., Philipp, B., Christoph, B., 2017. Uncertainty Assessment in 3-D Geological Models of Increasing Complexity. Solid Earth, 8(2): 515-530. https://doi.org/10.5194/se-8-515-2017
      de la Varga, M., Wellmann, J. F., 2016. Structural Geologic Modeling as an Inference Problem: A Bayesian Perspective. Interpretation, 4(3): SM1-SM16. https://doi.org/10.1190/int-2015-0188.1
      de la Varga, M., Schaaf, A., Wellmann, F., 2019. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development, 12(1): 1-32. https://doi.org/10.5194/gmd-12-1-2019
      Fan, J. C., Mao, X. C., Zou, P. J., et al., 2012. Integration Method for Metallogenic Information under Condition of Metallogenic Information Asymmetry. Transactions of Nonferrous Metals Society of China, 22(3): 940-947(in Chinese with English abstract).
      González-Garcia, J., Jessell, M., 2016. A 3D Geological Model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of Geological Uncertainty Using a Stochastic Approach Based on Bézier Curve Design. Tectonophysics, 687: 139-157. https://doi.org/10.1016/j.tecto. 2016. 09.011 doi: 10.1016/j.tecto.2016.09.011
      Grose, L., Laurent, G., Aillères, L., et al., 2018. Inversion of Structural Geology Data for Fold Geometry. Journal of Geophysical Research: Solid Earth, 123(8): 6318-6333. https://doi.org/10.1029/2017jb015177
      Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University. Natural Science, 40(9): 1337-1342(in Chinese with English abstract).
      Hassen, I., Gibson, H., Hamzaoui-Azaza, F., et al., 2016. 3D Geological Modeling of the Kasserine Aquifer System, Central Tunisia: New Insights into Aquifer-Geometry and Interconnections for a Better Assessment of Groundwater Resources. Journal of Hydrology, 539(W0542): 223-236. https://doi.org/10.1016/j.jhydrol.2016.05.034
      Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., et al., 2014. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Mathematical Geosciences, 46(8): 931-953. https://doi.org/10.1007/s11004-014-9540-3
      Hou, W. S., Liu, H. G., Zheng, T. C., et al., 2021. Hierarchical MPS-Based Three-Dimensional Geological Structure Reconstruction with Two-Dimensional Image(S). Journal of Earth Science, 32(2): 455-467. https://doi.org/10.1007/s12583-021-1443-x
      Joly, A., Porwal, A., McCuaig, T. C., 2012. Exploration Targeting for Orogenic Gold Deposits in the Granites-Tanami Orogen: Mineral System Analysis, Targeting Model and Prospectivity Analysis. Ore Geology Reviews, 48(1-2): 349-383. https://doi.org/10.1016/j.oregeorev.2012.05.004
      Krajnovich, A., Zhou, W., Gutierrez, M., 2020. Uncertainty Assessment for 3D Geologic Modeling of Fault Zones Based on Geologic Inputs and Prior Knowledge. Solid Earth, 11(4): 1457-1474. https://doi.org/10.5194/se-11-1457-2020
      Lajaunie, C., Courrioux, G., Manuel, L., 1997. Foliation Fields and 3D Cartography in Geology: Principles of a Method Based on Potential Interpolation. Mathematical Geology, 29(4): 571-584. https://doi.org/10.1007/bf02775087
      Lee, K., Jung, S., Choe, J., 2016. Ensemble Smoother with Clustered Covariance for 3D Channelized Reservoirs with Geological Uncertainty. Journal of Petroleum Science and Engineering, 145(3): 423-435. https://doi.org/10.1016/j.petrol.2016.05.029
      Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7
      Liang, D., Hua, W. H., Liu, X. G., et al., 2021. Uncertainty Assessment of a 3D Geological Model by Integrating Data Errors, Spatial Variations and Cognition Bias. Earth Science Informatics, 14(1): 161-178. https://doi.org/10.1007/s12145-020-00548-4
      Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546-547: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007
      Lindsay, M. D., Stéphane, P., Jessell, M. W., et al., 2013. Making the Link Between Geological and Geophysical Uncertainty: Geodiversity in the Ashanti Greenstone Belt. Geophysical Journal International, 195(2): 903-922. doi: 10.1093/gji/ggt311
      Mallet, J. L., 2004. Space-Time Mathematical Framework for Sedimentary Geology. Mathematical Geology, 36(1): 1-32. https://doi.org/10.1023/b:matg.0000016228.75495.7c
      Mao, X. C., Hu, C., Zhou, S. G., et al., 2011. Field Analysis of Metallogenic Information and its Application. Journal of Central South University of Technology, 18(1): 196-207. https://doi.org/10.1007/s11771-011-0680-z
      Olierook, H. K. H., Scalzo, R., Kohn, D., et al., 2020. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12(1): 479-493. https://doi.org/10.1016/j.gsf.2020.04.015
      Pirot, G., Joshi, R., Giraud, J., et al., 2022. LoopUI-0.1: Indicators to Support Needs and Practices in 3D Geological Modelling Uncertainty Quantification. Geoscientific Model Development, 15(12): 4689-4708. https://doi.org/10.5194/gmd-15-4689-2022
      Shannon, C. E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27(4): 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
      Wang, F. Y., Mao, X. C., Deng, H., et al., 2020. Manganese Potential Mapping in Western Guangxi-Southeastern Yunnan (China) Via Spatial Analysis and Modal-Adaptive Prospectivity Modeling. Transactions of Nonferrous Metals Society of China, 30(4): 1058-1070. https://doi.org/10.1016/s1003-6326(20)65277-3
      Wellmann, J. F., Horowitz, F. G., Schill, E., et al., 2010. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion. Tectonophysics, 490(3/4): 141-151. https://doi.org/10.1016/j.tecto.2010.04.022
      Wellmann, J. F., Regenauer-Lieb, K., 2012. Uncertainties Have a Meaning: Information Entropy as a Quality Measure for 3-D Geological Models. Tectonophysics, 526-529(6): 207-216. https://doi.org/10.1016/j.tecto.2011.05.001
      Wellmann, J. F., Lindsay, M., Poh, J., Jessell, M., 2014. Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations. Energy Procedia, 59: 374-381. doi: 10.1016/j.egypro.2014.10.391
      Zhang, B. Y., Yang, L., Chen, X. Y., et al., 2017. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections: A Case Study of Manganese Deposits in Southwestern Guangxi, China. Journal of Jilin University. Earth Science Edition, 47(3): 933-948(in Chinese with English abstract).
      Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644(in Chinese with English abstract).
      Zhao, M., Tang, H. M., Zhan, H. B., et al., 2022. A Numerical Method for Solving Three-Dimensional Probability Distribution of Rockmass Fracture Orientations. Journal of Jilin University. Earth Science Edition, 47(4): 1470-1482(in Chinese with English abstract).
      樊俊昌, 毛先成, 邹品娟, 等, 2012. 信息不对称条件下的成矿信息集成方法. 中国有色金属学报, 22(3): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201203040.htm
      郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报. 自然科学版, 40(9): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201909021.htm
      张宝一, 杨莉, 陈笑扬, 等, 2017. 基于图切地质剖面的区域成矿地质体三维建模与资源评价——以桂西南地区锰矿为例. 吉林大学学报: 地球科学版, 47(3): 933-948. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703027.htm
      张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
      赵萌, 唐辉明, 詹红兵, 等, 2022. 求解岩体裂隙产状三维概率分布的数值方法. 地球科学, 47(4): 1470-1482. doi: 10.3799/dqkx.2021.056
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  754
    • HTML全文浏览量:  130
    • PDF下载量:  100
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-22
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回