• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    二氧化碳地质封存及提高油气和地热采收率技术进展与展望

    蒋恕 张凯 杜凤双 崔国栋

    蒋恕, 张凯, 杜凤双, 崔国栋, 2023. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望. 地球科学, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084
    引用本文: 蒋恕, 张凯, 杜凤双, 崔国栋, 2023. 二氧化碳地质封存及提高油气和地热采收率技术进展与展望. 地球科学, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084
    Jiang Shu, Zhang Kai, Du Fengshuang, Cui Guodong, 2023. Progress and Prospects of CO2 Storage and Enhanced Oil, Gas and Geothermal Recovery. Earth Science, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084
    Citation: Jiang Shu, Zhang Kai, Du Fengshuang, Cui Guodong, 2023. Progress and Prospects of CO2 Storage and Enhanced Oil, Gas and Geothermal Recovery. Earth Science, 48(7): 2733-2749. doi: 10.3799/dqkx.2023.084

    二氧化碳地质封存及提高油气和地热采收率技术进展与展望

    doi: 10.3799/dqkx.2023.084
    基金项目: 

    国家自然科学基金面上项目 42072174

    详细信息
      作者简介:

      蒋恕(1976-),男,教授,博士,主要从事油气和地热勘探开发研究.ORCID:0000-0002-6272-7649.E-mail:jiangsu@cug.edu.cn

    • 中图分类号: P66

    Progress and Prospects of CO2 Storage and Enhanced Oil, Gas and Geothermal Recovery

    • 摘要: 国内外碳捕集、利用与封存(CCUS)技术已取得初步进展.通过系统调研及研究实践,总结了二氧化碳地质封存及提高油气和地热采收率的技术进展,并对下一阶段的研究趋势进行了展望.研究表明:二氧化碳提高油气采收率是目前CCUS的主流应用方向,并且CCUS项目主要应用于常规油气藏,每注入1 t二氧化碳可采出原油0.1~0.6 t.如何应对二氧化碳气窜是二氧化碳提高油气采收率面临的关键问题.下一阶段的研究主要围绕二氧化碳提高非常规油气藏的采收率,如何使注入的二氧化碳能够有效地进入页岩或煤层基质仍是该类油气藏提高采收率的研发重点方向.除了二氧化碳提高油气采收率之外,二氧化碳还可用于提高地热采收率,目前的研究主要围绕二氧化碳与水作为工质开发地热的效果对比,温度场、应力场、渗流场、化学场的耦合作用对二氧化碳开发地热过程的影响仍有待进一步的研究.在同一个油气藏中利用二氧化碳作为工作流体先后开展提高油气采收率、提高地热采收率和二氧化碳地质封存一体化可能成为CCUS的发展趋势.该研究对加速CCUS部署以及油气和地热的协同开发及实施双碳战略有重要意义.

       

    • 图  1  碳封存机理贡献占比(改自Metz et al., 2005)

      Fig.  1.  Contributions of CO2 storage mechanisms (modified from Metz et al., 2005)

      图  2  世界CCUS项目规模(数据来自Global CCS Institute, 2020)

      Fig.  2.  Worldwide CCUS projects scale (data from Global CCS Institute, 2020)

      图  3  我国各CCUS项目规模(数据来自蔡博峰等,2020)

      Fig.  3.  CCUS projects scale in China (data from Cai et al., 2020)

      图  4  水与二氧化碳交替注入缓解气窜

      Fig.  4.  Alternating water and CO2 injection to delay CO2 breakthrough

      图  5  吞吐注气及气驱(a)提高页岩气采收率以及(b)CO2埋存比例

      不同颜色代表文献中不同数值模拟数据

      Fig.  5.  (a) Incremental gas recovery factor and (b) sequestrated CO2 through huff-n-puff and gas flooding from simulation studies

      图  6  二氧化碳依次提高油气与地热采收率及二氧化碳封存

      Fig.  6.  Sequential enhanced oil and gas and geothermal energy recovery and CO2 sequestration

      图  7  二氧化碳作为介质注入咸水层或者废弃油气藏提高地热采收率和封存部分二氧化碳示意图

      Fig.  7.  CO2 is injected into the saline aquifer or depleted reservoirs for enhanced geothermal recovery and CO2 sequestration

      表  1  二氧化碳提高油气采收率案例

      Table  1.   Cases of the CO2 enhanced oil recovery

      油气田 地区 起始年份 CCUS类型 埋深(m) 平均渗透率(mD) 产出的原油(t)/注入CO2 (t) 参考文献
      SACROC 美国 1972 油田 2 133 19 0.6 NETL, 2010; Ghahfarokhi et al., 2016
      Weyburn 加拿大 2000 油田 1 450 50 0.1 Petroleum Technology Research Centre, 2004
      大庆油田 中国 2003 油田 1 880 1 0.2 蔡博峰等,2020;
      Zhang et al., 2022b
      江苏油田 中国 2005 油田 2 800 114 0.33 蔡博峰等,2020;
      Zhang et al., 2022b
      吉林油田 中国 2008 油田 2 300 3 0.21 蔡博峰等,2020;
      Zhang et al., 2022b
      胜利油田 中国 2010 油田 2 950 5 0.5 蔡博峰等,2020;
      Zhang et al., 2022b
      柿庄 中国 2012 煤层气 600 0.1 N/A 蔡博峰等,2020;
      Zhang et al., 2022b
      柳林 中国 2012 煤层气 560 0.1 N/A 蔡博峰等,2020;
      Zhang et al., 2022b
      延长油田 中国 2013 油田 1 600 10 0.4 蔡博峰等,2020;
      Zhang et al., 2022b
      中原油田 中国 2015 油田 3 800 123 0.28 蔡博峰等,2020;
      Zhang et al., 2022b
      新疆油田 中国 2015 油田 2 617 2 0.39 蔡博峰等,2020;
      Zhang et al., 2022b
      长庆油田 中国 2017 油田 2 750 50 0.53 蔡博峰等,2020;
      Zhang et al., 2022b
      Clive 加拿大 2020 油田 1 800 42 0.2 Enhance Energy, 2019
      下载: 导出CSV

      表  2  页岩油注气室内实验研究

      Table  2.   Experiments of CO2 injection in the shale oil

      岩样 气体 方法 采收机理 参考文献
      1 Wolfcamp CO2, N2, C1 吞吐 膨胀降黏,界面张力降低 Li et al., 2017
      2 Bakken CO2 吞吐 膨胀降黏,界面张力降低,维持压力,轻组分提取 Sheng, 2013
      3 Bakken CO2, C2, C1 CO2提取 膨胀降黏 Jin et al., 2017a
      4 Bakken, Threeford CO2 CO2提取 分子扩散,原油膨胀,界面张力降低 Jin et al., 2017b
      5 Montney CO2 吞吐 膨胀降黏,轻组分提取 Habibi et al., 2017
      6 Eagle Ford, Mancos CO2 吞吐 分子扩散 Gamadi et al., 2014
      7 Eagle Ford CO2 吞吐 膨胀降黏 Adel et al., 2018
      8 Eagle Ford CO2, N2 吞吐 混相驱替,界面张力降低,膨胀降黏 Li et al., 2019a
      9 致密岩 CO2 吞吐 分子扩散,限域效应,膨胀降黏 Li et al., 2019b
      10 Bakken CO2 吞吐 润湿性转换,膨胀降黏 Pranesh, 2018
      下载: 导出CSV

      表  3  页岩油注气数值模拟研究

      Table  3.   Reservoir simulation of CO2 injection in the shale oil

      地层 气体 方法 基质孔隙度(%) 基质渗透率(mD) 裂缝模型 采收机理 参考文献
      1 致密储层 CO2 吞吐 11.0 0.2 LGR 膨胀降黏 Kong et al., 2021
      2 Eagle Ford CO2 吞吐/气驱/水转气 6.0 0.001 Dual porosity 膨胀降黏 Pranesh, 2018
      3 Bakken CO2 吞吐 5.6 0.071 EDFM 分子扩散,限域效应 Zhang et al., 2017a
      4 Middle Bakken CO2 吞吐 7.0 0.01~0.001 EDFM 膨胀降黏 Zuloaga et al., 2017
      5 Eagle Ford CO2 吞吐 12.0 0.000 9 EDFM 分子扩散,限域效应 Yu et al., 2019
      6 Middle Bakken CO2 吞吐 6.0 0.001 Dual Permeability Dual Porosity 分子扩散,限域效应 Jia et al., 2018
      7 Watternberg Field C2/CO2 吞吐 0.001~0.000 1 Dual Porosity 分子扩散 Ning and Kazemi, 2018
      8 Middle Bakken CO2 吞吐 5.6 0.02 EDFM 分子扩散 Sun et al., 2019
      9 Eagle Ford CO2 吞吐 0.022 3D geocellular 分子扩散 Pankaj et al., 2018
      10 Bakken CO2 吞吐 8.0 0.01 NA 分子扩散 Mahzari et al., 2019
      11 致密储层 CO2 吞吐 5.6 0.031 3 Dual Permeability 分子扩散,限域效应 Li et al., 2019b
      下载: 导出CSV

      表  4  二氧化碳压裂相关研究

      Table  4.   Researches on hydraulic fracturing by CO2

      相关研究 主要研究内容
      Settari et al., 1987 建立了数值模拟模型研究低温低粘度CO2压裂过程中裂缝形态
      Zhang et al., 2017b 实验手段研究二氧化碳压裂过程的裂缝起裂及其扩展规律
      Verdon et al., 2010 二氧化碳压裂可以达到与水力压裂相同的压裂效果
      Middleton et al., 2015 超临界二氧化碳压裂不仅可以提升裂缝的延伸,而且可以加速甲烷的吸附解析
      Kizaki et al., 2012 二氧化碳压裂花岗岩比水力压裂效果更好
      Ishida et al., 2012Chen et al., 2015Zhao et al., 2018 二氧化碳压裂所需要的破岩压力低,并且在主破裂面上形成的微裂纹分支最多
      陆友莲等,2008郭建春和曾冀,2015 二氧化碳压裂的裂缝扩展受到不同压裂液排量、注入温度、压力等条件的影响
      谈健,2011孙致学等,2016肖勇,2017 二氧化碳压裂过程会受到温度场、应力场、渗流场、化学场的耦合作用影响
      王海柱等,2018张欣玮,2018 超临界二氧化碳的粘度较低,渗流进入缝隙孔洞后更易使得岩石产生裂缝, 并且裂缝截面粗糙度系数较大
      下载: 导出CSV

      表  5  二氧化碳开发地热研究

      Table  5.   Researches on geothermal development by CO2

      相关研究 主要研究内容
      刘松泽等,2020 二氧化碳粘度低,相同的注采压差下,二氧化碳质量流量可达水的1~6倍
      Cui et al., 2018 二氧化碳注入之前可以注入低浓度盐水用于改善二氧化碳开发地热的采收率
      Sun et al., 2018a 在U型井中利用二氧化碳开发地热过程中,在向上的井段中会存在临界点.在这一临界位置U型井中的二氧化碳温度与地层温度一致
      Sun et al., 2018b 低注入速率以及低注入温度有助于提升二氧化碳开发地热过程中的传热效率
      贺凯,2018 干热岩开发注采过程中水的流失消耗大量的水资源尤其是在一些水资源稀少的地方, 然而二氧化碳开发地热过程中二氧化碳的流失可实现地质封存
      Brown, 2000 二氧化碳首次作为循环工质用来开发地热,二氧化碳的可压缩性可在注采井间形成较大密度差及浮力作用减少泵的耗能,二氧化碳流动性能强于水而比热容小于水,二氧化碳与水的取热性能相当
      Pruess, 2006, 2008 CO2质量流量约为水的3.7~4.7倍,在低温储层二氧化碳取热性能优势显著,储层的温度压力变化对二氧化碳开发地热影响较大,水的取热受储层的温度压力变化影响较小
      Atrens et al., 2009 二氧化碳与水开发地热效果相当
      Luo et al., 2014 注采井的射孔位置对二氧化碳取热影响较小,二氧化碳在生产井井筒中由于压力变化温度变化明显
      Cao et al., 2016Wang et al., 2018Chen et al., 2019Guo et al., 2019 二氧化碳取热效率优于水取热
      Atrens et al., 2010 加大井眼直井有助于二氧化碳取热
      Pan et al., 2015 二氧化碳在生产井井筒中温度可降低50%,合理控制二氧化碳生产压力有助于二氧化碳取热稳定运行
      石岩,2014 二氧化碳羽流地热系统中,生产初期随着水的产量下降系统的取热效率降低,生产后期随着二氧化碳产量增加系统的取热效率逐渐增大并趋于稳定
      石宇,2020 相较于垂直对井,水平分支井中利用二氧化碳开发地热效果更好
      Gan et al., 2021 储层的孔渗特征在二氧化碳注入过程中得到改善从而有助于二氧化碳采热.相较于力学场,化学反应对二氧化碳采热过程的影响较小
      下载: 导出CSV

      表  6  油田地热开发利用

      Table  6.   Utilization of geothermal in the oil fields

      项目位置 地热开发利用 参考文献
      阿尔巴尼亚 油田产出66 ℃热水用于供暖 Wang et al., 2018b
      匈牙利 油田产出热水用于供暖 Wang et al., 2018b
      中国胜利油田 2002‒2015年油田产出热水用于供暖,节约30 000 t标准煤和20 000 t原油的消耗 Wang et al., 2018b
      中国辽河油田 油田产出热水用于供暖,每年节约24 000 t标准煤的消耗 Wang et al., 2018b
      中国大庆油田 油田产出热水用于供暖,每年节约7 000 t标准煤的消耗 Wang et al., 2018b
      中国中原油田 油田产出热水用于供暖,每年节约3 000 t标准煤的消耗 Wang et al., 2018b
      美国怀俄明油田 油田产出100 ℃的热水用于发电,装机规模132 kW Wang et al., 2018b
      美国北达科他油田 油田产出100 ℃的热水用于发电,装机规模250 kW Wang et al., 2018b
      中国华北油田 油田产出110 ℃的热水用于发电,装机规模310 kW Wang et al., 2018b
      中国西南油气田 油田产出103 ℃的热水用于发电,装机规模80 kW 韩超等,2023
      下载: 导出CSV
    • Adel, I. A., Tovar, F. D., Zhang, F., et al., 2018. The Impact of MMP on Recovery Factor during CO2-EOR in Unconventional Liquid Reservoirs. SPE Annual Technical Conference and Exhibition, Dallas, Texas. https://doi.org/10.2118/191752-MS
      Atrens, A. D., Gurgenci, H., Rudolph, V., 2009. CO2 Thermosiphon for Competitive Geothermal Power Generation. Energy & Fuels, 23(1): 553-557. https://doi.org/10.1021/ef800601z
      Atrens, A. D., Gurgenci, H., Rudolph, V., 2010. Electricity Generation Using a Carbon-Dioxide Thermosiphon. Geothermics, 39(2): 161-169. https://doi.org/10.1016/j.geothermics.2010.03.001
      Billemont, P., Coasne, B., De Weireld, G., 2013. Adsorption of Carbon Dioxide, Methane, and Their Mixtures in Porous Carbons: Effect of Surface Chemistry, Water Content, and Pore Disorder. Langmuir, 29(10): 3328-3338. https://doi.org/10.1021/la3048938
      Brown, D. W., 2000. A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water. Proceedings of 25th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, California.
      Cai, B. F., Li, Q., Lin Q. G., et al., 2020. China Status of CO2 Capture Utilization and Storage (CCUS) 2019. Center for Climate Change and Environmental Policy of Chinese Academy of Environmental Planning, Beijing (in Chinese).
      Cao, W. J., Huang, W. B., Jiang, F. M., 2016. Numerical Study on Variable Thermophysical Properties of Heat Transfer Fluid Affecting EGS Heat Extraction. International Journal of Heat and Mass Transfer, 92: 1205-1217. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.081
      Chen, Y., Ma, G. W., Wang, H. D., et al., 2019. Application of Carbon Dioxide as Working Fluid in Geothermal Development Considering a Complex Fractured System. Energy Conversion and Management, 180: 1055-1067. https://doi.org/10.1016/j.enconman.2018.11.046
      Chen, Y. Q., Nagaya, Y., Ishida, T., 2015. Observations of Fractures Induced by Hydraulic Fracturing in Anisotropic Granite. Rock Mechanics and Rock Engineering, 48(4): 1455-1461. https://doi.org/10.1007/s00603-015-0727-9
      Clarkson, C. R., Bustin, R. M., 2000. Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition Upon Carbon Dioxide Selectivity over Methane. International Journal of Coal Geology, 42(4): 241-271. https://doi.org/10.1016/S0166-5162(99)00032-4
      Cui, G. D., Ren, S. R., Rui, Z. H., et al., 2018. The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System. Applied Energy, 227: 49-63. https://doi.org/10.1016/j.apenergy.2017.10.114
      Du, F. S., Nojabaei, B., 2019. A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control. Energies, 12(12): 2355. https://doi.org/10.3390/en12122355
      Du, Y. K., Pang, F., Chen, K., et al., 2019. Experiment of Breaking Shale Using Supercritical Carbon Dioxide Jet. Earth Science, 44(11): 3749-3756 (in Chinese with English abstract).
      Enhance Energy, 2019. Clive Leduc Field Monitor, Measurement & Verification Plan. Government of Alberta, Edmonton.
      Gamadi, T. D., Elldakli, T. F., Sheng, J. J., 2014. Compositional Simulation Evaluation of EOR Potential in Shale Oil Reservoirs by Cyclic Natural Gas Injection. Unconventional Resources Technology Conference, Denver, Colorado.
      Gan, Q., Candela, T., Wassing, B., et al., 2021. The Use of Supercritical CO2 in Deep Geothermal Reservoirs as a Working Fluid: Insights from Coupled THMC Modeling. International Journal of Rock Mechanics and Mining Sciences, 147: 104872. https://doi.org/10.1016/j.ijrmms.2021.104872
      Ghahfarokhi, R. B., Pennell, S., Matson, M., et al., 2016. Overview of CO2 Injection and WAG Sensitivity in SACROC. SPE Improved Oil Recovery Conference, Tulsa, Oklahoma.
      Global CCS Institute, 2015. Brazilian Atlas of CO2 Capture and Geological Storage. Global CCS Institute, Melbourne.
      Global CCS Institute, 2020. CCS Talks: All You Need to Know about CO2 Storage. Global CCS Institute, Melbourne.
      Gong, H. J., Qin, X. J., Shang, S. X., et al., 2020. Enhanced Shale Oil Recovery by the Huff and Puff Method Using CO2 and Cosolvent Mixed Fluids. Energy & Fuels, 34(2): 1438-1446. https://doi.org/10.1021/acs.energyfuels.9b03423
      Guo, J. C., Zeng, J., 2015. A Coupling Model for Wellbore Transient Temperature and Pressure of Fracturing with Supercritical Carbon Dioxide. Acta Petrolei Sinica, 36(2): 203-209 (in Chinese with English abstract).
      Guo, T. K., Gong, F. C., Wang, X. Z., et al., 2019. Performance of Enhanced Geothermal System (EGS) in Fractured Geothermal Reservoirs with CO2 as Working Fluid. Applied Thermal Engineering, 152: 215-230. https://doi.org/10.1016/j.applthermaleng.2019.02.024
      Habibi, A., Yassin, M. R., Dehghanpour, H., et al., 2017. Experimental Investigation of CO2-Oil Interactions in Tight Rocks: A Montney Case Study. Fuel, 203: 853-867. https://doi.org/10.1016/j.fuel.2017.04.077
      Han, C., Li, H., Duan, Y., 2023. Southwest Oil and Gas Field Fully Promotes Green and Low-Carbon Development. China Petroleum News, Beijing (in Chinese).
      Harrison, A. L., Tutolo, B. M., DePaolo, D. J., 2019. The Role of Reactive Transport Modeling in Geologic Carbon Storage. Elements, 15(2): 93-98. https://doi.org/10.2138/gselements.15.2.93
      Hawthorne, S. B., Gorecki, C. D., Sorensen, J. A., et al., 2013. In Hydrocarbon Mobilization Mechanisms from Upper, Middle, and Lower Bakken Reservoir Rocks Exposed to CO2. SPE Canada Unconventional Resources Conference, Calgary, Alberta.
      He, K., 2018. Prospects for Developing Hot Dry Rock by Carbon Dioxide. Modern Chemical Industry, 38(6): 56-58, 60 (in Chinese with English abstract).
      Heagle, D. J., Ryan, D., 2022. Experimental Determination of the Interfacial Tension and Swelling Factors of Bakken and Duvernay Oils with CO2, Impure CO2, Methane, Ethane, and Propane. Energy & Fuels, 36(2): 806-817. https://doi.org/10.1021/acs.energyfuels.1c02719
      Hoffman, B. T., 2018. Huff-n-Puff gas injection pilots projects in the Eagle Ford. SPE Canada Unconventional Resources Conference, Calgary, Alberta.
      Huang, S., Wang, J. Y., Li, Z. Y., 2022. Analysis of Green and Low-Carbon Development Path of Petroleum and Chemical Industry under the Goal of Carbon Neutrality. Chemical Industry and Engineering Progress, 41(4): 1689-1703 (in Chinese with English abstract).
      Huang, X., Li, X., Zhang, Y., et al., 2022. Microscopic Production Characteristics of Crude Oil in Nano-Pores of Shale Oil Reservoirs during CO2 Huff and Puff. Petroleum Exploration and Development, 49(3): 557-564 (in Chinese with English abstract).
      International Energy Agency (IEA), 2020. Special Report on Carbon Capture Utilisation and Storage-CCUS in Clean Energy Transitions. International Energy Agency, Paris.
      Ishida, T., Aoyagi, K., Niwa, T., et al., 2012. Acoustic Emission Monitoring of Hydraulic Fracturing Laboratory Experiment with Supercritical and Liquid CO2. Geophysical Research Letters, 39(16): 440-453. https://doi.org/10.1029/2012 GL052788 doi: 10.1029/2012GL052788
      Jia, B., Tsau, J. S., Barati, R., 2018. Role of Molecular Diffusion in Heterogeneous, Naturally Fractured Shale Reservoirs during CO2 Huff-n-Puff. Journal of Petroleum Science and Engineering, 164: 31-42. https://doi.org/10.1016/j.petrol.2018.01.032
      Jin, L., Hawthorne, S., Sorensen, J., et al., 2017a. Utilization of Produced Gas for Improved Oil Recovery and Reduced Emissions from the Bakken Formation. SPE Health, Safety, Security, Environment, & Social Responsibility Conference, New Orleans, LA. https://doi.org/10.2118/184414-MS
      Jin, L., Hawthorne, S., Sorensen, J., et al., 2017b. Extraction of Oil from the Bakken Shales with Supercritical CO2. SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, TX. https://doi.org/10.15530/URTEC-2017-2671596
      Jiang, L. L., Chen, Z. X., Farouq Ali, S. M., 2019. Feasibility of Carbon Dioxide Storage in Post-Burn Underground Coal Gasification Cavities. Applied Energy, 252: 113479. https://doi.org/10.1016/j.apenergy.2019.113479
      Jiang, P., He, S. L., Yang, Z. Q., et al., 2022. High CO2 Natural Gas Charging Events, Timing and Accumulation Pattern in LD10 Area of Yinggehai Basin. Earth Science, 47(5): 1569-1585 (in Chinese with English abstract).
      Jacobs, T., 2019. Shale EOR Delivers, So Why Won't the Sector Go Big? Journal of Petroleum Technology, 71(5): 37-41. https://doi.org/10.2118/0519-0037-JPT
      Kizaki, A., Tanaka, H., Ohashi, K., et al., 2012. Hydraulic Fracturing in Inada Granite and Ogino Tuff with Supercritical Carbon Dioxide. ISRM Regional Symposium-7th Asian Rock Mechanics Symposium, Seoul.
      Kong, S. Q., Feng, G., Liu, Y. L., et al., 2021. Potential of Dimethyl Ether as an Additive in CO2 for Shale Oil Recovery. Fuel, 296: 120643. https://doi.org/10.1016/j.fuel.2021.120643
      Li, C. F., Zhao, X. T., Duan, W., et al., 2023. Strategic and Geodynamic Analyses of Geo-Sequestration of CO2 in China Offshore Sedimentary Basins. Chinese Journal of Theoretical and Applied Mechanics, 55(3): 719-731 (in Chinese with English abstract).
      Li, K. Q., Li, P., Wei, M. Z., et al., 2021. A Pilot Project of CO2 Enhanced Oil Recovery and Storage in Chang 8 Extra-Low Permeability Reservoir in Huang 3 District of Changqing Oilfield. Journal of Engineering Geology, 29(5): 1488-1496 (in Chinese with English abstract).
      Li, L., Su, Y. L., Hao, Y. M., et al., 2019a. A Comparative Study of CO2 and N2 Huff-n-Puff EOR Performance in Shale Oil Production. Journal of Petroleum Science and Engineering, 181: 106174. https://doi.org/10.1016/j.petrol.2019.06.038
      Li, L., Su, Y. L., Sheng, J. J., et al., 2019b. Experimental and Numerical Study on CO2 Sweep Volume during CO2 Huff-n-Puff Enhanced Oil Recovery Process in Shale Oil Reservoirs. Energy & Fuels, 33(5): 4017-4032. https://doi.org/10.1021/acs.energyfuels.9b00164
      Li, L., Zhang, Y., Sheng, J. J., 2017. Effect of the Injection Pressure on Enhancing Oil Recovery in Shale Cores during the CO2 Huff-n-Puff Process When It Is above and below the Minimum Miscibility Pressure. Energy & Fuels, 31(4): 3856-3867. https://doi.org/10.1021/acs.energyfuels.7b00031
      Li, Y. B., He, T. S., Hu, Z. M., et al., 2021. A Comprehensive Review of Enhanced Oil Recovery Technologies for Shale Oil. Journal of Southwest Petroleum University (Science & Technology Edition), 43(3): 101-110 (in Chinese with English abstract).
      Liu, J. R., Yu, W. Q., Li, R. Q., 2013. Discussion on Technology for Development and Utilization of Geothermal Resources in Oilfields. China Petroleum Exploration, 18(5): 68-73 (in Chinese with English abstract).
      Liu, S. Q., Fang, H. H., Sang, S. X., et al., 2022. Numerical Simulation of Gas Production for Multilayer Drainage Coalbed Methane Vertical Wells in Southern Qinshui Basin. Coal Geology & Exploration, 50(6): 20-31 (in Chinese with English abstract).
      Liu, S. Z., Wei, J. G., Ma, Y. Y., et al., 2020. Research Progress on Application of Supercritical Carbon Dioxide in Geothermal Exploitation. Applied Chemical Industry, 49(6): 1537-1540 (in Chinese with English abstract).
      Louk, K., Ripepi, N., Luxbacher, K., et al., 2017. Monitoring CO2 Storage and Enhanced Gas Recovery in Unconventional Shale Reservoirs: Results from the Morgan County, Tennessee Injection Test. Journal of Natural Gas Science and Engineering, 45: 11-25. https://doi.org/10.1016/j.jngse.2017.03.025
      Lu, Y. L., Wang, S. Z., Shen, L. H., et al., 2008. Numerical Simulation on the Initial Unstable Stages of Liquid CO2 Fracturing. Natural Gas Industry, 28(11): 93-95 (in Chinese with English abstract).
      Luo, F., Xu, R. N., Jiang, P. X., 2014. Numerical Investigation of Fluid Flow and Heat Transfer in a Doublet Enhanced Geothermal System with CO2 as the Working Fluid (CO2-EGS). Energy, 64: 307-322. https://doi.org/10.1016/j.energy.2013.10.048
      Luo, Y. C., Zheng, T. Y., Xiao, H. M., et al., 2022. Identification of Distinctions of Immiscible CO2 Huff and Puff Performance in Chang-7 Tight Sandstone Oil Reservoir by Applying NMR, Microscope and Reservoir Simulation. Journal of Petroleum Science and Engineering, 209: 109719. https://doi.org/10.1016/j.petrol.2021.109719
      Ma, H. M., Yang, Y., Zhang, Y. M., et al., 2022. Optimized Schemes of Enhanced Shale Gas Recovery by CO2-N2 Mixtures Associated with CO2 Sequestration. Energy Conversion and Management, 268: 116062. https://doi.org/10.1016/j.enconman.2022.116062
      Mahzari, P., Oelkers, E., Mitchell, T., et al., 2019. An Improved Understanding about CO2 EOR and CO2 Storage in Liquid-Rich Shale Reservoirs. SPE Europec Featured at 81st EAGE Conference and Exhibition, London. https://doi.org/10.2118/195532-MS
      Mahdaviara, M., Nait Amar, M., Hemmati-Sarapardeh, A., et al., 2021. Toward Smart Schemes for Modeling CO2 Solubility in Crude Oil: Application to Carbon Dioxide Enhanced Oil Recovery. Fuel, 285: 119147. https://doi.org/10.1016/j.fuel.2020.119147
      Metcalfe, R. S., Yarborough, L., 1979. The Effect of Phase Equilibria on the CO2 Displacement Mechanism. SPE Journal, 19(4): 242-252. https://doi.org/10.2118/7061-PA
      Metz, B. O., Davidson, H. C., Coninck, D., et al., 2005. Intergovernmental on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge.
      Middleton, R. S., Carey, J. W., Currier, R. P., et al., 2015. Shale Gas and Non-Aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2. Applied Energy, 147: 500-509. https://doi.org/10.1016/j.apenergy.2015.03.023
      National Energy Technology Laboratory (NETL), 2010. Carbon Dioxide Enhanced Oil Recovery. U. S. Department of Energy, Washington, D. C. .
      Ning, Y. R., Kazemi, H., 2018. Ethane-Enriched Gas Injection EOR in Niobrara and Codell: A Dual-Porosity Compositional Model. SPE Improved Oil Recovery Conference, Tulsa, Oklahoma. https://doi.org/10.2118/190226-MS
      Olukoga, T. A., Feng, Y., 2022. Determination of Miscible CO2 Flooding Analogue Projects with Machine Learning. Journal of Petroleum Science and Engineering, 209: 109826. https://doi.org/10.1016/j.petrol.2021.109826
      Pan, L. H., Freifeld, B., Doughty, C., et al., 2015. Fully Coupled Wellbore-Reservoir Modeling of Geothermal Heat Extraction Using CO2 as the Working Fluid. Geothermics, 53: 100-113. https://doi.org/10.1016/j.geothermics.2014.05.005
      Pankaj, P., Mukisa, H., Solovyeva, I., et al., 2018. Enhanced Oil Recovery in Eagle Ford: Opportunities Using Huff-n-Puff Technique in Unconventional Reservoirs. SPE Liquids-Rich Basins Conference-North America, Midland, Texas. https://doi.org/10.2118/191780-MS
      Petroleum Technology Research Centre, 2004. IEA GHG Weyburn CO2 Monitoring & Storage Project Summary Report 2000-2004. 7th International Conference on Greenhouse Gas Control Technologies, Vancouver.
      Pranesh, V., 2018. Subsurface CO2 Storage Estimation in Bakken Tight Oil and Eagle Ford Shale Gas Condensate Reservoirs by Retention Mechanism. Fuel, 215: 580-591. https://doi.org/10.1016/j.fuel.2017.11.049
      Pruess, K., 2006. Enhanced Geothermal Systems (EGS) Using CO2 as Working Fluid—A Novel Approach for Generating Renewable Energy with Simultaneous Sequestration of Carbon. Geothermics, 35(4): 351-367. https://doi.org/10.1016/j.geothermics.2006.08.002
      Pruess, K., 2008. On Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid. Energy Conversion and Management, 49(6): 1446-1454. https://doi.org/10.1016/j.enconman.2007.12.029
      Qi, C. M., Li, R. D., Zhu, S. D., et al., 2019. Pilot Test on CO2 Flooding of Chang 4+51 Oil Reservoir in Yougou Region of the Ordos Basin. Oil Drilling & Production Technology, 41(2): 249-253 (in Chinese with English abstract).
      Rao, S., Yang, Y. N., Hu, S. B., et al., 2022. Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin. Earth Science, 47(11): 4319-4335 (in Chinese with English abstract).
      Ren, B., Duncan, I. J., 2021. Maximizing Oil Production from Water Alternating Gas (CO2) Injection into Residual Oil Zones: The Impact of Oil Saturation and Heterogeneity. Energy, 222: 119915. https://doi.org/10.1016/j.energy.2021.119915
      Settari, A., Bachman, R. C., Morrison, D. C., 1987. Numerical Simulation of Hydraulic Fracturing Treatments with Low-Viscosity Fluids. Journal of Canadian Petroleum Technology, 26(5): 1-11. https://doi.org/10.2118/87-05-02
      Sheng, J. J., 2013. Surfactant Enhanced Oil Recovery in Carbonate Reservoirs. In: Enhanced Oil Recovery Field Case Studies. Elsevier, Amsterdam, 281-299. https://doi.org/10.1016/b978-0-12-386545-8.00012-9
      Shi, Q. M., Cui, S. D., Wang, S. M., et al., 2022. Experiment Study on CO2 Adsorption Performance of Thermal Treated Coal: Inspiration for CO2 Storage after Underground Coal Thermal Treatment. Energy, 254: 124392. https://doi.org/10.1016/j.energy.2022.124392
      Shi, Y., 2014. The Operating Mechanism and Optimization Research on Carbon Dioxide Plume Geothermal System (Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      Shi, Y., 2020. Study on Mechanism and Parameters of Geothermal Exploitation Using Multilateral Wells with CO2 as Working Fluid (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      Stevens, S. H., Spector, D., Riemer, P., 1998. Enhanced Coalbed Methane Recovery Using CO2 Injection: Worldwide Resource and CO2 Sequestration Potential. SPE International Oil and Gas Conference and Exhibition in China, Beijing. https://doi.org/10.2118/48881-MS
      Sun, F. R., Yao, Y. D., Li, G. Z., et al., 2018a. Geothermal Energy Development by Circulating CO2 in a U-Shaped Closed Loop Geothermal System. Energy Conversion and Management, 174: 971-982. https://doi.org/10.1016/j.enconman.2018.08.094
      Sun, F. R., Yao, Y. D., Li, G. Z., et al., 2018b. Performance of Geothermal Energy Extraction in a Horizontal Well by Using CO2 as the Working Fluid. Energy Conversion and Management, 171: 1529-1539. https://doi.org/10.1016/j.enconman.2018.06.092
      Sun, R. X., Pu, H., Yu, W., et al., 2019. Simulation-Based Enhanced Oil Recovery Predictions from Wettability Alteration in the Middle Bakken Tight Reservoir with Hydraulic Fractures. Fuel, 253: 229-237. https://doi.org/10.1016/j.fuel.2019.05.016
      Sun, Z. X., Xu, Y., et al., 2016. A Thermo-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems. Journal of China University of Petroleum (Edition of Natural Science), 40(6): 109-117 (in Chinese with English abstract).
      Tan, J., 2011. The Study of Increased Permeability Law with Supercritical Carbon Dioxide Injected into the Low Permeability Coal Seam (Dissertation). Liaoning Technical University, Fuxin (in Chinese with English abstract).
      Todd, H. B., Evans, J. G., 2016. Improved Oil Recovery IOR Pilot Projects in the Bakken Formation. SPE Low Perm Symposium, Denver, Colorado. https://doi.org/10.2118/180270-MS
      Uliasz-Misiak, B., Lewandowska-Śmierzchalska, J., Matuła, R., 2021. Criteria for Selecting Sites for Integrated CO2 Storage and Geothermal Energy Recovery. Journal of Cleaner Production, 285: 124822. https://doi.org/10.1016/j.jclepro.2020.124822
      Verdon, J. P., Kendall, J. M., Maxwell, S. C., 2010. A Comparison of Passive Seismic Monitoring of Fracture Stimulation from Water and CO2 Injection. Geophysics, 75(3): MA1-MA7. https://doi.org/10.1190/1.3377789
      Wang, C. L., Cheng, W. L., Nian, Y. L., et al., 2018a. Simulation of Heat Extraction from CO2-Based Enhanced Geothermal Systems Considering CO2 Sequestration. Energy, 142: 157-167. https://doi.org/10.1016/j.energy.2017.09.139
      Wang, K., Yuan, B., Ji, G. M., et al., 2018b. A Comprehensive Review of Geothermal Energy Extraction and Utilization in Oilfields. Journal of Petroleum Science and Engineering, 168: 465-477. https://doi.org/10.1016/j.petrol.2018.05.012
      Wang, H. Z., Li, G. S., He, Z. G., et al., 2018. Analysis of Mechanisms of Supercritical CO2 Fracturing. Rock and Soil Mechanics, 39(10): 3589-3596 (in Chinese with English abstract).
      Wang, J. Y., Qiu, N. S., Hu, S. B., et al., 2017. Advancement and Developmental Trend in the Geothermics of Oil Fields in China. Earth Science Frontiers, 24(3): 1-12 (in Chinese with English abstract).
      Wang, S. J., Li, F., Yan, J. H., et al., 2020. Evaluation Methods and Application of Geothermal Resources in Oilfields. Acta Petrolei Sinica, 41(5): 553-564 (in Chinese with English abstract).
      Wang, S. J., Yan, J. H., Li, M., et al., 2014. New Advances in the Study of Oilfield Geothermal Resources Evaluation. Chinese Journal of Geology (Scientia Geologica Sinica), 49(3): 771-780 (in Chinese with English abstract).
      Wang, X. Z., Zeng, F. H., Gao, R. M., et al., 2017. Cleaner Coal and Greener Oil Production: An Integrated CCUS Approach in Yanchang Petroleum Group. International Journal of Greenhouse Gas Control, 62: 13-22. https://doi.org/10.1016/j.ijggc.2017.04.001
      Wang, Y. Y., 2015. CO2 Flooding Test of Fuyang Reservoirs in Daqing Yushulin Oilfield. Petroleum Geology & Oilfield Development in Daqing, 34(1): 136-139 (in Chinese with English abstract).
      Xiao, Y., 2017. Study on THMC Coupling of Hydro-Shearing in Hot Dry Rock in Enhanced Geothermal System (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract).
      Ye, J. P., Feng, S. L., Fan, Z. Q., et al., 2007. Micro-Pilot Test for Enhanced Coalbed Methane Recovery by Injecting Carbon Dioxide in South Part of Qinshui Basin. Acta Petrolei Sinica, 28(4): 77-80 (in Chinese with English abstract).
      Yu, W., Zhang, Y. A., Varavei, A., et al., 2019. Compositional Simulation of CO2 Huff-n-Puff in Eagle Ford Tight Oil Reservoirs with CO2 Molecular Diffusion, Nanopore Confinement, and Complex Natural Fractures. SPE Reservoir Evaluation & Engineering, 22(2): 492-508. https://doi.org/10.2118/190325-pa https://doi.org/10.2118/190325-PA
      Zhang, C., Zhou, S. X., Chen, K., et al., 2019. Impact on Microscopic Pore Structure and Adsorption Behavior of Carbon Dioxide on Shale under High Pressure Condition. Earth Science, 44(11): 3773-3782 (in Chinese with English abstract).
      Zhang, K., Lau, H. C., 2022a. Sequestering CO2 as CO2 Hydrate in an Offshore Saline Aquifer by Reservoir Pressure Management. Energy, 239: 122231. https://doi.org/10.1016/j.energy.2021.122231
      Zhang, K., Lau, H. C., 2022b. Utilization of a High-Temperature Depleted Gas Condensate Reservoir for CO2 Storage and Geothermal Heat Mining: A Case Study of the Arun Gas Reservoir in Indonesia. Journal of Cleaner Production, 343: 131006. https://doi.org/10.1016/j.jclepro.2022.131006
      Zhang, K., Lau, H. C., Chen, Z. X., 2022a. CO2 Enhanced Gas Recovery and Sequestration as CO2 Hydrate in Shallow Gas Fields in Alberta, Canada. Journal of Natural Gas Science and Engineering, 103: 104654. https://doi.org/10.1016/j.jngse.2022.104654
      Zhang, K., Lau, H. C., Liu, S. Y., et al., 2022b. Carbon Capture and Storage in the Coastal Region of China between Shanghai and Hainan. Energy, 247: 123470. https://doi.org/10.1016/j.energy.2022.123470
      Zhang, K., Lau, H. C., Chen, Z. X., 2022c. Regional Carbon Capture and Storage Opportunities in Alberta, Canada. Fuel, 322: 124224. https://doi.org/10.1016/j.fuel.2022.124224
      Zhang, L., Li, X., Zhang, Y., et al., 2017a. CO2 Injection for Geothermal Development Associated with EGR and Geological Storage in Depleted High-Temperature Gas Reservoirs. Energy, 123: 139-148. https://doi.org/10.1016/j.energy.2017.01.135
      Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017b. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120
      Zhang, Y., Lashgari, H. R., Di, Y., et al., 2017c. Capillary Pressure Effect on Phase Behavior of CO2/Hydrocarbons in Unconventional Reservoirs. Fuel, 197: 575-582. https://doi.org/10.1016/j.fuel.2017.02.021
      Zhang, X. W., 2018. The Formation Mechanism of Supercritical CO2-Induced Complex Fracture in Shale and the Equivalent Seepage Model (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract).
      Zhang, Z., Zhang, H., 2012. Carbonation of Mafic-Ultramafic Rocks: A New Approach to Carbon Dioxide Geological Sequestration. Earth Science, 37(1): 156-162 (in Chinese with English abstract).
      Zhao, Z. H., Li, X., He, J. M., et al., 2018. A Laboratory Investigation of Fracture Propagation Induced by Supercritical Carbon Dioxide Fracturing in Continental Shale with Interbeds. Journal of Petroleum Science and Engineering, 166: 739-746. https://doi.org/10.1016/j.petrol.2018.03.066
      Zuloaga, P., Yu, W., Miao, J. J., et al., 2017. Performance Evaluation of CO2 Huff-n-Puff and Continuous CO2 Injection in Tight Oil Reservoirs. Energy, 134: 181-192. https://doi.org/10.1016/j.energy.2017.06.028
      蔡博峰, 李琦, 林千果, 等, 2020. 中国二氧化碳捕集、利用与封存(CCUS)报告2019. 北京: 生态环境部环境规划院气候变化与环境政策研究中心.
      杜玉昆, 庞飞, 陈科, 等, 2019. 超临界二氧化碳喷射破碎页岩试验. 地球科学, 44(11): 3749-3756. doi: 10.3799/dqkx.2019.221
      郭建春, 曾冀, 2015. 超临界二氧化碳压裂井筒非稳态温度‒压力耦合模型. 石油学报, 36(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201502009.htm
      韩超, 李和, 段宇, 2023. 西南油气田全面发力绿色低碳发展. 北京: 中国石油报.
      贺凯, 2018. 二氧化碳开发干热岩技术展望. 现代化工, 38(6): 56-58, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201806013.htm
      黄晟, 王静宇, 李振宇, 2022. 碳中和目标下石油与化学工业绿色低碳发展路径分析. 化工进展, 41(4): 1689-1703. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202204001.htm
      黄兴, 李响, 张益, 等, 2022. 页岩油储集层二氧化碳吞吐纳米孔隙原油微观动用特征. 石油勘探与开发, 49(3): 557-564. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202203012.htm
      姜平, 何胜林, 杨朝强, 等, 2022. 莺歌海盆地LD10区高含CO2天然气充注期次精细厘定与成藏模式. 地球科学, 47(5): 1569-1585. doi: 10.3799/dqkx.2021.190
      李春峰, 赵学婷, 段威, 等, 2023. 中国海域盆地CO2地质封存选址方案与构造力学分析. 力学学报, 55(3): 719-731. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202303013.htm
      李坤全, 黎平, 魏敏章, 等, 2021. 长庆油田黄3区长8特低渗油藏二氧化碳驱油与埋存先导试验. 工程地质学报, 29(5): 1488-1496. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202105024.htm
      李一波, 何天双, 胡志明, 等, 2021. 页岩油藏提高采收率技术及展望. 西南石油大学学报(自然科学版), 43(3): 101-110. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202103010.htm
      刘均荣, 于伟强, 李荣强, 2013. 油田地热资源开发利用技术探讨. 中国石油勘探, 18(5): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201305008.htm
      刘世奇, 方辉煌, 桑树勋, 等, 2022. 沁水盆地南部煤层气直井合层排采产气效果数值模拟. 煤田地质与勘探, 50(6): 20-31. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202206003.htm
      刘松泽, 魏建光, 马媛媛, 等, 2020. 超临界二氧化碳在地热开发中的应用研究进展. 应用化工, 49(6): 1537-1540. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG202006046.htm
      陆友莲, 王树众, 沈林华, 等, 2008. 纯液态CO2压裂非稳态过程数值模拟. 天然气工业, 28(11): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200811030.htm
      齐春民, 李瑞冬, 朱世东, 等, 2019. 鄂尔多斯盆地油沟区长4+51低渗透油藏二氧化碳驱先导试验. 石油钻采工艺, 41(2): 249-253. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201902022.htm
      饶松, 杨轶南, 胡圣标, 等, 2022. 川西南地区下寒武统筇竹寺组页岩热演化史及页岩气成藏意义. 地球科学, 47(11): 4319-4335. doi: 10.3799/dqkx.2022.153
      石岩, 2014. 二氧化碳羽流地热系统运行机制及优化研究(博士学位论文). 吉林: 吉林大学.
      石宇, 2020. 多分支井循环二氧化碳开采地热机理与参数研究(博士学位论文). 北京: 中国石油大学.
      孙致学, 徐轶, 吕抒桓, 等, 2016. 增强型地热系统热流固耦合模型及数值模拟. 中国石油大学学报(自然科学版), 40(6): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201606015.htm
      谈健, 2011. 低渗透煤层注入超临界CO2增透规律研究(硕士学位论文). 阜新: 辽宁工程技术大学.
      王海柱, 李根生, 贺振国, 等, 2018. 超临界CO2岩石致裂机制分析. 岩土力学, 39(10): 3589-3596. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201810014.htm
      汪集暘, 邱楠生, 胡圣标, 等, 2017. 中国油田地热研究的进展和发展趋势. 地学前缘, 24(3): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201703002.htm
      王社教, 李峰, 闫家泓, 等, 2020. 油田地热资源评价方法及应用. 石油学报, 41(5): 553-564. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202005004.htm
      王社教, 闫家泓, 黎民, 等, 2014. 油田地热资源评价研究新进展. 地质科学, 49(3): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201403006.htm
      汪艳勇, 2015. 大庆榆树林油田扶杨油层CO2驱油试验. 大庆石油地质与开发, 34(1): 136-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201501027.htm
      肖勇, 2017. 增强地热系统中干热岩水力剪切压裂THMC耦合研究(博士学位论文). 成都: 西南石油大学.
      叶建平, 冯三利, 范志强, 等, 2007. 沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究. 石油学报, 28(4): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704014.htm
      张臣, 周世新, 陈科, 等, 2019. 高压条件下CO2对页岩微观孔隙结构影响及其在页岩中的吸附特征. 地球科学, 44(11): 3773-3782. doi: 10.3799/dqkx.2019.107
      张欣玮, 2018. 超临界CO2压裂页岩复杂裂缝形成机理及等效渗流模型(博士学位论文). 重庆: 重庆大学.
      张舟, 张宏福, 2012. 基性、超基性岩: 二氧化碳地质封存的新途径. 地球科学, 37(1): 156-162. doi: 10.3799/dqkx.2012.015
    • 加载中
    图(7) / 表(6)
    计量
    • 文章访问数:  1844
    • HTML全文浏览量:  1206
    • PDF下载量:  200
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-15
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回