Bayesian-MCMC (Markov Chain Monte Carlo) Based Three-Dimensional Geological Model Optimization by Data and Knowledge Fusion
-
摘要: 为了充分利用已有地质知识来降低三维地质模型的不确定性,采用了一种基于贝叶斯-马尔科夫链蒙特卡洛(Bayesian-MCMC,Bayesian-Markov chain Monte Carlo)方法的三维地质模型概率性推断框架,在协同克里金(Cokriging)插值的三维地质隐式建模过程中,显式地考虑先验参数(即建模数据集)的不确定性,并将已有地质知识(如地层厚度、地层产状、断层产状等)或地球物理勘探数据以似然函数的方式嵌入到推断框架中,来充分保证三维地质模型符合已有的地质知识. 首先,基于Bayesian概率理论,建立不同建模数据集的先验分布以及已有地质知识似然函数约束;其次,使用MCMC随机采样的方法对先验参数的后验概率空间进行采样,获得大量既满足建模数据先验分布、又符合已有地质知识似然约束的建模数据样本;再次,由重新计算的建模数据样本集采用Cokriging插值算法获得一系列模型实现,获得符合已有地质知识的三维地质模型;最后,相比确定性三维地质建模方法,Bayesian-MCMC概率性建模框架可得到一系列模型实现,同时采用信息熵对模型的不确定性进行评价. 以桂西南地区凌念-那茶地区为例,采用本文构建的Bayesian-MCMC概率性推断框架,考虑地层、断层采样点及产状数据的不确定性,由已知的地层厚度、地层倾角和断层倾角等地质知识对三维地质模型进行优化,结果表明该方法既能重建地质体的三维空间形态,又可降低三维地质模型的不确定性,为地质学家通过已有地质知识来降低三维地质模型的不确定性提供了有效的途径.Abstract: To fully utilize known knowledge to reduce uncertainty of three-dimensional (3D) geological model, a Bayesian-Markov chain Monte Carlo (Bayesian-MCMC) based 3D geological model inference framework is proposed to consider the uncertainty of modeling data (prior parameter) and integrate known knowledge or geophysical exploration data as likelihood function into the process of 3D geological implicit modeling by Cokriging interpolant, which well satisfies the known knowledge. Firstly, different prior distributions of modeling data and likelihood functions of known knowledge are built based on Bayesian probabilistic theory. Secondly, the posterior space of prior parameter (modeling data) can be explored by Markov chain Monte Carlo (MCMC) sampling method to obtain a large number of samples which simultaneously satisfy the prior distributions of modeling data and likelihood constraints of know knowledge. Thirdly, a series of 3D geological model realizations satisfying known knowledge can be constructed by Cokriging interpolant using above newly obtained samples of modeling data. Finally, compared with the deterministic 3D geological modeling methods, the Bayesian-MCMC probabilistic inference framework can obtain a series of model realizations to allowably apply information entropy to evaluate model uncertainty. Taking the Lingnian-Nacha area in the southwestern Guangxi Zhuang Autonomous Region (GZAR) of China as am example, the proposed Bayesian-MCMC probabilistic inference framework was used to optimize 3D geological model simultaneously considering location and attitude uncertainties of strata and fault and known knowledge of stratum thickness and attitudes of strata and fault. The results of case study show that the proposed method can not only reconstruct 3D spatial geometry of geological body but also reduce uncertainty of 3D geological model, which provides geologist with an effective way to integrate modeling data and known knowledge to reconstruct 3D geological model and reduce its uncertainty.
-
Key words:
- implicit modeling /
- Bayes /
- MCMC /
- uncertainty /
- cokriging interpolant
-
表 1 地层厚度似然表达
Table 1. Likelihood expression of formation thickness
地层厚度似然表达 均值(m) 标准差(m) 百逢组 717 45 马脚岭组 778 30 茅口阶 170 50 栖霞组 219 30 石炭系上统 223 15 石炭系中统 311 10 表 2 倾角似然表达
Table 2. Inclination Likelihood Expression
倾角似然表达 均值(°) 标准差(°) 百逢组下段 29.61 6 马脚岭组 26.10 6 茅口阶 25.55 6 栖霞组 25.31 5 石炭系上统 26.07 5 石炭系中统 26.39 5 石炭系下统 26.16 5 断层 72.00 3 -
Abedi, M., Norouzi, G. H., 2012. Integration of Various Geophysical Data with Geological and Geochemical Data to Determine Additional Drilling for Copper Exploration. Journal of Applied Geophysics, 83: 35-45. https://doi.org/10.1016/j.jappgeo.2012.05.003 Bistacchi, A., Massironi, M., Dal Piaz, G. V., et al., 2008. 3D Fold and Fault Reconstruction with an Uncertainty Model: An Example from an Alpine Tunnel Case Study. Computers & Geosciences, 34(4): 351-372. https://doi.org/10.1016/j.cageo.2007.04.002 Calcagno, P., Chilès, J. P., Courrioux, G., et al., 2008. Geological Modelling from Field Data and Geological Knowledge. Physics of the Earth and Planetary Interiors, 171(1/2/3/4): 147-157. https://doi.org/10.1016/j.pepi.2008.06.013 Carlin, C. B. P., 1996. Markov Chain Monte Carlo Convergence Diagnostics: A Comparative Review. Journal of the American Statistical Association, 91(434): 883-904. https://doi.org/10.1080/01621459.1996.10476956 Daniel, S., Philipp, B., Christoph, B., 2017. Uncertainty Assessment in 3-D Geological Models of Increasing Complexity. Solid Earth, 8(2): 515-530. https://doi.org/10.5194/se-8-515-2017 de la Varga, M., Wellmann, J. F., 2016. Structural Geologic Modeling as an Inference Problem: A Bayesian Perspective. Interpretation, 4(3): SM1-SM16. https://doi.org/10.1190/int-2015-0188.1 de la Varga, M., Schaaf, A., Wellmann, F., 2019. GemPy 1.0: Open-Source Stochastic Geological Modeling and Inversion. Geoscientific Model Development, 12(1): 1-32. https://doi.org/10.5194/gmd-12-1-2019 Fan, J. C., Mao, X. C., Zou, P. J., et al., 2012. Integration Method for Metallogenic Information under Condition of Metallogenic Information Asymmetry. Transactions of Nonferrous Metals Society of China, 22(3): 940-947(in Chinese with English abstract). González-Garcia, J., Jessell, M., 2016. A 3D Geological Model for the Ruiz-Tolima Volcanic Massif (Colombia): Assessment of Geological Uncertainty Using a Stochastic Approach Based on Bézier Curve Design. Tectonophysics, 687: 139-157. https://doi.org/10.1016/j.tecto. 2016. 09.011 doi: 10.1016/j.tecto.2016.09.011 Grose, L., Laurent, G., Aillères, L., et al., 2018. Inversion of Structural Geology Data for Fold Geometry. Journal of Geophysical Research: Solid Earth, 123(8): 6318-6333. https://doi.org/10.1029/2017jb015177 Guo, J. T., Liu, Y. H., Han, Y. F., et al., 2019. Implicit 3D Geological Modeling Method for Borehole Data Based on Machine Learning. Journal of Northeastern University. Natural Science, 40(9): 1337-1342(in Chinese with English abstract). Hassen, I., Gibson, H., Hamzaoui-Azaza, F., et al., 2016. 3D Geological Modeling of the Kasserine Aquifer System, Central Tunisia: New Insights into Aquifer-Geometry and Interconnections for a Better Assessment of Groundwater Resources. Journal of Hydrology, 539(W0542): 223-236. https://doi.org/10.1016/j.jhydrol.2016.05.034 Hillier, M. J., Schetselaar, E. M., de Kemp, E. A., et al., 2014. Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions. Mathematical Geosciences, 46(8): 931-953. https://doi.org/10.1007/s11004-014-9540-3 Hou, W. S., Liu, H. G., Zheng, T. C., et al., 2021. Hierarchical MPS-Based Three-Dimensional Geological Structure Reconstruction with Two-Dimensional Image(S). Journal of Earth Science, 32(2): 455-467. https://doi.org/10.1007/s12583-021-1443-x Joly, A., Porwal, A., McCuaig, T. C., 2012. Exploration Targeting for Orogenic Gold Deposits in the Granites-Tanami Orogen: Mineral System Analysis, Targeting Model and Prospectivity Analysis. Ore Geology Reviews, 48(1-2): 349-383. https://doi.org/10.1016/j.oregeorev.2012.05.004 Krajnovich, A., Zhou, W., Gutierrez, M., 2020. Uncertainty Assessment for 3D Geologic Modeling of Fault Zones Based on Geologic Inputs and Prior Knowledge. Solid Earth, 11(4): 1457-1474. https://doi.org/10.5194/se-11-1457-2020 Lajaunie, C., Courrioux, G., Manuel, L., 1997. Foliation Fields and 3D Cartography in Geology: Principles of a Method Based on Potential Interpolation. Mathematical Geology, 29(4): 571-584. https://doi.org/10.1007/bf02775087 Lee, K., Jung, S., Choe, J., 2016. Ensemble Smoother with Clustered Covariance for 3D Channelized Reservoirs with Geological Uncertainty. Journal of Petroleum Science and Engineering, 145(3): 423-435. https://doi.org/10.1016/j.petrol.2016.05.029 Lemon, A. M., Jones, N. L., 2003. Building Solid Models from Boreholes and User-Defined Cross-Sections. Computers & Geosciences, 29(5): 547-555. https://doi.org/10.1016/s0098-3004(03)00051-7 Liang, D., Hua, W. H., Liu, X. G., et al., 2021. Uncertainty Assessment of a 3D Geological Model by Integrating Data Errors, Spatial Variations and Cognition Bias. Earth Science Informatics, 14(1): 161-178. https://doi.org/10.1007/s12145-020-00548-4 Lindsay, M. D., Aillères, L., Jessell, M. W., et al., 2012. Locating and Quantifying Geological Uncertainty in Three-Dimensional Models: Analysis of the Gippsland Basin, Southeastern Australia. Tectonophysics, 546-547: 10-27. https://doi.org/10.1016/j.tecto.2012.04.007 Lindsay, M. D., Stéphane, P., Jessell, M. W., et al., 2013. Making the Link Between Geological and Geophysical Uncertainty: Geodiversity in the Ashanti Greenstone Belt. Geophysical Journal International, 195(2): 903-922. doi: 10.1093/gji/ggt311 Mallet, J. L., 2004. Space-Time Mathematical Framework for Sedimentary Geology. Mathematical Geology, 36(1): 1-32. https://doi.org/10.1023/b:matg.0000016228.75495.7c Mao, X. C., Hu, C., Zhou, S. G., et al., 2011. Field Analysis of Metallogenic Information and its Application. Journal of Central South University of Technology, 18(1): 196-207. https://doi.org/10.1007/s11771-011-0680-z Olierook, H. K. H., Scalzo, R., Kohn, D., et al., 2020. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12(1): 479-493. https://doi.org/10.1016/j.gsf.2020.04.015 Pirot, G., Joshi, R., Giraud, J., et al., 2022. LoopUI-0.1: Indicators to Support Needs and Practices in 3D Geological Modelling Uncertainty Quantification. Geoscientific Model Development, 15(12): 4689-4708. https://doi.org/10.5194/gmd-15-4689-2022 Shannon, C. E., 1948. A Mathematical Theory of Communication. Bell System Technical Journal, 27(4): 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x Wang, F. Y., Mao, X. C., Deng, H., et al., 2020. Manganese Potential Mapping in Western Guangxi-Southeastern Yunnan (China) Via Spatial Analysis and Modal-Adaptive Prospectivity Modeling. Transactions of Nonferrous Metals Society of China, 30(4): 1058-1070. https://doi.org/10.1016/s1003-6326(20)65277-3 Wellmann, J. F., Horowitz, F. G., Schill, E., et al., 2010. Towards Incorporating Uncertainty of Structural Data in 3D Geological Inversion. Tectonophysics, 490(3/4): 141-151. https://doi.org/10.1016/j.tecto.2010.04.022 Wellmann, J. F., Regenauer-Lieb, K., 2012. Uncertainties Have a Meaning: Information Entropy as a Quality Measure for 3-D Geological Models. Tectonophysics, 526-529(6): 207-216. https://doi.org/10.1016/j.tecto.2011.05.001 Wellmann, J. F., Lindsay, M., Poh, J., Jessell, M., 2014. Validating 3-D Structural Models with Geological Knowledge for Improved Uncertainty Evaluations. Energy Procedia, 59: 374-381. doi: 10.1016/j.egypro.2014.10.391 Zhang, B. Y., Yang, L., Chen, X. Y., et al., 2017. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections: A Case Study of Manganese Deposits in Southwestern Guangxi, China. Journal of Jilin University. Earth Science Edition, 47(3): 933-948(in Chinese with English abstract). Zhang, X. L., Wu, C. L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644(in Chinese with English abstract). Zhao, M., Tang, H. M., Zhan, H. B., et al., 2022. A Numerical Method for Solving Three-Dimensional Probability Distribution of Rockmass Fracture Orientations. Journal of Jilin University. Earth Science Edition, 47(4): 1470-1482(in Chinese with English abstract). 樊俊昌, 毛先成, 邹品娟, 等, 2012. 信息不对称条件下的成矿信息集成方法. 中国有色金属学报, 22(3): 940-947. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201203040.htm 郭甲腾, 刘寅贺, 韩英夫, 等, 2019. 基于机器学习的钻孔数据隐式三维地质建模方法. 东北大学学报. 自然科学版, 40(9): 1337-1342. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX201909021.htm 张宝一, 杨莉, 陈笑扬, 等, 2017. 基于图切地质剖面的区域成矿地质体三维建模与资源评价——以桂西南地区锰矿为例. 吉林大学学报: 地球科学版, 47(3): 933-948. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201703027.htm 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384 赵萌, 唐辉明, 詹红兵, 等, 2022. 求解岩体裂隙产状三维概率分布的数值方法. 地球科学, 47(4): 1470-1482. doi: 10.3799/dqkx.2021.056 -