• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    晚更新世以来古气候变化对长江中游故道区冲湖积含水层中碘富集的控制作用

    薛伟广 邓娅敏 薛江凯 杜尧 徐雨潇 范瑞宇

    薛伟广, 邓娅敏, 薛江凯, 杜尧, 徐雨潇, 范瑞宇, 2024. 晚更新世以来古气候变化对长江中游故道区冲湖积含水层中碘富集的控制作用. 地球科学, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076
    引用本文: 薛伟广, 邓娅敏, 薛江凯, 杜尧, 徐雨潇, 范瑞宇, 2024. 晚更新世以来古气候变化对长江中游故道区冲湖积含水层中碘富集的控制作用. 地球科学, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076
    Xue Weiguang, Deng Yamin, Xue Jiangkai, Du Yao, Xu Yuxiao, Fan Ruiyu, 2024. Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene. Earth Science, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076
    Citation: Xue Weiguang, Deng Yamin, Xue Jiangkai, Du Yao, Xu Yuxiao, Fan Ruiyu, 2024. Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene. Earth Science, 49(10): 3749-3760. doi: 10.3799/dqkx.2023.076

    晚更新世以来古气候变化对长江中游故道区冲湖积含水层中碘富集的控制作用

    doi: 10.3799/dqkx.2023.076
    基金项目: 

    国家自然科学基金国际(地区)合作与交流项目 42020104005

    详细信息
      作者简介:

      薛伟广(1996-),男,硕士研究生,主要从事地下水污染与防治、碘的水文地球化学等方面的研究工作.OCRID:0009-0002-3188-1034,E-mail:weigxue@163.com

      通讯作者:

      邓娅敏,OCRID:0000-0002-4815-7176,E-mail: yamin.deng@cug.edu.cn

    • 中图分类号: P641;P595

    Controlling Mechanism of Paleoclimate Change on Iodine Enrichment in Alluvial Aquifers of Middle Reach of Yangtze River since Late Pleistocene

    • 摘要: 长江中游故道区冲湖积含水层中存在原生高碘地下水,对区域供水安全构成严重威胁.含水层沉积物中的铁矿物和有机质是碘的主要载体,从宏观地质背景和沉积演化的角度揭示晚更新世以来的气候变化对含水层中碘富集的控制机制是科学认识高碘地下水成因和保障供水安全的前提.选取长江中游故道区的第四纪沉积物作为研究对象,系统分析沉积物地球化学特征,识别含水层沉积物中碘赋存的主要载体,揭示古气候变化驱动的化学风化与沉积过程对含水层碘富集的控制机理.研究结果表明:沉积物中碘的主要赋存形态是铁氧化物结合态(IFe-ox)和有机结合态(Iorg),而且沉积物的化学风化指数CIA、K/Na比值与IFe-ox、Iorg呈显著正相关.无定型铁氧化物(Feox1)、粘土矿物及有机质是碘赋存的主要载体.晚更新世-全新世以来气候从寒冷干燥转为温暖潮湿,化学风化增强促使更多无定型铁氧化物形成,全新世以后广泛扩张的湖泊导致碘、有机质与铁氧化物在湖相沉积物中共埋藏.古气候变化对长江中游故道区含水层中碘的富集起重要控制作用.

       

    • 图  1  长江中游故道HWW钻孔位置及岩性柱状图

      Fig.  1.  Location and lithology of the borehole HWW

      图  2  HWW钻孔沉积物中总碘、碘形态(a),有机质(b),总铁、铁形态(c)及钒镍含量(d)垂向分布

      Fig.  2.  Vertical profiles of total iodine and different iodine speciation (a), TOC (b), total Fe and different Fe speciation (c) and V、Ni contents in the sediments of the HWW borehole (d)

      图  3  沉积物中Fe2O3、I与Si/Al比值、TOC之间的相互关系

      Fig.  3.  Relation between Fe2O3, I and Si/Al, TOC in the sediments

      图  4  HWW钻孔沉积物中风化指数及特征元素含量随深度分布曲线

      Fig.  4.  Depth distribution of weathering index and characteristic element content in the sediments of the HWW borehole

      图  5  沉积物中的I/Ti、TOC/Ti、Al/Si与CIA、K/Na、ba相关图

      Fig.  5.  Relation between I/Ti, TOC/Ti, Al/Si and CIA, K/Na, ba in the sediments

      图  6  HWW钻孔沉积物中碘、铁各形态含量与风化指数相关图

      Fig.  6.  Relation between Iodine species, Iron species content and weathering index in the sediments of the HWW borehole

      表  1  黑瓦屋钻孔沉积物样品主要地球化学组成(%)

      Table  1.   Main element data of sediments in the borehole HWW

      化学组分 SiO2 Al2O3 Fe2O3 CaO K2O MgO Na2O TiO2 P2O5
      NASC 64.80 16.90 5.65 3.63 3.97 2.86 1.14 0.70 0.13
      最大值 77.0 14.5 6.19 7.28 2.95 2.43 1.75 0.95 0.19
      最小值 67.2 9.0 3.54 3.21 1.80 1.72 1.00 0.52 0.11
      平均值 72.4 11.4 4.99 4.86 2.24 2.05 1.35 0.75 0.15
      下载: 导出CSV

      表  2  HWW钻孔不同深度沉积物的风化参数及部分特征元素数据

      Table  2.   Weathing index and characteristic element data of sediments in the borehole HWW

      层位 深度(m) CIA K/Na ba Al/Si Al2O3 Fe2O3 TOC I(μg/g)
      (%)
      0~17 最大值 70.24 2.96 1.14 0.23 14.51 6.19 1.17 0.98
      最小值 56.94 1.35 0.64 0.14 9.03 3.54 0.23 0.24
      平均值 64.74 2.19 0.82 0.20 12.14 5.19 0.68 0.60
      17~53 最大值 62.04 1.92 1.24 0.20 12.01 5.63 0.66 0.43
      最小值 56.86 1.32 0.87 0.14 9.31 3.75 0.07 0.13
      平均值 59.45 1.56 1.08 0.17 10.66 4.76 0.26 0.24
      下载: 导出CSV
    • Amini Tabrizi, R., Dontsova, K., Graf Grachet, N., et al., 2022. Elevated Temperatures Drive Abiotic and Biotic Degradation of Organic Matter in a Peat Bog under Oxic Conditions. The Science of the Total Environment, 804: 150045. https://doi.org/10.1016/j.scitotenv.2021.150045
      Andersen, S., Guan, H. X., Teng, W. P., et al., 2009. Speciation of Iodine in High Iodine Groundwater in China Associated with Goitre and Hypothyroidism. Biological Trace Element Research, 128(2): 95-103. https://doi.org/10.1007/s12011-008-8257-x
      Bouchez, J., Gaillardet, J., France-Lanord, C., et al., 2011. Grain Size Control of River Suspended Sediment Geochemistry: Clues from Amazon River Depth Profiles. Geochemistry, Geophysics, Geosystems, 12(3): Q03008. https://doi.org/10.1029/2010GC003380
      Boulter, C. A., Hopkinson, L. J., Ineson, M. G., et al., 2004. Provenance and Geochemistry of Sedimentary Components in the Volcano-Sedimentary Complex, Iberian Pyrite Belt: Discrimination between the Sill-Sediment-Complex and Volcanic-Pile Models. Journal of the Geological Society, 161(1): 103-115. https://doi.org/10.1144/0016-764902-159
      Dal Maso, L., Bosetti, C., La Vecchia, C., et al., 2009. Risk Factors for Thyroid Cancer: An Epidemiological Review Focused on Nutritional Factors. Cancer Causes & Control, 20(1): 75-86. https://doi.org/10.1007/s10552-008-9219-5
      Donselaar, M. E., Bhatt, A. G., Ghosh, A. K., et al., 2017. On the Relation between Fluvio-Deltaic Flood Basin Geomorphology and the Wide-Spread Occurrence of Arsenic Pollution in Shallow Aquifers. The Science of the Total Environment, 574: 901-913. https://doi.org/10.1016/j.scitotenv.2016.09.074
      Du, Y., Deng, Y. M., Ma, T., et al., 2018. Hydrogeochemical Evidences for Targeting Sources of Safe Groundwater Supply in Arsenic-Affected Multi-Level Aquifer Systems. Science of the Total Environment, 645: 1159-1171. https://doi.org/10.1016/j.scitotenv.2018.07.173
      Eusterhues, K., Rennert, T., Knicker, H., et al., 2011. Fractionation of Organic Matter Due to Reaction with Ferrihydrite: Coprecipitation versus Adsorption. Environmental Science & Technology, 45(2): 527-533. https://doi.org/10.1021/es1023898
      Eusterhues, K., Wagner, F. E., Häusler, W., et al., 2008. Characterization of Ferrihydrite-Soil Organic Matter Coprecipitates by X-Ray Diffraction and Mössbauer Spectroscopy. Environmental Science & Technology, 42(21): 7891-7897. https://doi.org/10.1021/es800881w
      Gabet, E. J., Edelman, R., Langner, H., 2006. Hydrological Controls on Chemical Weathering Rates at the Soil-Bedrock Interface. Geology, 34(12): 1065. https://doi.org/10.1130/g23085a.1
      Gao, J., Zheng, T. L., Deng, Y. M., et al., 2021. Microbially Mediated Mobilization of Arsenic from Aquifer Sediments under Bacterial Sulfate Reduction. The Science of the Total Environment, 768: 144709. https://doi.org/10.1016/j.scitotenv.2020.144709
      Henjum, S., Barikmo, I., Gjerlaug, A. K., et al., 2010. Endemic Goitre and Excessive Iodine in Urine and Drinking Water among Saharawi Refugee Children. Public Health Nutrition, 13(9): 1472-1477. https://doi.org/10.1017/S1368980010000650
      Holmkvist, L., Ferdelman, T. G., Jørgensen, B. B., 2011. A Cryptic Sulfur Cycle Driven by Iron in the Methane Zone of Marine Sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta, 75(12): 3581-3599. https://doi.org/10.1016/j.gca.2011.03.033
      Hu, Q., Moran, J. E., Blackwood, V., 2009. Geochemical Cycling of Iodine Species in Soils. The Comprehensive Handbook on Iodine, Geochemical Cycling of Iodine Species in Soils, Academic Press, New York, 95-107. https://www.osti.gov/biblio/946950
      Jansson, J. K., Hofmockel, K. S., 2020. Soil Microbiomes and Climate Change. Nature Reviews Microbiology, 18: 35-46. https://doi.org/10.1038/s41579-019-0265-7
      Ji, J. F., Balsam, W., Chen, J., 2001. Mineralogic and Climatic Interpretations of the Luochuan Loess Section (China) Based on Diffuse Reflectance Spectrophotometry. Quaternary Research, 56(1): 23-30. https://doi.org/10.1006/qres.2001.2238
      Jin, G., Deng, Y. M., Du, Y., et al., 2022. Spatial-Temporal Distribution of Arsenic in Groundwater System in Tian-E-Zhou Wetland of the Yangtze River and Its Controlling Mechanism. Earth Science, 47(11): 4161-4175(in Chinese with English abstract).
      Kaplan, D. I., Denham, M. E., Zhang, S., et al., 2014. Radioiodine Biogeochemistry and Prevalence in Groundwater. Critical Reviews in Environmental Science and Technology, 44(20): 2287-2335. https://doi.org/10.1080/10643389.2013.828273
      Kellerman, A. M., Guillemette, F., Podgorski, D. C., et al., 2018. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in Aquatic Ecosystems. Environmental Science & Technology, 52(5): 2538-2548. https://doi.org/10.1021/acs.est.7b05513
      Lewan, M. D., Maynard, J. B., 1982. Factors Controlling Enrichment of Vanadium and Nickel in the Bitumen of Organic Sedimentary Rocks. Geochimica et Cosmochimica Acta, 46(12): 2547-2560. https://doi.org/10.1016/0016-7037(82)90377-5
      Li, G. X., Li, P., Liu, Y., et al., 2014. Sedimentary System Response to the Global Sea Level Change in the East China Seas since the Last Glacial Maximum. Earth-Science Reviews, 139: 390-405. https://doi.org/10.1016/j.earscirev.2014.09.007
      Li, J. X., Wang, Y. T., Xue, X. B., et al., 2020. Mechanistic Insights into Iodine Enrichment in Groundwater during the Transformation of Iron Minerals in Aquifer Sediments. The Science of the Total Environment, 745: 140922. https://doi.org/10.1016/j.scitotenv.2020.140922
      Li, J. X., Wang, Y. X., Xie, X. J., 2016. Cl/Br Ratios and Chlorine Isotope Evidences for Groundwater Salinization and Its Impact on Groundwater Arsenic, Fluoride and Iodine Enrichment in the Datong Basin, China. The Science of the Total Environment, 544: 158-167. https://doi.org/10.1016/j.scitotenv.2015.08.144
      Li, J. X., Zhou, H. L., Qian, K., et al., 2017. Fluoride and Iodine Enrichment in Groundwater of North China Plain: Evidences from Speciation Analysis and Geochemical Modeling. The Science of the Total Environment, 598: 239-248. https://doi.org/10.1016/j.scitotenv.2017.04.158
      Long, X. Y., Ji, J. F., Barrón, V., et al., 2016. Climatic Thresholds for Pedogenic Iron Oxides under Aerobic Conditions: Processes and Their Significance in Paleoclimate Reconstruction. Quaternary Science Reviews, 150: 264-277. https://doi.org/10.1016/j.quascirev.2016.08.031
      Luo, Y. P., Deng, Y. M., Du, Y., et al., 2022. Occurrence and Formation of High Iodine Groundwater in oxbows of the Middle Reach of the Yangtze River. Earth Science, 47(2): 662-673(in Chinese with English abstract).
      März, C., Poulton, S. W., Brumsack, H. J., et al., 2012. Climate-Controlled Variability of Iron Deposition in the Central Arctic Ocean (Southern Mendeleev Ridge) over the Last 130 000 Years. Chemical Geology, 330/331: 116-126. https://doi.org/10.1016/j.chemgeo.2012.08.015
      McDonough, L. K., O'Carroll, D. M., Meredith, K., et al., 2020. Changes in Groundwater Dissolved Organic Matter Character in a Coastal Sand Aquifer Due to Rainfall Recharge. Water Research, 169: 115201. https://doi.org/10.1016/j.watres.2019.115201
      McLennan, S. M., 1993. Weathering and Global Denudation. The Journal of Geology, 101(2): 295-303. https://doi.org/10.1086/648222
      Mikutta, R., Lorenz, D., Guggenberger, G., et al., 2014. Properties and Reactivity of Fe-Organic Matter Associations Formed by Coprecipitation versus Adsorption: Clues from Arsenate Batch Adsorption. Geochimica et Cosmochimica Acta, 144: 258-276. https://doi.org/10.1016/j.gca.2014.08.026
      Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0
      Nesbitt, H. W., Young, G. M., 1989. Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2): 129-147. https://doi.org/10.1086/629290
      Pan, H. W., Yu, H. B., Song, Y. H., et al., 2017. Tracking Fluorescent Components of Dissolved Organic Matter from Soils in Large-Scale Irrigated Area. Environmental Science and Pollution Research, 24(7): 6563-6571. https://doi.org/10.1007/s11356-017-8378-x
      Peng, Y., Wu, J., Chao, J. B., et al., 2017. A Method for the the Accurate Determination of 14 Metal Elements in Soils/Sediments by ICP-MS. Environmental Chemistry, 36(1): 175-182 (in Chinese with English abstract). doi: 10.1002/etc.3522
      Poulton, S. W., Canfield, D. E., 2005. Development of a Sequential Extraction Procedure for Iron: Implications for Iron Partitioning in Continentally Derived Particulates. Chemical Geology, 214(3/4): 209-221. https://doi.org/10.1016/j.chemgeo.2004.09.003
      Selim Reza, A. H. M., Jean, J. S., Yang, H. J., et al., 2010. Occurrence of Arsenic in Core Sediments and Groundwater in the Chapai-Nawabganj District, NorthWestern Bangladesh. Water Research, 44(6): 2021-2037. https://doi.org/10.1016/j.watres.2009.12.006
      Shen, S., Luo, K. W., Ma, T., et al., 2022. Nitrogen Burial Characteristics of Quaternary Sediments and Its Controls on High Ammonium Groundwater in the Central Yangtze River Basin. The Science of the Total Environment, 842: 156659. https://doi.org/10.1016/j.scitotenv.2022.156659
      Sun, D. J., Gao, Y. H., Liu, H., 2019. Achievements and Prospects of Endemic Disease Prevention and Control in China in Past 70 Years. Chinese Journal of Public Health, 35(7): 793-796(in Chinese with English abstract).
      Wang, Y. X., Li, J. X., Ma, T., et al., 2021. Genesis of Geogenic Contaminated Groundwater: As, F and I. Critical Reviews in Environmental Science and Technology, 51(24): 2895-2933. https://doi.org/10.1080/10643389.2020.1807452
      Wei, G. J., Li, X. H., Liu, Y., et al., 2006. Geochemical Record of Chemical Weathering and Monsoon Climate Change since the Early Miocene in the South China Sea. Paleoceanography, 21(4): PA4214. https://doi.org/10.1029/2006PA001300
      Xie, X. J., Wang, Y. X., Ellis, A., et al., 2014. Impact of Sedimentary Provenance and Weathering on Arsenic Distribution in Aquifers of the Datong Basin, China: Constraints from Elemental Geochemistry. Journal of Hydrology, 519: 3541-3549. https://doi.org/10.1016/j.jhydrol.2014.10.044
      Xu, C., Kaplan, D. I., Zhang, S. J., et al., 2015. Radioiodine Sorption/Desorption and Speciation Transformation by Subsurface Sediments from the Hanford Site. Journal of Environmental Radioactivity, 139: 43-55. https://doi.org/10.1016/j.jenvrad.2014.09.012
      Xue, J. K., Deng, Y. M., Du, Y., et al., 2021. Molecular Characterization of Dissolved Organic Matter (DOM) in Shallow Aquifer along Middle Reach of Yangtze River and Its Implications for Iodine Enrichment. Earth Science, 46(11): 4140-4149(in Chinese with English abstract).
      Xue, J. K., Deng, Y. M., Luo, Y. P., et al., 2022. Unraveling the Impact of Iron Oxides-Organic Matter Complexes on Iodine Mobilization in Alluvial-Lacustrine Aquifers from Central Yangtze River Basin. The Science of the Total Environment, 814: 151930. https://doi.org/10.1016/j.scitotenv.2021.151930
      Xue, X. B., Li, J. X., Qian, K., et al., 2018. Spatial Distribution and Mobilization of Iodine in Groundwater System of North China Plain: Taking Hydrogeological Section from Shijiazhuang, Hengshui to Cangzhou as an Example. Earth Science, 43(3): 910-921(in Chinese with English abstract).
      Xue, X. B., Li, J. X., Xie, X. J., et al., 2019. Impacts of Sediment Compaction on Iodine Enrichment in Deep Aquifers of the North China Plain. Water Research, 159: 480-489. https://doi.org/10.1016/j.watres.2019.05.036
      Zhang, J. W., Liang, X., Jin, M. G., et al., 2022. Evolution of the Groundwater Flow System Driven by the Sedimentary Environment since the Last Glacial Maximum in the Central Yangtze River Basin. Journal of Hydrology, 610: 127997. https://doi.org/10.1016/j.jhydrol.2022.127997
      Zhang, Y., Yu, Q., Shi, C. W., et al., 2023. Environmental Isotopes and Cl/Br Ratios Evidences for Delineating Arsenic Mobilization in Aquifer System of the Jianghan Plain, Central China. Journal of Earth Science, 34(2): 571-579. https://doi.org/10.1007/s12583-020-1096-1
      Zhao, Q., Gan, Y. Q., Deng, Y. M., et al., 2022. Identifying Carbon Processing Based on Molecular Differences between Groundwater and Water-Extractable Aquifer Sediment Dissolved Organic Matter in a Quaternary Alluvial-Lacustrine Aquifer. Applied Geochemistry, 137: 105199. https://doi.org/10.1016/j.apgeochem.2022.105199
      金戈, 邓娅敏, 杜尧, 等, 2022. 天鹅洲长江故道湿地地下水砷的时空分布特征及控制机理. 地球科学, 47(11): 4161-4175. doi: 10.3799/dqkx.2022.344
      罗义鹏, 邓娅敏, 杜尧, 等, 2022. 长江中游故道区高碘地下水分布与形成机理. 地球科学, 47(2): 662-673. doi: 10.3799/dqkx.2021.031
      彭杨, 吴婧, 巢静波, 等, 2017. 土壤/沉积物中14种金属元素的ICP-MS准确测定方法. 环境化学, 36(1): 175-182.
      孙殿军, 高彦辉, 刘辉, 2019. 中国70年地方病防治成效及展望. 中国公共卫生, 35(7): 793-796.
      薛江凯, 邓娅敏, 杜尧, 等, 2021. 长江中游沿岸地下水中有机质分子组成特征及其对碘富集的指示. 地球科学, 46(11): 4140-4149. doi: 10.3799/dqkx.2020.398
      薛肖斌, 李俊霞, 钱坤, 等, 2018. 华北平原原生富碘地下水系统中碘的迁移富集规律: 以石家庄-衡水-沧州剖面为例. 地球科学, 43(3): 910-921. doi: 10.3799/dqkx.2017.564
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  266
    • HTML全文浏览量:  82
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-04
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回