Research on Dynamic Response Law of Shield Tunnel and Surrounding Soil Based on Vibration Action of Subway Train
-
摘要: 为研究小半径曲线段列车荷载作用下隧道周边土体动力响应的影响,以郑州地铁一号线为背景,对孔隙水压力、水位进行现场实测,采用有限元软件MIDAS开展数值分析,研究列车振动荷载下隧道周边土层动力响应变化规律.研究结果表明:列车运营过程中,振动荷载的施加是导致孔隙水压力变化的重要原因;埋深越深孔压越大,随时间增长孔压逐渐减小;距隧道越近土体动力响应对列车振动的反应越敏感,土体中孔隙水压力变化幅度和速率、竖向变形峰值均越大;小半径曲线隧道底部土体的动力响应随列车运行速度的增加而增大;土体产生的超孔隙水压力逐渐消散,可以预测随列车振动对周围土层不会产生变形危害.Abstract: In order to study the influence of the dynamic response of the soil around the tunnel under the train load in the small radius curve section, the pore water pressure and water level were measured in the field, and the numerical analysis was performed using the finite element software MIDAS. The results show that the vibration load is the important reason for the change of pore water pressure during the operation of the tunnel, the deeper the hole pressure gradually decreases; the closer to the tunnel, the more sensitive is the response to the train vibration dynamic response, the change amplitude and rate of pore water pressure and vertical deformation peak of the water in the soil are larger; the dynamic response of the soil at the bottom of the small radius curve tunnel increases with the train speed; the superpore water pressure generated by the soil is gradually dissipated, it can be predicted that the deformation damage to the surrounding soil with the train vibration.
-
表 1 监测点位信息
Table 1. Monitoring site information
监测点
编号监测点距区间隧道
外轮廓平面净距(m)监测点
孔深(m)孔底距隧道
底板间距(m)监测
设备K1 4.8 21.5 0.5 自动 K2 3.6 21.5 0.9 人工 K3⁃1 4.6 20.0 0.6 人工 K3⁃2 4.6 23.0 3.6 自动 K3⁃3 4.6 28.0 8.6 自动 K3⁃4 4.6 38.0 18.6 自动 K4 4.8 19.0 0.8 人工 K5 3.3 18.0 0.8 自动 K6 3.7 21.5 0.5 人工 K7 3.9 21.5 0.9 人工 K8 4.4 20.0 0.5 人工 K9 3.8 19.0 0.6 人工 K10 3.6 18.0 0.6 人工 K11⁃1 4.0 20.0 0.5 人工 K11⁃2 4.0 23.0 3.5 人工 K11⁃3 4.0 28.0 8.5 人工 K11⁃4 4.0 38.0 18.5 人工 表 2 物理力学性能指标
Table 2. Physical and mechanical performance indicators
序号 土层名称 层厚(m) 弹性模量(E/MPa) 泊松比(µ) 重度(KN/M3) 摩擦角(°) 黏聚力(kPa) 1 杂填土 2.855 9 0.37 17 18 10 2 粉土 10.095 8.1 0.3 19.6 20 14 3 粉质黏土 4.04 5.2 0.3 19.2 10 19 4 粉砂 2.347 5 12.63 0.3 20.2 24 0 5 中砂 9.51 34.58 0.25 20.8 31 0 6 粉质黏土 4.027 5 11.58 0.25 20 13 22 7 中砂 6.775 33.33 0.25 20.8 30 0 8 粉质黏土 28.65 20.35 0.3 20.1 14 16 9 衬砌 0.3 34.5 0.2 25 / / 10 道床 0.44 30 0.2 25 / / -
Bian, X. C., Jiang, H. G., Chang, C., et al., 2015. Track and Ground Vibrations Generated by High-Speed Train Running on Ballastless Railway with Excitation of Vertical Track Irregularities. Soil Dynamics and Earthquake Engineering, 76: 29-43. https://doi.org/10.1016/j.soildyn.2015.02.009 Dai, L. F. B., Wang, G. D., Gao, B., 2012. Study of Sand Liquefaction under Vibration Load of High Speed Train. Chinese Journal of Underground Space and Engineering, 8(2): 434-438 (in Chinese with English abstract). Lei, H. Y., Yang, X. N., Xu, Y. G., et al., 2021. Experiment of Dynamic Characteristics of Saturated Remolded Clay under Intermittent Cyclic Loading. Journal of Tianjin University (Science and Technology), 54(8): 799-806(in Chinese with English abstract). Ren, L., Zhu, Y., Cui, T. L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286(in Chinese with English abstract). Shi, Y. F., Cao, C. W., Tan, Y. F., et al., 2022. Study on Dynamic Response and Long-Term Settlement of Water-Saturated Weathered Soft Rocks at the Base of Subway Tunnels. Modern Tunnelling Technology, 59(2): 86-95(in Chinese with English abstract). Wang, X. R., Cai, S., Yang, W., et al., 2022. Influence of Existing Buildings on Construction of Earth Pressure Shield in Extremely Soft Rock Stratum. Earth Science, 47(4): 1483-1491(in Chinese with English abstract). Wang, X. R., Jiang, H. J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract). Xu, Y., Xu, J. L., Dai, J., et al., 2018. Study of Pore Water Pressure and Deformation Characteristics of Soil below Tunnel under Vibration Load of Metro Trains. Tunnel Construction, 38(11): 1785-1792 (in Chinese with English abstract). Zhang, X. L., Yi, R. B., Ji, Z. P., et al., 2023. Property Evolution and Liquefaction Stage Characteristics of Saturated Sand under Cyclic Loading. Engineering Mechanics, 40(2): 157-167(in Chinese with English abstract). 戴林发宝, 王广地, 高波, 2012. 高速列车振动下隧道周边砂土液化研究. 地下空间与工程学报, 8(2): 434-438. 雷华阳, 杨晓楠, 许英刚, 等, 2021. 间歇性循环荷载条件下饱和重塑黏土的动力特性试验. 天津大学学报(自然科学与工程技术版), 54(8): 799-806. 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041 石钰锋, 曹成威, 谈亦帆, 等, 2022. 地铁隧道基底饱水风化软岩动力响应及长期沉降研究. 现代隧道技术, 59(2): 86-95. 王晓睿, 蔡松, 杨伟, 等, 2022. 既有建筑对极软岩地层中土压盾构的施工影响. 地球科学, 47(4): 1483-1491. doi: 10.3799/dqkx.2020.326 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269 徐阳, 徐佳琳, 戴金, 等, 2018. 地铁列车振动荷载作用下隧道底部土层孔隙水压力及变形特性研究. 隧道建设(中英文), 38(11): 1785-1792. 张鑫磊, 衣睿博, 纪展鹏, 等, 2023. 循环荷载作用下饱和砂土的性质演化规律及液化阶段性特征. 工程力学, 40(2): 157-167. -