• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    松辽盆地铁法地区砂岩型铀矿关键控矿因素的时空耦合

    彭虎 焦养泉 荣辉 逄礴 吕东霖 郭晓丹 王庆双 宇文晓依

    彭虎, 焦养泉, 荣辉, 逄礴, 吕东霖, 郭晓丹, 王庆双, 宇文晓依, 2024. 松辽盆地铁法地区砂岩型铀矿关键控矿因素的时空耦合. 地球科学, 49(9): 3182-3198. doi: 10.3799/dqkx.2023.073
    引用本文: 彭虎, 焦养泉, 荣辉, 逄礴, 吕东霖, 郭晓丹, 王庆双, 宇文晓依, 2024. 松辽盆地铁法地区砂岩型铀矿关键控矿因素的时空耦合. 地球科学, 49(9): 3182-3198. doi: 10.3799/dqkx.2023.073
    Peng Hu, Jiao Yangquan, Rong Hui, Pang Bo, Lü Donglin, Guo Xiaodan, Wang Qingshuang, Yuwen Xiaoyi, 2024. Spatial-Temporal Coupling of Key Ore-Controlling Factors for Sandstone-Type Uranium Deposits in Tiefa Area, Songliao Basin. Earth Science, 49(9): 3182-3198. doi: 10.3799/dqkx.2023.073
    Citation: Peng Hu, Jiao Yangquan, Rong Hui, Pang Bo, Lü Donglin, Guo Xiaodan, Wang Qingshuang, Yuwen Xiaoyi, 2024. Spatial-Temporal Coupling of Key Ore-Controlling Factors for Sandstone-Type Uranium Deposits in Tiefa Area, Songliao Basin. Earth Science, 49(9): 3182-3198. doi: 10.3799/dqkx.2023.073

    松辽盆地铁法地区砂岩型铀矿关键控矿因素的时空耦合

    doi: 10.3799/dqkx.2023.073
    基金项目: 

    国家重点研发计划项目 2018YFC0604202

    辽宁省级地质勘查项目 LNZC2019⁃0078⁃10

    东北地质科技创新中心区创基金项目 QCJJ2022⁃38

    中国地质大学(武汉)构造与油气资源教育部重点实验室开放基金 TPR⁃2024⁃04

    详细信息
      作者简介:

      彭虎(1988-),男,博士研究生,主要从事盆地能源矿产研究工作.ORCID:0000-0001-7447-3984. E-mail:184444802@qq.com

      通讯作者:

      焦养泉,ORCID: 0000-0002-6634-8718. E-mail: yqjiao@cug.edu.cn

    • 中图分类号: P619.14

    Spatial-Temporal Coupling of Key Ore-Controlling Factors for Sandstone-Type Uranium Deposits in Tiefa Area, Songliao Basin

    • 摘要: 松辽盆地东南部的铁法地区白垩系新发现一处铀矿产地和多个铀矿化点.本文结合区域地质背景调查和1 000余个钻孔资料分析,由源到汇对研究区铀成矿系统的铀储层砂体、层间氧化带及还原介质等关键控矿因素进行了定量化系统研究.研究表明铁法地区铀成矿作用主要经历了沉积阶段的预富集期和层间氧化阶段主成矿期两个重要阶段.区域构造驱动下的盆山耦合作用不仅控制着铀源的形成与迁移,也是两个成矿阶段之间构造反转作用的驱动力.研究区铀矿化分布规律与铀储层砂体非均质性、氧化砂体规模、还原介质等控矿因素具有明显的空间耦合关系.泉头组三段(泉三段)含铀岩系的“泥‒砂‒泥”结构完整,铀矿化线索明显,是该区砂岩型铀矿成矿最有利层位,其次是研究区西部阜新组底部的砂砾岩.泉三段铀储层砂体由厚变薄,含砂率由高变低,氧化砂体厚度与氧化砂体比率变小,以及灰色泥岩和煤层等外部还原地质体由薄变厚的部位是该区砂岩型铀矿成矿最有利区域.

       

    • 图  1  研究区地质简图(据Gu et al., 2018 修改)

      Fig.  1.  Geological overview of the study area (modified after Gu et al., 2018)

      图  2  盆地充填演化序列与典型钻孔铀矿化综合柱状图

      a. 盆地充填演化序列;b. ZK02阜新组底部砂砾岩铀矿化;c. ZK07泉三段铀矿化

      Fig.  2.  Basin filling evolution sequence and comprehensive histogram of uranium mineralization in typical boreholes

      图  3  铁法地区放射性异常赋存层位及钻孔数量、伽马强度统计结果

      Fig.  3.  Statistical graph of radioactive anomaly occurrence horizon, number of boreholes and Gamma intensity in Tiefa area

      图  4  扫描电镜下铀矿物赋存状态

      a~c. 沥青铀矿赋存在碳质碎屑之中;d~f.沥青铀矿赋存在黄铁矿周围. Py.黄铁矿;CD.碳质碎屑;Pitch.沥青铀矿

      Fig.  4.  Occurrence state of uranium minerals under scanning electron microscope

      图  5  源区不同地质年代岩体Th、U含量对比(a);源区Th/U与花岗闪长岩、英云闪长岩和平均上地壳对比(b)(数据来自Shi et al., 2019时溢等,2020

      Fig.  5.  Comparison of Th and U in plutons of different geological ages in the source area (a); comparison of Th/U with granodiorite, tonalite and average upper crust in the source area (b) (data from Shi et al., 2019, 2020)

      图  6  东北地区盆地构造演化与铀成矿关系(据 吏成辉等,2020Wang et al., 2020修改)

      Fig.  6.  Relationship between basin tectonic evolution and uranium mineralization in Northeast China (modified after Li et al., 2020; Wang et al., 2020)

      图  7  泉三段铀矿化垂向配置关系剖面(A⁃A′)

      Fig.  7.  Vertical distribution profile of uranium mineralization in the 3rd member of Quantou Formation (A⁃A')

      图  8  泉三段铀矿化垂向配置关系剖面(B⁃B′)

      Fig.  8.  Vertical distribution profile of uranium mineralization in the 3rd member of Quantou Formation (B⁃B')

      图  9  泉三段砂体厚度(a)、含砂率(b)与铀矿化平面关系配置

      Fig.  9.  Configuration diagram of the relationship between sand body thickness (a), sand content (b) and uranium mineralization in the 3rd member of Quantou Formation

      图  10  不同岩石地球化学类型砂岩钻孔岩心与镜下照片

      a.红色砂岩岩心照片;b.灰绿色砂岩岩心照片,部分发生氧化作用;c.灰黑色砂岩岩心照片;d.红色砂岩褐铁矿化(反射光);e.灰绿色砂岩黄铁矿部分褐铁矿化(反射光);f.灰黑色砂岩碳质碎屑和黄铁矿显微照片(反射光). Lm.褐铁矿化;Py.黄铁矿;CD.碳质碎屑

      Fig.  10.  Borehole cores and microscopic photos of sandstones of different lithogeochemical types

      图  11  不同岩石地球化学类型砂岩环境指标参数TOC(a)、Fe2O3/FeO质量比(b)、△Eh(c)对比

      Fig.  11.  Comparison of environmental indicators of sandstone of different lithogeochemical types

      图  12  泉三段氧化砂体厚度(a)、氧化砂体比率(b)及还原介质(c)统计直方图

      Fig.  12.  Statistical histogram of oxidized sand body thickness (a), oxidized sand body ratio (b) and reducing medium (c) in the 3rd member of Quantou Formation

      图  13  泉三段氧化砂体厚度(a)、氧化砂体比率(b)与铀矿化平面关系配置

      Fig.  13.  Configuration diagram of the relationship between oxidized sand body thickness (a), oxidized sand body ratio (b) and uranium mineralization in the 3rd member of Quantou Formation

      图  14  还原地质体与铀矿化空间配置关系

      a.泉三段灰色泥岩;b.阜新组顶部煤层;c.还原地质体、氧化带与铀矿化体的空间配置模式

      Fig.  14.  Spatial configuration diagram of the relationship between the reducing geological bodies and uranium mineralization

      图  15  铁法地区泉三段铀矿化与控矿因素耦合及成矿远景区预测

      Fig.  15.  Coupling of uranium mineralization and ore-controlling factors and prediction of metallogenic prospects in the 3rd member of Quantou Formation

      图  16  铁法地区砂岩型铀矿成矿模式(a);泉三段铀储层砂体内部双重还原介质制约着氧化带与铀矿化分布(b);阜新组铀储层砂体内部无机和有机还原介质制约氧化流体与铀矿化(c)

      Fig.  16.  The metallogenic model of sandstone-type uranium deposits in the Tiefa area (a); oxidation zone and distribution of uranium mineralization are restricted by dual reducing medium inside the uranium reservoir in the 3rd member of the Quantou Formation (b); inorganic and organic reducing media inside uranium reservoirs of Fuxin Formation restrict oxidizing fluids and uranium mineralization (c)

    • Cao, H. H., Xu, W. L., Pei, F. P., et al., 2013. Zircon U⁃Pb Geochronology and Petrogenesis of the Late Paleozoic⁃Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 170-171: 191-207. https://doi.org/10.1016/j.lithos.2013.03.006
      Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466 (in Chinese with English abstract).
      Cheng, Y. H., 2019. Sedimentary Filling and Tectonic Thermal Events since Late Cretaceous in the Songliao Basin (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Deng, F. L., Song, H. R., Zhou, R. H., et al., 2022. Discussion on Uranium Metallogenic Conditions and Prospecting Direction of Quantou Formation in Southeast Songliao Basin. Uranium Geology, 38(4): 643-651 (in Chinese with English abstract).
      Fang, X. H., Fang, M. L., Luo, Y., et al., 2012. The Potential Evaluation of Volcanic Type Uranium Resources in China. Uranium Geology, 28(6): 342-348, 354 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2012.06.005
      Ge, R. F., Zhang, Q. L., Wang, L. S., et al., 2010. Tectonic Evolution of Songliao Basin and the Prominent Tectonic Regime Transition in Eastern China. Geological Review, 56(2): 180-195 (in Chinese with English abstract).
      Gu, C. C., Zhu, G., Li, Y. J., et al., 2018. Timing of Deformation and Location of the Eastern Liaoyuan Terrane, NE China: Constraints on the Final Closure Time of the Paleo⁃Asian Ocean. Gondwana Research, 60: 194-212. https://doi.org/10.1016/j.gr.2018.04.012
      Haack, U., 1983. On the Content and Vertical Distribution of K, Th and U in the Continental Crust. Earth and Planetary Science Letters, 62(3): 360-366. https://doi.org/10.1016/0012⁃821x(83)90006⁃7
      Hamilton, E. I., 2000. Environmental Variables in a Holistic Evaluation of Land Contaminated by Historic Mine Wastes: A Study of Multi⁃Element Mine Wastes in West Devon, England Using Arsenic as an Element of Potential Concern to Human Health. Science of the Total Environment, 249(1-3): 171-221. https://doi.org/10.1016/s0048⁃9697(99)00519⁃7
      Hou, B. H., Keeling, J., Li, Z. Y., 2017. Paleovalley⁃Related Uranium Deposits in Australia and China: A Review of Geological and Exploration Models and Methods. Ore Geology Reviews, 88: 201-234. https://doi.org/10.1016/j.oregeorev.2017.05.005
      Huang, S. J., 1994. Formation Conditions and Prospecting Criteria of Sandstone⁃Type Uranium Deposits in Interlayer Oxidation Zone. Uranium Geology, 10(1): 6-13 (in Chinese with English abstract).
      Jia, L. C., Cai, J. F., Huang, X., et al., 2022. Study on Ore Controlling Factors and Metallogenic Model of the Baolongshan Uranium Deposit. Uranium Geology, 38(4): 582-593 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary⁃Tectonic Setting of the Deposition⁃Type Uranium Deposits Forming in the Paleo⁃Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2012. Uranium Reservoir Architecture and Ore⁃Forming Flow Field Study: A Key of Revealing Dongsheng Sandstonetype Uranium Deposit Mineralization Mechanism. Geological Science and Technology Information, 31(5): 94-104 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., 2018. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone⁃Type Uranium Deposits and Its Ore⁃Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone⁃Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602 (in Chinese with English abstract).
      Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Sedimentology of Uranium Reservior: The Foundation of Sandstone Type Uranium Deposit Exploration and Development. Geological Publishing House, Beijing (in Chinese).
      Jin, R. S., Liu, H. J., Li, X. G., 2022. Theoretical System of Sandstone⁃Type Uranium Deposits in Northern China. Journal of Earth Science, 33(2): 257-277. https://doi.org/10.1007/s12583⁃021⁃1449⁃4
      Li, C. H., Cheng, Y. H., Wang, T. J., et al., 2020. The Controlling Effect of Cenozoic Tectonic Evolution on the Mineralization of Sandstone⁃Type Uranium Deposits in the Songliao Basin: Evidence from Apatite Fission Tracks. Acta Geologica Sinica, 94(10): 2856-2873 (in Chinese with English abstract).
      Li, S. Q., Chen, F. K., Siebel, W., et al., 2012. Late Mesozoic Tectonic Evolution of the Songliao Basin, NE China: Evidence from Detrital Zircon Ages and Sr⁃Nd Isotopes. Gondwana Research, 22(3-4): 943-955. https://doi.org/10.1016/j.gr.2012.04.002
      Peng, H., Jiao, Y. Q., Dong, F. S., et al., 2022. Relationships between Uranium Occurrence, Pyrite and Carbonaceous Debris in Fuxin Formation in the Songliao Basin: Evidenced by Mineralogy and Sulfur Isotopes. Ore Geology Reviews, 140: 104580. https://doi.org/10.1016/j.oregeorev.2021.104580
      Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone⁃Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166 (in Chinese with English abstract).
      Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      Rudnick, R. L., Gao, S., 2014. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https://doi.org/10.1016/b978⁃0⁃08⁃095975⁃7.00301⁃6
      Shi, Y., Chen, J. S., Wei, M. H., et al., 2020. Evolution of Eastern Segment of the Paleo⁃Asian Ocean in the Late Paleozoic: Geochronology and Geochemistry Constraints of Granites in Faku Area, North Liaoning, NE China. Acta Petrologica Sinica, 36(11): 3287-3308 (in Chinese with English abstract).
      Shi, Y., Liu, Z. H., Liu, Y. J., et al., 2019. Late Paleozoic⁃Early Mesozoic Southward Subduction⁃Closure of the Paleo⁃Asian Ocean: Proof from Geochemistry and Geochronology of Early Permian⁃Late Triassic Felsic Intrusive Rocks from North Liaoning, NE China. Lithos, 346-347: 105165. https://doi.org/10.1016/j.lithos.2019.105165
      Shi, Y., Shi, S. S., Liu, Z. H., et al., 2022. Back⁃Arc System Formation and Extinction in the Southern Central Asian Orogenic Belt: New Constraints from the Faku Ophiolite in North Liaoning, NE China. Gondwana Research, 103: 64-83. https://doi.org/10.1016/j.gr.2021.11.011
      Sun, Y. H., Jiao, Y. Q., Wu, L. Q., et al., 2022. Relations of Uranium Enrichment and Metal Sulfides within the Shuanglong Uranium Deposit, Southern Ordos Basin. Journal of Earth Science, 33(2): 395-408. https://doi.org/10.1007/s12583⁃021⁃1456⁃5
      Wang, S. Y., Cheng, Y. H., Jin, R. S., et al., 2022. Detrital Zircon U⁃Pb Ages of the Cretaceous Strata in the Southern Songliao Basin, NE China: Constraints on Basin⁃and⁃Range Evolution. Sedimentary Geology, 433: 106133. https://doi.org/10.1016/j.sedgeo.2022.106133
      Wang, S. Y., Cheng, Y. H., Xu, D. H., et al., 2020. Late Cretaceous⁃Cenozoic Tectonic⁃Sedimentary Evolution and U⁃Enrichment in the Southern Songliao Basin. Ore Geology Reviews, 126: 103786. https://doi.org/10.1016/j.oregeorev.2020.103786
      Wang, Y. L., Liu, J., Wei, H. F., et al., 2010. The Tectonic Controlling Action on Coal⁃Bearing Sedimentary Cycle of Tiefa Basin. Coal Geology & Exploration, 38(6): 1-4, 11 (in Chinese with English abstract).
      Wedepohl, K. H., 1995. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 59(7): 1217-1232. https://doi.org/10.1016/0016⁃7037(95)00038⁃2
      Wu, L. Q., Jiao, Y. Q., Peng, Y. B., et al., 2022. Uranium Metallogeny in Fault⁃Depression Transition Region: A Case Study of the Tamusu Uranium Deposit in the Bayingobi Basin. Journal of Earth Science, 33(2): 409-421. https://doi.org/10.1007/s12583⁃021⁃1553⁃5
      Wu, L. Q., Jiao, Y. Q., Wang, G. R., et al., 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism. Earth Science, 47(9): 3174-3191 (in Chinese with English abstract).
      Xia, Y. L., Zheng, J. W., Li, Z. Y., et al., 2010. Metallogenic Characteristics and Metallogenic Model of Qianjiadian Uranium Deposit in Songliao Basin. Mineral Deposits, 29(S1): 154-155 (in Chinese with English abstract).
      Xiang, Y., Jiao, Y. Q., Wu, L. Q., et al., 2022. Markers and Genetic Mechanisms of Primary and Epigenetic Oxidation of an Aeolian Depositional System of the Luohandong Formation, Ordos Basin. Journal of Earth Science, 33(2): 358-372. https://doi.org/10.1007/s12583⁃020⁃1109⁃0
      Yu, W. B., Dong, Q. S., Zou, J. B., et al., 2006. Analysis of Metallogenic Conditions of In⁃Situ Leachable Sandstone Type Uranium Deposit in the Southeastern Margin of Songliao Basin. Journal of Jilin University (Earth Science Edition), 36(4): 543-548, 562 (in Chinese with English abstract).
      Zhang, F., Jiao, Y. Q., Wang, S. M., et al., 2022. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 33(2): 325-341. https://doi.org/10.1007/s12583⁃020⁃1364⁃0
      Zhang, J. D., 2016. Innovation and Development of Metallogenic Theory for Sandstone Type Uranium Deposit in China. Uranium Geology, 32(6): 321-332 (in Chinese with English abstract).
      Zhang, Z. Q., 2006. Study on Metallogenic Conditions of Upper Cretaceous System for In⁃Situ Leachable Sandstone Type Uranium Deposit in South Songliao Basin (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract).
      Zhao, Y., Li, K. Y., Xu, Q., et al., 2020. Uranium Mineralization Characteristics and Metallogenic Potential of the Lower Cretaceous Shahezi Formation, Southeastern Songliao Basin. Geological Journal of China Universities, 26(3): 294-302 (in Chinese with English abstract).
      曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375
      程银行, 2019. 松辽盆地晚白垩世以来沉积充填及构造演化研究(博士学位论文). 北京: 中国地质大学.
      邓福理, 宋海瑞, 周荣辉, 等, 2022. 松辽盆地东南部泉头组铀成矿条件与找矿方向探讨. 铀矿地质, 38(4): 643-651.
      方锡珩, 方茂龙, 罗毅, 等, 2012. 全国火山岩型铀矿资源潜力评价. 铀矿地质, 28(6): 342-348, 354.
      葛荣峰, 张庆龙, 王良书, 等, 2010. 松辽盆地构造演化与中国东部构造体制转换. 地质论评, 56(2): 180-195.
      黄世杰, 1994. 层间氧化带砂岩型铀矿的形成条件及找矿判据. 铀矿地质, 10(1): 6-13.
      贾立城, 蔡建芳, 黄笑, 等, 2022. 松辽盆地宝龙山铀矿床控矿因素与成矿模式研究. 铀矿地质, 38(4): 582-593.
      焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积‒构造背景综合分析. 地学前缘, 22(1): 189-205.
      焦养泉, 吴立群, 荣辉, 等, 2012. 铀储层结构与成矿流场研究: 揭示东胜砂岩型铀矿床成矿机理的一把钥匙. 地质科技情报, 31(5): 94-104.
      焦养泉, 吴立群, 荣辉, 2018. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      焦养泉, 吴立群, 荣辉, 等, 2021. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      焦养泉, 吴立群, 荣辉, 等, 2022. 沉积、成岩与铀成矿: 中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
      焦养泉, 吴立群, 杨生科, 等, 2006. 铀储层砂体沉积学: 砂岩型铀矿勘查与开发的基础. 北京: 地质出版社.
      吏成辉, 程银行, 王铁军, 等, 2020. 松辽盆地新生代构造演化对砂岩型铀矿成矿的控制作用: 来自磷灰石裂变径迹的证据. 地质学报, 94(10): 2856-2873.
      荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      时溢, 陈井胜, 魏明辉, 等, 2020. 古亚洲洋东段晚古生代演化过程: 辽宁北部法库地区花岗岩年代学和地球化学的制约. 岩石学报, 36(11): 3287-3308.
      王宇林, 刘锦, 魏恒飞, 等, 2010. 铁法盆地含煤沉积旋回的构造控制作用. 煤田地质与勘探, 38(6): 1-4, 11.
      吴立群, 焦养泉, 王国荣, 等, 2022. 盆山耦合机制驱动下的库车坳陷铀成矿作用响应. 地球科学, 47(9): 3174-3191. doi: 10.3799/dqkx.2022.100
      夏毓亮, 郑纪伟, 李子颖, 等, 2010. 松辽盆地钱家店铀矿床成矿特征和成矿模式. 矿床地质, 29(S1): 154-155.
      于文斌, 董清水, 邹吉斌, 等, 2006. 松辽盆地东南缘地浸砂岩型铀矿成矿条件分析. 吉林大学学报(地球科学版), 36(4): 543-548, 562.
      张金带, 2016. 我国砂岩型铀矿成矿理论的创新和发展. 铀矿地质, 32(6): 321-332.
      张振强, 2006. 松辽盆地南部上白垩统地浸砂岩型铀矿成矿条件研究(博士学位论文). 沈阳: 东北大学.
      赵岳, 李轲岩, 徐强, 等, 2020. 松辽盆地东南缘下白垩统沙河子组铀矿化特征及成矿潜力. 高校地质学报, 26(3): 294-302.
    • dqkxzx-49-9-3182_附表1.docx
    • 加载中
    图(16)
    计量
    • 文章访问数:  402
    • HTML全文浏览量:  103
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-28
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回