• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南极海洋沉积物有机碳、氮特征及其古气候意义:以阿蒙森海为例

    陈东 葛倩 雷子炎 张泳聪 韩喜彬

    陈东, 葛倩, 雷子炎, 张泳聪, 韩喜彬, 2024. 南极海洋沉积物有机碳、氮特征及其古气候意义:以阿蒙森海为例. 地球科学, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070
    引用本文: 陈东, 葛倩, 雷子炎, 张泳聪, 韩喜彬, 2024. 南极海洋沉积物有机碳、氮特征及其古气候意义:以阿蒙森海为例. 地球科学, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070
    Chen Dong, Ge Qian, Lei Ziyan, Zhang Yongcong, Han Xibin, 2024. Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea. Earth Science, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070
    Citation: Chen Dong, Ge Qian, Lei Ziyan, Zhang Yongcong, Han Xibin, 2024. Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea. Earth Science, 49(8): 2925-2937. doi: 10.3799/dqkx.2023.070

    南极海洋沉积物有机碳、氮特征及其古气候意义:以阿蒙森海为例

    doi: 10.3799/dqkx.2023.070
    基金项目: 

    南极重点海域对气候变化的响应和影响 IRASCC2020-2022

    详细信息
      作者简介:

      陈东(2000-),男,硕士研究生,主要从事极地古海洋学研究. ORCID:0009-0009-4282-364X. E-mail:chendong3733@163.com

      通讯作者:

      葛倩, E-mail:qge@sio.org.cn

    • 中图分类号: P736

    Characteristics of Organic Carbon and Nitrogen in Antarctic Marine Sediments and Their Paleoclimatic Significance: A Case Study on the Amundsen Sea

    • 摘要: 为了更好地理解目前南极冰盖与气候的演化,以及为未来冰盖和气候变化的预测提供依据,通过对A11-02孔沉积物的有机碳、氮含量与稳定同位素值进行分析,结合粒度和地球化学元素等特征,探讨了中全新世以来西南极阿蒙森海沉积物有机质的来源及古气候意义. 沉积物的δ13Corg值指示有机质主要为海源输入,陆源有机质贡献相对较少. 通过分析沉积物总有机碳含量及海源有机质含量变化,结合粒度及元素的变化特征,认为中全新世以来研究区古生产力的变化主要与气候变化有关,进而识别出4 750~4 500 a BP、3 600~3 400 a BP、2 250~2 000 a BP和600~400 a BP 4个寒冷阶段.

       

    • 图  1  A11-02站位分布、区域洋流及冰芯位置示意图

      a. WDC06A-7(Marcott et al., 2014)及EPICA Dome C冰芯(Lüthi et al., 2008);b. 研究区洋流分布(修改自鞠梦珊,2019

      Fig.  1.  A11-02 station location distribution, regional ocean current and ice core location

      图  2  A11-02孔沉积物TOC、TN、δ13Corg和δ15N的纵向变化

      Fig.  2.  Longitudinal changes of TOC, TN, δ13Corg and δ15N of sediments from core A11-02

      图  3  A11-02孔沉积物TOC和TN相关性

      Fig.  3.  Correlation between TOC and TN of sediments from core A11-02

      图  4  阿蒙森海A11-02孔沉积物中TOC和海陆源有机碳的变化

      Fig.  4.  Changes of TOC and marine-terrigenous organic carbon of sediments from core A11-02 in the Amundsen Sea

      图  5  阿蒙森海A11-02孔沉积物海源有机碳含量(TOCmar)、 < 22 μm粒级组分的含量(雷子炎等,2022)、Fe/Al、δ15N变化及EPICA DomeC冰芯恢复的大气CO2浓度变化(Lüthi et al., 2008)

      Fig.  5.  Changes in marine organic carbon content(TOCmar), < 22 μm fraction content(Lei et al., 2022), Fe/Al, δ15N in sediments from core A11-02 in the Amundsen Sea and atmospheric CO2 concentration from EPICA DomeC ice core(Lüthi et al., 2008)

      图  6  阿蒙森海A11-02孔沉积物中海源有机碳含量(TOCmar)、 > 63 μm粒级组分的含量(雷子炎等,2022)、生源钡含量变化和WDC06A-7冰芯δ18O记录(Marcott et al., 2014)所重建的中全新世以来古气候演化历史

      Fig.  6.  The paleoclimate evolution history since the mid-Holocene reconstructed from the δ18O record of WDC06A-7 ice core (Marcott et al., 2014) and the changes of TOCmar, > 63 μm granular component(Lei et al., 2022) and biogenic barium content in sediments from core A11-02 in the Amundsen Sea

      表  1  A11-02孔沉积物元素、各粒级组分(雷子炎,2022)及有机碳、氮含量相关性矩阵

      Table  1.   Correlation matrix of sediment elements, fractions and organic carbon(Lei et al., 2022) and nitrogen contents of sediments from core A11-02

      Al2O3 Fe2O3 K2O MgO TiO2 CaO P2O5 MnO Na2O TN TOC 粘土 粉砂
      相关性 Al2O3 1.000
      Fe2O3 0.434 1.000
      K2O 0.884 0.344 1.000
      MgO 0.664 0.917 0.497 1.000
      TiO2 0.754 0.741 0.511 0.928 1.000
      CaO -0.547 -0.874 -0.353 -0.920 -0.861 1.000
      P2O5 -0.247 0.251 -0.413 0.233 0.153 -0.068 1.000
      MnO -0.124 0.345 -0.334 0.380 0.323 -0.251 0.905 1.000
      Na2O 0.460 0.569 0.444 0.651 0.525 -0.427 0.302 0.336 1.000
      TN 0.338 0.711 0.044 0.812 0.777 -0.765 0.602 0.731 0.449 1.000
      TOC 0.285 0.574 0.060 0.700 0.655 -0.603 0.698 0.849 0.493 0.904 1.000
      粘土 0.467 0.822 0.259 0.898 0.846 -0.877 0.341 0.508 0.506 0.853 0.737 1.000
      粉砂 0.286 0.591 0.132 0.645 0.617 -0.606 0.294 0.435 0.358 0.626 0.508 0.822 1.000
      -0.430 -0.784 -0.230 -0.855 -0.809 0.829 -0.340 -0.506 -0.481 -0.817 -0.696 -0.985 -0.909 1.000
      下载: 导出CSV

      表  2  A11-02孔沉积物元素、各粒级组分(雷子炎,2022)及有机碳、氮含量R型因子分析结果

      Table  2.   R-type factor analysis of sediment elements, fractions(Lei et al., 2022) and organic carbon and nitrogen contents of sediments from core A11-02

      F1 F2 F3 因子 方差百分比 累积%
      Al2O3 0.251 -0.147 0.925 F1 34.091 34.091
      Fe2O3 0.855 0.182 0.276 F2 31.883 65.974
      K2O 0.096 -0.335 0.875 F3 22.643 88.617
      MgO 0.771 0.253 0.558
      TiO2 0.656 0.220 0.660
      CaO -0.875 -0.087 -0.387
      P2O5 0.094 0.932 -0.172
      MnO 0.208 0.968 -0.037
      Na2O 0.273 0.346 0.536
      TN 0.657 0.637 0.270
      TOC 0.402 0.804 0.338
      粘土 0.828 0.358 0.353
      粉砂 0.729 0.281 0.136
      -0.830 -0.348 -0.300
      Co 0.354 0.921 -0.100
      Ni 0.460 0.868 0.133
      Mo 0.075 0.978 -0.054
      Ba 0.705 0.127 0.634
      Th 0.536 0.021 0.790
      U -0.686 -0.455 0.373
      下载: 导出CSV
    • Arrigo, K. R., van Dijken, G. L., 2003. Phytoplankton Dynamics within 37 Antarctic Coastal Polynya Systems. Journal of Geophysical Research: Oceans, 108(C8): 1-15. https://doi.org/10.1029/2002jc001739
      Baroni, C., Orombelli, G., 1994. Abandoned Penguin Rookeries as Holocene Paleoclimatic Indicators in Antarctica. Geology, 22(1): 23. https://doi.org/10.1130/0091-7613(1994)022<0023:aprahp>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0023:aprahp>2.3.co;2
      Björck, S., Olsson, S., Ellis-Evans, C., et al., 1996. Late Holocene Palaeoclimatic Records from Lake Sediments on James Ross Island, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 121(3/4): 195-220. https://doi.org/10.1016/0031-0182(95)00086-0
      Bonn, W. J., Gingele, F. X., Grobe H, et al., 1998. Palaeoproductivity at the Antarctic Continental Margin: Opal and Barium Records for the Last 400 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 139(3-4): 195-211. https://doi.org/10.1016/S0031-0182(97)00144-2
      Dansgaard, W., 1964. Stable Isotopes in Precipitation. Tellus, 16(4): 436-468. https://doi.org/10.1111/j.2153-3490.1964.tb00181.x
      DeMaster, D. J., Ragueneau, O., Nittrouer, C. A., 1996. Preservation Efficiencies and Accumulation Rates for Biogenic Silica and Organic C, N, and P in High‐latitude Sediments: The Ross Sea. Journal of Geophysical Research: Oceans, 101(C8): 18501-18518. https://doi.org/10.1029/96jc01634
      Ducklow, H. W., Erickson, M., Kelly, J., et al., 2008. Particle Export from the Upper Ocean over the Continental Shelf of the West Antarctic Peninsula: A Long-Term Record, 1992-2007. Deep Sea Research Part II: Topical Studies in Oceanography, 55(18/19): 2118-2131. https://doi.org/10.1016/j.dsr2.2008.04.028
      Favier, L., Durand, G., Cornford, S. L., et al., 2014. Retreat of Pine Island Glacier Controlled by Marine Ice-Sheet Instability. Nature Climate Change, 4(2): 117-121. https://doi.org/10.1038/nclimate2094
      Gao, Z. Y., Chen, L. Q., Wang, W. Q., et al., 2001. Air-Sea Fluxes and the Distribution of Sink and Source of CO2 between 80°W and 80°E in the Southern Ocean. Chinese Journal of Polar Research, 13(3): 175-186(in Chinese with English abstract).
      Gerringa, L. J. A., Alderkamp, A. C., Laan, P., et al., 2012. Iron from Melting Glaciers Fuels the Phytoplankton Blooms in Amundsen Sea (Southern Ocean): Iron Biogeochemistry. Deep Sea Research Part II: Topical Studies in Oceanography, 71-76(11-25): 16-31. https://doi.org/10.1016/j.dsr2.2012.03.007
      Gladstone, R. M., Bigg, G. R., Nicholls, K. W., 2001. Iceberg Trajectory Modeling and Meltwater Injection in the Southern Ocean. Journal of Geophysical Research: Oceans, 106(C9): 19903-19915. https://doi.org/10.1029/2000jc000347
      Ha, H. K., Wåhlin, A. K., Kim, T. W., et al., 2014. Circulation and Modification of Warm Deep Water on the Central Amundsen Shelf. Journal of Physical Oceanography, 44(5): 1493-1501. https://doi.org/10.1175/jpo-d-13-0240.1
      Hillenbrand, C. D., Fütterer, D., Grobe, H., et al., 2002. No Evidence for a Pleistocene Collapse of the West Antarctic Ice Sheet from Continental Margin Sediments Recovered in the Amundsen Sea. Geo-Marine Letters, 22(2): 51-59. https://doi.org/10.1007/s00367-002-0097-7
      Hillenbrand, C. D., Smith, J. A., Kuhn, G., et al., 2010. Age Assignment of a Diatomaceous Ooze Deposited in the Western Amundsen Sea Embayment after the last Glacial Maximum. Journal of Quaternary Science, 25(3): 280-295. https://doi.org/10.1002/jqs.1308
      Hillenbrand, C. D., Smith, J. A., Hodell, D. A., et al., 2017. West Antarctic Ice Sheet Retreat Driven by Holocene Warm Water Incursions. Nature, 547(7661): 43-48. https://doi.org/10.1038/nature22995