• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于二维细观裂隙模型的爆喷型岩爆机制

    孟陆波 李昊禹 李天斌 李攀 张彩虹

    孟陆波, 李昊禹, 李天斌, 李攀, 张彩虹, 2024. 基于二维细观裂隙模型的爆喷型岩爆机制. 地球科学, 49(8): 2789-2798. doi: 10.3799/dqkx.2023.071
    引用本文: 孟陆波, 李昊禹, 李天斌, 李攀, 张彩虹, 2024. 基于二维细观裂隙模型的爆喷型岩爆机制. 地球科学, 49(8): 2789-2798. doi: 10.3799/dqkx.2023.071
    Meng Lubo, Li Haoyu, Li Tianbin, Li Pan, Zhang Caihong, 2024. Study on Explosive Rockburst Mechanism Based on Two-Dimensional Meso-Fracture Model. Earth Science, 49(8): 2789-2798. doi: 10.3799/dqkx.2023.071
    Citation: Meng Lubo, Li Haoyu, Li Tianbin, Li Pan, Zhang Caihong, 2024. Study on Explosive Rockburst Mechanism Based on Two-Dimensional Meso-Fracture Model. Earth Science, 49(8): 2789-2798. doi: 10.3799/dqkx.2023.071

    基于二维细观裂隙模型的爆喷型岩爆机制

    doi: 10.3799/dqkx.2023.071
    基金项目: 

    国家自然科学基金资助项目 42130719

    地质灾害与地质环境保护国家重点实验室自主研究课题 SKLGP2022Z003

    四川省自然科学基金项目 2022NSFSC0411

    详细信息
      作者简介:

      孟陆波(1978-),男,教授,博士,主要从事地下工程施工地质灾害防控方面的教学与研究工作. ORCID:0000-0001-6647-9243. E-mail:menglubo@163.com

      通讯作者:

      李昊禹, ORCID: 0000-0001-7786-354X. E-mail: sherlockleo1996@outlook.com

    • 中图分类号: TU45

    Study on Explosive Rockburst Mechanism Based on Two-Dimensional Meso-Fracture Model

    • 摘要: 为探明高地应力隧道爆喷型岩爆演化过程,采用矩阵离散元MatDEM,模拟分析爆喷型岩爆现象,探讨爆喷型岩爆机制. 结果表明:(1)爆喷型岩爆是一种缝合带区富含细观裂隙挤压硬岩隧道开挖卸荷扰动作用下,围岩发生突然高速喷射并伴有大量粉尘的现象;(2)爆喷型岩爆演化过程为4个阶段:裂隙激活及发展阶段、裂隙聚集碎岩阶段、破碎岩块高速喷射阶段、破碎岩块自由落体阶段;(3)爆喷型岩爆地质力学模式为张剪-喷射型:富含细观裂隙的挤压硬岩隧道,在开挖卸荷扰动作用下,发生以张拉破坏为主,剪切破坏为辅的聚集性破裂,积聚的弹性应变能突然释放并赋予破碎岩块动能,发生高速喷射. 研究成果为缝合带高地应力区硬岩隧道岩爆演化过程提供新的认识.

       

    • 图  1  实测地应力示意图

      Fig.  1.  Indication diagram of measured ground stress

      图  2  爆喷型岩爆破坏特征

      a. 岩石颗粒喷射运动;b.楔形爆坑

      Fig.  2.  The failure characteristics of rockburst

      图  3  爆喷型岩爆典型照片

      Fig.  3.  Typical figure of rockburst of blowout type

      图  4  二维隧道开挖数值模型

      Fig.  4.  Two-dimensional numerical model of tunnel

      图  5  弱胶结等效细观裂隙示意图

      Fig.  5.  Diagram of weak cementation equivalent microfracture

      图  6  二维细观裂隙生成结果示意图

      Fig.  6.  The schematic diagram of 2D meso-fracture generation results

      图  7  数值模拟速度场(单位:m/s)

      a. 裂隙激活及发展阶段(0 s);b. 裂隙聚集碎岩阶段(模拟现实时间0.05 s);c. 破碎岩块喷射阶段(模拟现实时间0.5 s);d. 破碎岩块自由落体阶段(模拟现实时间0.8 s)

      Fig.  7.  Velocity field of numerical simulation(unit: m/s)

      图  8  爆喷型岩爆现场发生过程照片

      a. 裂隙激活及发展阶段(0 s);b. 裂隙聚集碎岩阶段(模拟现实时间0.05 s);c. 破碎岩块喷射阶段(模拟现实时间0.5 s);d. 破碎岩块自由落体阶段(模拟现实时间0.8 s)

      Fig.  8.  Field process map of explosive rockburst

      图  9  A1工况裂隙场演化特征

      a. 裂隙激活及发展阶段(0 s);b. 裂隙聚集碎岩阶段(模拟现实时间0.05 s);c. 破碎岩块喷射阶段(模拟现实时间0.5 s);d. 破碎岩块自由落体阶段(模拟现实时间0.8 s)

      Fig.  9.  Evolution characteristics of fracture field A1

      图  10  不同围岩介质裂隙场结果

      a. 细观裂隙数量0(A0,1 s);b. 细观裂隙数量6 000(A1,1 s)

      Fig.  10.  Fracture field results of surrounding rock media

      图  11  爆喷型岩爆发生过程示意图

      a. 裂隙激活及发展阶段;b. 裂隙聚集碎岩阶段;c. 破碎岩块喷射阶段;d.破碎岩块自由落体阶段

      Fig.  11.  Process diagram of rockburst mechanism

      表  1  爆喷型岩爆典型案例

      Table  1.   Typical cases of rockburst

      里程 岩爆情况描述 岩爆等级
      DK186+167 拱顶爆裂脱落,出现强烈弹射岩爆后形成弧形空腔. 发生岩爆时岩块有抛射及岩粉喷射现象;有爆破的爆裂声,声响强烈,可见块径8 cm岩块抛射,形成空腔体直径6×8×5 m 强烈
      DK185+887.2 上台阶拱顶爆裂脱落,发生岩爆时岩块有抛射及岩粉喷射现象;有爆破的爆裂声,块径18 cm岩块抛射 强烈
      DK186+185 右拱腰部位爆裂脱落,出现强烈弹射,发生岩块的抛射及岩粉喷射现象;有似爆破的爆裂声,声响强烈;持续时间长 强烈
      DK186+171 右拱腰爆裂脱落,发生岩爆时岩块有抛射及岩粉喷射现象;有爆破的爆裂声,声响强烈,可见直径15 cm岩块抛射 强烈
      DK186+193.8 左拱腰及掌子面爆裂脱落,发生岩爆时岩块有抛射及岩粉喷射现象;有爆破的爆裂声,声响强烈,可见直径15 cm岩块抛射 强烈
      注:上述各里程的岩性均为闪长岩,裂隙闭合,未见地下水
      下载: 导出CSV

      表  2  闪长岩宏、微观力学参数训练对比结果表

      Table  2.   Table of macroscopic and microscopic mechanical parameters training comparison results of diorite

      宏观力学参数 目标值(实测值) 材料训练结果值 微观力学参数 微观力学参数值
      弹性模量E(GPa) 32.47 31.96 法向刚度$ {K}_{\mathrm{n}}\left(\mathrm{G}\mathrm{P}\mathrm{a}\right) $ 4.60
      泊松比$ v $ 0.12 0.12 切向刚度$ {K}_{\mathrm{s}}\left(\mathrm{G}\mathrm{P}\mathrm{a}\right) $ 2.18
      单轴抗压强度$ {R}_{\mathrm{c}}\left(\mathrm{M}\mathrm{P}\mathrm{a}\right) $ 82.8 79.64 断裂位移$ {X}_{\mathrm{b}}\left(\mathrm{m}\right) $ 5.51E-05
      抗拉强度$ {T}_{\mathrm{u}}\left(\mathrm{M}\mathrm{P}\mathrm{a}\right) $ 4.23 9.63 抗剪力$ {F}_{\mathrm{s}0}\left(\mathrm{M}\mathrm{P}\mathrm{a}\right) $ 1.18
      摩擦系数$ {\mu }_{i} $ 1.15 1.15 摩擦系数$ {\mu }_{\mathrm{p}} $ 0.45
      密度$ \rho (\mathrm{k}\mathrm{g}/{\mathrm{m}}^{3}) $ 2 665.8 2 665.8
      下载: 导出CSV
    • Chen, K. Z., Li, T. B., Ma, C. C., et al., 2020. Simulation of Tunnel Pressure Relief Blasting and Rockburst Suppression Effect Based on CDEM. Journal of EngineeringGeology, 28(3): 667-676(in Chinese with English abstract).
      Deng, P. H., Cui, R. R., Liu, J. P., et al., 2016. Study on the Fracturing Mechanism of Surrounding Rock in High Stress Super-Large Goaf. Metal Mines, (7): 84-89(in Chinese with English abstract).
      Feng, F., 2019. Cracking Failure Characteristics of Deep High-Stress Hard Rock Slabs and Mechanism of Strain-Type Rockburst. Chinese Journal of Rock Mechanics and Engineering, 38(7): 1512(in Chinese with English abstract).
      Feng, X. T., Xiao, Y. X., Feng, G. L., et al., 2019. Research on the Inoculation Process of Rockburst. Chinese Journal of Rock Mechanics and Engineering, 38(4): 649-673(in Chinese with English abstract).
      Gu, J. Q., 2022. Rockburst Formation Mechanism of Qinling Tunnel Lithological Transition Zone Based on Microseismic Monitoring. People's Yangtze River, 53(4): 106-111(in Chinese with English abstract).
      Guo, L., Hu, X. W., Li, X. Z., et al., 2018. Experimental Study on Hydraulic Properties of Undisturbed Fractured Rock in Granite Fault Zone. Geotechnical Mechanics, 39(11): 3937-3948(in Chinese with English abstract).
      Hu, Y., 2016. In-Situ Stress Field Characteristics and Tunnel Rockburst Prediction Analysis in the Sangri-Jiacha Valley Section(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      Li, T. B., Meng, L. B., Wang, L. S., 2016. High Ground Stress Tunnel Stability and Prevention of Rock Burst and Large Deformation Disasters. Beijing: Science Press(in Chinese).
      Liang, P., Zhang, Y. B., Tian, B. Z., et al., 2019. Experimental Study on Energy Evolution Characteristics of Roadway Rock Burst Process. Chinese Journal of Rock Mechanics and Engineering, 38(4): 736-746(in Chinese with English abstract).
      Liu, C., 2021. Matrix Discrete Element Analysis of Geology and Geotechnical Engineering. Beijing: Science Press(in Chinese).
      Lu, B., Ding, X. L., Wu, A. Q., et al., 2012. Study on the Control Effect of Rock Mass Structure on the Stability of Surrounding Rock of Underground Caverns in High Stress Hard Rock Areas. Chinese Journal of Rock Mechanics and Engineering, 31(S2): 3831-3846(in Chinese with English abstract).
      Meng, L. B., Cai, G. J., Fu, X. M., et al., 2020. Rock Mass Mechanics Test. Science Press, Beijing(in Chinese).
      Pan, Y. H., 2018. Disturbance Response Instability Theory of Rockburst in Coal Mine. Journal of China Coal Society, 43(8): 2091.
      Qi, Y. J., Dong, Z. X., Jing, H. W., et al., 2017. Model Test Research on the Characteristics of Rockburst Disaster in Roadways with Different Lithologies. Journal of China University of Mining and Technology, 46(6): 1239-1250. (in Chinese with English abstract).
      Sainoki, Atsushi., Mitri, S., Hani., 2014. Dynamic Behaviour of Mining-Induced Fault Slip. International Journal of Rock Mechanics and Mining Sciences, (66): 19-29.
      Si, X. F., Gong, F. Q., 2021. Rockburst Simulation Test and Strength Weakening Effect Research Under the Condition of Unloading Inside a Deep High-Stress Circular Tunnel. Chinese Journal of Rock Mechanics and Engineering, 40(2): 276-289(in Chinese with English abstract).
      Wang, C. H., Zhang, Y. S., Guo, Q. L., et al., 2011. Research on Comprehensive Analysis Method of In-Situ Stress Field in Engineering Area. Chinese Journal of Geotechnical Engineering, 33(10): 1562-1568(in Chinese with English abstract).
      Wang, Q. W., Ju, N. P., Du, L. L., et al., 2016. Research on Rockburst Prediction and Engineering Prevention in Deep and Long Tunnels. Hydrogeology and Engineering Geology, 43(6): 88-94+100(in Chinese with English abstract).
      Wang, X. B., Liu, T. X., Tian, F., et al., 2021. Numerical Simulation of Cracking Mechanism of Roadway Roof Under Cyclic Impact Load. Chinese Journal of Coal, 46(10): 3106-3115(in Chinese with English abstract).
      Wang, Y., He, M. C., Liu. D. Q., et al., 2021. Experimental Study on Rock Burst in Surrounding Rock of Deep Oval Cavern. Chinese Journal of Rock Mechanics and Engineering, 40(11): 2214-2228(in Chinese with English abstract).
      Wu, W. P., Feng, X. T., Zhang, C. Q., et al., 2011. Classification of Failure Modes and Control Strategies for Surrounding Rock of Deep-Buried Hard Rock Tunnels. Chinese Journal of Rock Mechanics and Engineering, 30(9): 1782-1802(in Chinese with English abstract).
      Xu, C. L., Liu, X. L., Wang, E. Z., et al., 2018. Rockburst Prediction and Classification Based on the Ideal-Point Method of Information Theory. Tunnelling and Underground Space Technology, 81(1): 382-390.
      Yan, J., He, C., Wang, B., et al., 2019. Inoculation and Characteristics of Rockbursts in Deep Buried Long Tunnels in the Yarlung Zangbo Suture Zone. Chinese Journal of Rock Mechanics and Engineering, 38(4): 769-781(in Chinese with English abstract).
      Yan, X. H., Guo, C. B., Liu, Z. B., et al., 2022. Physical Simulation Experiment of Granite Rock Burst in a Deep Buried Tunnel in Kangding, Sichuan. Earth Science, 47(6): 2081-2093(in Chinese with English abstract).
      Zhang, Y. Y., Xing, B. R., Song, C. G., 2014. Numerical Simulation Analysis of Rockburst Mechanism in Meihuashan Tunnel in Fujian. Modern Tunnel Technology, 51(1): 97-104(in Chinese with English abstract).
      Zhao, H. L., Zhou, Y. H., 2015. Numerical Simulation of Fracture-Type Rockburst Mechanism in Deep Underground Caverns. Explosion and Impact, 35(3): 343-349(in Chinese with English abstract).
      陈柯竹, 李天斌, 马春驰, 等, 2020. 基于CDEM的隧道卸压爆破及岩爆抑制效应模拟. 工程地质学报, 28(3): 667-676. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003024.htm
      邓鹏宏, 崔瑞瑞, 刘建坡, 等, 2016. 高应力超大采空区围岩破裂机理研究. 金属矿山, (7): 84-89. doi: 10.3969/j.issn.1001-1250.2016.07.013
      冯帆, 2019. 深部高应力硬岩板裂化破坏特性及应变型岩爆发生机制. 岩石力学与工程学报, 38(7): 1512. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907019.htm
      冯夏庭, 肖亚勋, 丰光亮, 等, 2019. 岩爆孕育过程研究. 岩石力学与工程学报, 38(4): 649-673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202401002.htm
      谷建强, 2022. 基于微震监测的秦岭隧洞岩性转换带岩爆孕育机制. 人民长江, 53(4): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202204017.htm
      郭亮, 胡卸文, 李晓昭, 等, 2018. 花岗岩断裂带原状裂隙岩水力特性试验研究. 岩土力学, 39(11): 3937-3948. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811005.htm
      胡勇, 2016. 桑日-加查河谷段地应力场特征及隧道岩爆预测分析(硕士学位论文). 成都: 成都理工大学.
      李天斌, 孟陆波, 王兰生, 2016. 高地应力隧道稳定性及岩爆、大变形灾害防治. 北京: 科学出版社.
      梁鹏, 张艳博, 田宝柱, 等, 2019. 巷道岩爆过程能量演化特征实验研究. 岩石力学与工程学报, 38(4): 736-746. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904008.htm
      刘春, 2021. 地质与岩土工程矩阵离散元分析. 北京: 科学出版社.
      卢波, 丁秀丽, 邬爱清, 等, 2012. 高应力硬岩地区岩体结构对地下洞室围岩稳定的控制效应研究. 岩石力学与工程学报, 31(S2): 3831-3846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2052.htm
      孟陆波, 蔡国军, 付小敏, 等, 2020. 岩体力学试验. 北京: 科学出版社.
      齐燕军, 东兆星, 靖洪文, 等, 2017. 不同岩性巷道岩爆灾变特征模型试验研究. 中国矿业大学学报, 46(6): 1239-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201706009.htm
      司雪峰, 宫凤强, 2021. 深部高应力圆形隧洞内部卸荷条件下岩爆模拟试验和强度弱化效应研究. 岩石力学与工程学报, 40(2): 276-289. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102005.htm
      王成虎, 张彦山, 郭啟良, 等, 2011. 工程区地应力场的综合分析法研究. 岩土工程学报, 33(10): 1562-1568. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110014.htm
      王庆武, 巨能攀, 杜玲丽, 等, 2016. 深埋长大隧道岩爆预测与工程防治研究. 水文地质工程地质, 43(6): 88-94+100. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201606015.htm
      王学滨, 刘桐辛, 田锋, 等, 2021. 周期冲击载荷下巷道顶板开裂机理数值模拟. 煤炭学报, 46(10): 3106-3115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202110003.htm
      王炀, 何满潮, 刘冬桥, 等, 2021. 深部椭圆形洞室围岩冲击岩爆实验研究. 岩石力学与工程学报, 40(11): 2214-2228. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111005.htm
      吴文平, 冯夏庭, 张传庆, 等, 2011. 深埋硬岩隧洞围岩的破坏模式分类与调控策略. 岩石力学与工程学报, 30(9): 1782-1802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109009.htm
      严健, 何川, 汪波, 等, 2019. 雅鲁藏布江缝合带深埋长大隧道群岩爆孕育及特征. 岩石力学与工程学报, 38(4): 769-781. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904011.htm
      严孝海, 郭长宝, 刘造保, 等, 2022. 四川康定某深埋隧道花岗岩岩爆物理模拟实验研究. 地球科学, 47(6): 2081-2093. doi: 10.3799/dqkx.2021.153
      张倚逾, 邢博瑞, 宋成科, 2014. 福建梅花山隧道岩爆机理的数值模拟分析研究. 现代隧道技术, 51(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201401016.htm
      赵红亮, 周又和, 2015. 深埋地下洞室断裂型岩爆机理的数值模拟. 爆炸与冲击, 35(3): 343-349. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ201503008.htm
    • 加载中
    图(11) / 表(2)
    计量
    • 文章访问数:  577
    • HTML全文浏览量:  158
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-11
    • 网络出版日期:  2024-08-27
    • 刊出日期:  2024-08-25

    目录

      /

      返回文章
      返回