• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    典型高寒流域冲洪积扇地下水与地表水交互机制

    杨泽森 常启昕 贺笙哲 廖习锐

    杨泽森, 常启昕, 贺笙哲, 廖习锐, 2025. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学, 50(2): 687-698. doi: 10.3799/dqkx.2023.072
    引用本文: 杨泽森, 常启昕, 贺笙哲, 廖习锐, 2025. 典型高寒流域冲洪积扇地下水与地表水交互机制. 地球科学, 50(2): 687-698. doi: 10.3799/dqkx.2023.072
    Yang Zesen, Chang Qixin, He Shengzhe, Liao Xirui, 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698. doi: 10.3799/dqkx.2023.072
    Citation: Yang Zesen, Chang Qixin, He Shengzhe, Liao Xirui, 2025. Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed. Earth Science, 50(2): 687-698. doi: 10.3799/dqkx.2023.072

    典型高寒流域冲洪积扇地下水与地表水交互机制

    doi: 10.3799/dqkx.2023.072
    基金项目: 

    国家自然科学基金项目 42102301

    国家自然科学基金项目 41772270

    国家自然科学基金项目 91325101

    详细信息
      作者简介:

      杨泽森(2000-),男,硕士研究生,主要从事地下水与地表水交互机制研究. ORCID:0000-0002-6375-7858. E-mail:zesen_yang@foxmail.com

      通讯作者:

      常启昕, ORCID: 0000-0002-9140-8719. E-mail: changqixin19@cdut.edu.cn

    • 中图分类号: P641

    Groundwater-Surface Water Interaction and Its Mechanism in a Piedmont Fluvial-Alluvial Fan of an Alpine Watershed

    • 摘要: 差分流量测量、一维热传输方程、环境同位素和水化学等常规手段仍不能精细刻画高寒流域冲洪积扇复杂河段地下水与地表水交互机制. 因此,利用分布式光纤对葫芦沟流域冲洪积扇东支到干流河段的河床与河水表面进行高时空分辨率的连续温度监测,发现东支观测河段有12个地下水排泄点,干流观测河段均为地下水排泄带,排泄方式分别为集中流和扩散流. 并结合该流域的水文地质条件,提出了高寒流域冲洪积扇地下水与地表水交互作用概念模型,描绘了局部河段地下水排泄点/带,认为粉质粘土体的存在影响了地下水与河水的交互关系. 高寒流域冲洪积扇含水层的非均质性是影响地下水与地表水交互关系的重要因素,且影响的时空范围会随着气候变暖而逐步增大.

       

    • 图  1  含有中国地图的青藏高原水系分布图(a)、黑河源区西支流域水系图(b)及葫芦沟流域水文地质简图(c)

      青藏高原地形底图来自地理空间数据云(https://www.gscloud.cn);中国地理底图来自自然资源部标准地图服务系统,审图号:GS(2022)05285;黑河源区西支流域冰川分布数据来自王宗太(2013);葫芦沟流域水文地质简图修改自常启昕(2019)

      Fig.  1.  River system distribution map of Qinghai-Tibet Plateau with the China map (a), River system distribution map of the West Branch of the Headwaters of the Heihe River (b) and the brief hydrogeological map of the Hulugou watershed (c)

      图  2  研究区河水、地下水、泉水观测点以及分布式温度光纤位置布设图(a)和分布式温度光纤布设结构示意图(b)

      葫芦沟流域遥感卫星底图来自 Earth 元地球(https://pc.earthdq.com,影像拍摄时间2018年12月26日)

      Fig.  2.  Location of streamwater, groundwater, spring and DTS in the study site (a), and Schematic diagram of the DTS setting (b)

      图  3  葫芦沟流域冲洪积扇缘附近河水温度、地下水温度和气温对比

      Fig.  3.  Comparison of streamwater, groundwater, and atmospheric temperature in the piedmont fluvial-alluvial fan margin of the Hulugou watershed

      图  4  研究区不同监测河段的河床表面河水温度随时间变化箱形图

      Fig.  4.  Box plots showing median and quartiles for streambed surface temperature of the monitored river sections in the study site

      图  5  研究区河床表面与河水表面温度沿流程变化特征图

      Fig.  5.  Temperature variation characteristics of streambed and streamwater surface along flow distance in the study site

      图  6  河床表面温度动态二维分布图

      Fig.  6.  2D dynamic distribution of streambed surface temperature

      图  7  异常点与正常点河床表面河水温度对比

      Fig.  7.  Comparison of streambed surfacetemperature between abnormal and normal points

      图  8  高寒流域冲洪积扇复杂河段地下水-地表水交互作用概念模型(修改自常启昕等,2022

      Fig.  8.  Conceptual model of interactions between groundwater and surface water along complex stream stretches of a piedmont fluvial-alluvial fan in the alpine watershed(modified from Chang et al., 2022)

    • Anibas, C., Fleckenstein, J. H., Volze, N., et al., 2009. Transient or Steady-State? Using Vertical Temperature Profiles to Quantify Groundwater-Surface Water Exchange. Hydrological Processes, 23(15): 2165-2177. https://doi.org/10.1002/hyp.7289
      Briggs, M. A., Lautz, L. K., McKenzie, J. M., et al., 2012. Using High-Resolution Distributed Temperature Sensing to Quantify Spatial and Temporal Variability in Vertical Hyporheic Flux. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR011227
      Brown, L. E., Hannah, D. M., Milner, A. M., 2006. Thermal Variability and Stream Flow Permanency in an Alpine River System. River Research and Applications, 22(4): 493-501. https://doi.org/10.1002/rra.915
      Carey, S. K., Woo, M. K., 2000. The Role of Soil Pipes as a Slope Runoff Mechanism, Subarctic Yukon, Canada. Journal of hydrology (Amsterdam), 233(1-4): 206-222. https://doi.org/10.1016/S0022-1694(00)00234-1
      Chang, Q. X., Ma, R., Sun, Z. Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier-Snow Meltwater to Streamflow in a Partly Glacierized Alpine-Gorge Catchment in Northeastern Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10, 037-010, 056. https://doi.org/10.1029/2018JD028683
      Chang, Q. X., 2019. Water Sources of Stream Runoff in Alpine Region and Their Seasonal Variations: A Case Study of Hulugou Catchment in the Headwaters of the Heihe River(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Chang, Q. X., Sun, Z. Y., Pan, Z., et al., 2022. Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review. Journal of Earth Science, 47(11): 4196-4209(in Chinese with English abstract).
      Chen, R. S., Song, Y. X., Kang, E. S., et al., 2014. A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient. Arctic, Antarctic, and Alpine Research, 46(2): 505-523. https://doi.org/10.1657/1938-4246-46.2.505
      Evans, S. G., Ge, S., Voss, C. I., et al., 2018. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds. Water Resources Research, 54(3): 1599-1615. https://doi.org/10.1002/2017wr022098
      Finger, D., Heinrich, G., Gobiet, A., et al., 2012. Projections of Future Water Resources and Their Uncertainty in a Glacierized Catchment in the Swiss Alps and the Subsequent Effects on Hydropower Production During the 21st Century. Water Resources Research, 48(2). https://doi.org/10.1029/2011WR010733
      Fu, Y. M., Dong, Y. H., Xiang, Z. F., et al., 2020. Advances of DTS-Based Heat Tracer Tests in Tharacterization of Groundwater Flow in Fractured Media. Advances in Science and Technology of Water Resources, 40(03): 86-94(in Chinese with English abstract).
      Ge, M. Y., Ma, R., Sun, Z. Y., et al., 2018. Using Heat Tracer to Estimate River Water and Groundwater Interactions in Alpine and Cold Regions: A Case Study of Hulugou Watershed in Upper Reach of Heihe River. Earth Science, 43(11): 4246-4255 (in Chinese with English abstract).
      Ge, S., Wu, Q. B., Lu, N., et al., 2008. Groundwater in the Tibet Plateau, Western China. Geophysical Research Letters, 35(18). https://doi.org/10.1029/2008GL034809
      Hu, Y. L., 2019. Impacts of the Groundwater Flow Path on the Patterns of Dissolved Organic Carbon Export in the Cold Alpine Area(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Hu, Y. L., Ma, R., Wang, Y. X., et al., 2019. Using Hydrogeochemical Data to Trace Groundwater Flow Paths in a Cold Alpine Catchment. Hydrological Processes, 33(14): 1942-1960. https://doi.org/10.1002/hyp.13440
      Kalbus, E., Reinstorf, F., Schirmer, M., 2006. Measuring Methods for Groundwater-Surface Water Interactions: AReview. Hydrology and Earth System Sciences, 10(6): 873-887. https://doi.org/10.5194/hess-10-873-2006
      Käser, D., Hunkeler, D. 2016. Contribution of Alluvial Groundwater to the Outflow of Mountainous Catchments. Water Resources Research, 52(2): 680-697. https://doi.org/10.1002/2014WR016730
      Killian, C. D., Asquith, W. H., Barlow, J. R. B., et al., 2019. Characterizing Groundwater and Surface-Water Interaction Using Hydrograph-Separation Techniques and Groundwater-Level Data throughout the Mississippi Delta, USA. Hydrogeology Journal, 27: 2167-2179. https://doi.org/10.1007/s10040-019-01981-6
      Lay, H. L., Thomas, Z., Rouault, F., et al., 2019. Characterization of Diffuse Groundwater Inflows into Streamwater (Part Ⅰ: Spatial and Temporal Mapping Framework Based on Fiber Optic Distributed Temperature Sensing). Water, 11(11): 2389. https://doi.org/10.3390/w11112389
      Lowry, C. S., Walker, J. F., Hunt, R. J., et al., 2007. Identifying Spatial Variability of Groundwater Discharge in a Wetland Stream Using a Distributed Temperature Sensor. Water Resources Research, 43(10). https://doi.org/10.1029/2007WR006145
      Ma, R., Sun, Z. Y., Chang, Q. X., et al., 2021. Control of the Interactions Between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689
      Schornberg, C., Schmidt, C., Kalbus, E., et al., 2010. Simulating the Effects of Geologic Heterogeneity and Transient Boundary Conditions on Streambed Temperatures-Implications for Temperature-Based Water Flux Calculations. Advances in water resources, 33(11): 1309-1319. https://doi.org/10.1016/j.advwatres.2010.04.007
      Selker, J. S., Thévenaz, L., Huwald, H., et al., 2006. Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR005326
      Unland, N. P., Cartwright, I., Andersen, M. S., et al., 2013. Investigating the Spatio-Temporal Variability in Groundwater and Surface Water Interactions: a Multi-Technique Approach. Hydrology and Earth System Sciences, 17: 3437-3453. https://doi.org/10.5194/hess-17-3437-2013
      Xu, H. X., Xin Z. Y., Wang, X. Z., et al., 2011. Investigation and Study on Insect and the Fauna of Heihe Nature Reserve of Gansu Province. Journal of Gansu Forestry Science and Technology, 36(1): 19-24(in Chinese with English abstract).
      Ye, R. Z., Chang, J., 2019. Study of Groundwater in Permafrost Regions of China: Status and Process. Journal of Glaciology and Geocryology, 41(01): 183-196(in Chinese with English abstract).
      Zhao, L. S., Sun, Z. Y., Ma, R., et al., 2022. Characteristics and Controlling Factors of Dissolved Carbon Export from an Alpine Catchment Underlain by Seasonal Frost in the Qilian Mountains, Qinghai-Tibet Plateau. Jornal of Earth Science, 49(3): 1177-1188(in Chinese with English abstract).
      常启昕, 2019. 高寒山区河道径流水分来源及其季节变化规律——以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学.
      常启昕, 孙自永, 潘钊, 等, 2022. 高寒山区河道径流的形成与水文调节机制研究进展. 地球科学, 47(11): 4196-4209. doi: 10.3799/dqkx.2022.093
      符韵梅, 董艳辉, 徐志方, 等, 2020. 分布式光纤温度示踪识别裂隙地下水流动研究进展. 水利水电科技进展, 40(03): 86-94.
      葛孟琰, 马瑞, 孙自永, 等, 2018. 高寒山区河水与地下水相互作用的温度示踪: 以黑河上游葫芦沟流域为例. 地球科学, 43(11): 4246-4255. doi: 10.3799/dqkx.2018.203
      胡雅璐, 2019. 地下水水流路径对高寒山区溶解性有机碳输出的控制作用研究(博士学位论文). 武汉: 中国地质大学.
      王宗太, 2013. 基于第一次冰川编目的黑河流域冰川分布数据集. 国家青藏高原科学数据中心.
      徐红霞, 辛中尧, 王香枝, 等, 2011. 甘肃黑河自然保护区昆虫调查及区系研究. 甘肃林业科技, 36(01): 19-24.
      叶仁政, 常娟, 2019. 中国冻土地下水研究现状与进展综述. 冰川冻土, 41(01): 183-196.
      赵鲁松, 孙自永, 马瑞, 等, 2024. 青藏高原季节冻土山区河流溶解性碳输出的特征及控制因素. 地球科学, 49(3): 1177-1188. doi: 10.3799/dqkx.2022.204
    • 加载中
    图(8)
    计量
    • 文章访问数:  169
    • HTML全文浏览量:  75
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-12-22
    • 网络出版日期:  2025-02-26
    • 刊出日期:  2025-02-25

    目录

      /

      返回文章
      返回