• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非常规油气地质学理论技术及实践

    邹才能 杨智 张国生 朱如凯 陶士振 袁选俊 侯连华 董大忠 郭秋麟 宋岩 冉启全 邱振 吴松涛 马锋 白斌 王岚 熊波 潘松圻 刘翰林 王小妮

    邹才能, 杨智, 张国生, 朱如凯, 陶士振, 袁选俊, 侯连华, 董大忠, 郭秋麟, 宋岩, 冉启全, 邱振, 吴松涛, 马锋, 白斌, 王岚, 熊波, 潘松圻, 刘翰林, 王小妮, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091
    引用本文: 邹才能, 杨智, 张国生, 朱如凯, 陶士振, 袁选俊, 侯连华, 董大忠, 郭秋麟, 宋岩, 冉启全, 邱振, 吴松涛, 马锋, 白斌, 王岚, 熊波, 潘松圻, 刘翰林, 王小妮, 2023. 非常规油气地质学理论技术及实践. 地球科学, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091
    Zou Caineng, Yang Zhi, Zhang Guosheng, Zhu Rukai, Tao Shizhen, Yuan Xuanjun, Hou Lianhua, Dong Dazhong, Guo Qiulin, Song Yan, Ran Qiquan, Qiu Zhen, Wu Songtao, Ma Feng, Bai Bin, Wang Lan, Xiong Bo, Pan Songqi, Liu Hanlin, Wang Xiaoni, 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Earth Science, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091
    Citation: Zou Caineng, Yang Zhi, Zhang Guosheng, Zhu Rukai, Tao Shizhen, Yuan Xuanjun, Hou Lianhua, Dong Dazhong, Guo Qiulin, Song Yan, Ran Qiquan, Qiu Zhen, Wu Songtao, Ma Feng, Bai Bin, Wang Lan, Xiong Bo, Pan Songqi, Liu Hanlin, Wang Xiaoni, 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Earth Science, 48(6): 2376-2397. doi: 10.3799/dqkx.2023.091

    非常规油气地质学理论技术及实践

    doi: 10.3799/dqkx.2023.091
    基金项目: 

    中石油科技项目 2021DJ18

    详细信息
      作者简介:

      邹才能(1963-),男,博士,中国科学院院士,中国石油勘探开发研究院教授级高级工程师、博士生导师,主要从事常规-非常规油气地质学理论研究与实践、新能源与能源战略等研究. E-mail:zcn@petrochina.com.cn

      通讯作者:

      杨智,男,博士,中国石油勘探开发研究院教授级高级工程师、博士生导师,主要从事非常规源岩层系油气地质、常规油气地质勘探等研究工作. E-mail: yangzhi2009@petrochina.com.cn

    • 中图分类号: P618

    Theory, Technology and Practice of Unconventional Petroleum Geology

    • 摘要: 形成非常规油气地质学理论技术,引领油气工业从常规到非常规,进源找油,是世界油气勘探开发形势发展和科学研究持续推进的必然趋势.研究团队紧密结合中国特殊地质背景和油气工业条件,经过10余年不懈攻关,构建了非常规细粒沉积学、非常规油气储层地质学、非常规油气成藏地质学、非常规油气开发地质学和常规-非常规油气有序“共生富集”发展战略等学科内容,集成了非常规油气关键实验技术、勘探评价技术、开发工程技术和常规-非常规油气勘探开发关键技术,基本形成了非常规油气地质学理论技术体系框架.从常规油气的“源控论”到非常规油气的“源储共生系统”,深刻认识到源岩层系及与其大面积紧密接触的致密储集层系中可以聚集巨量工业油气资源.非常规油气地质学理论技术,引领推动了非常规油气地质学科发展、关键技术研发、国家标准制定、国家实验室建设和专业人才培养,有效推进了我国致密油和气、页岩油和气等非常规油气资源的工业勘探开发,截至2022年底,中国非常规油气产量超过1×108 t油当量,约占油气总产量28%,其中非常规气约占天然气总量的41%,非常规油约占石油总量的17%.油气不可再生,但非常规油气革命可延长油气工业的生命,持续强化理论、技术和管理“三个创新”的深度融合,努力实现地下原位加热低熟页岩转化油气、地下原位加热富油煤岩转化油气和地下原位压裂脆性页岩层系产出油气“三个地下革命”的颠覆创新,不断推动以鄂尔多斯盆地为代表的超级能源盆地化石能源与新能源的协同发展,塑造碳中和下中国式超级能源盆地“油气与新能源”融合发展模式,非常规油气革命支撑油气工业可持续发展,力推实现中国“能源独立”.

       

    • 图  1  世界油气工业主要地质理论和关键技术创新发展历程(据杨智等,2021a,修改)

      Fig.  1.  Innovative development history of major geologic theories and key technologies in world petroleum history (modified from Yang et al., 2021a)

      图  2  常规-非常规油气资源形成分布与关键技术(邹才能等,2014a杨智和邹才能,2019修改)

      Fig.  2.  Conventional-unconventional petroleum resources and key technologies (after Zou et al., 2014a; Yang and Zou, 2019)

      图  3  常规与非常规油气资源有序聚集(据杨智等,2021a,有修改)

      Fig.  3.  Orderly accumulation of conventional-unconventional petroleum resources (modified from Yang et al., 2021a)

      图  4  全球/区域性重大地质事件与非常规油气“甜点区、甜点段”形成过程示意图(据邹才能等, 2022c)

      Fig.  4.  Major global/regional geologic events and schematic forming process of unconventional sweet spots (after Zou et al., 2022c)

      图  5  坳陷湖盆和断陷湖盆细粒沉积模式(据邹才能等,2023a)

      Fig.  5.  Depositional models of fine-grained sediments in depressed lake basin and faulted lake basin (after Zou et al., 2023a)

      图  6  常规-非常规油气储层孔喉结构与油气聚集类型(据邹才能等,2012b2023d杨智和邹才能,2019)

      Fig.  6.  Pore-throat structures and hydrocarbon accumulation types of conventional-unconventional reservoirs (after Zou et al., 2012b, 2023d; Yang and Zou, 2019)

      图  7  非常规油气“人工油气藏”开发模式(邹才能等,2017aYang et al., 2019b)

      Fig.  7.  Development model for artificial unconventional reservoirs (after Zou et al., 2017a; Yang et al., 2019b)

      图  8  中国不同类型非常规油气资源有利区分布示意图(据杨智等,2019)

      Fig.  8.  Schematic distribution of unconventional resources in China (after Yang et al., 2019)

      图  9  中国非常规源岩油气和致密油气理论认识、关键技术和战略定位(据杨智等,2021a,修改)

      Fig.  9.  Theoretical knowledge, key technologies, and strategic positioning of unconventional source rock oil and gas and tight oil and gas in China (after Yang et al., 2021a)

      图  10  超级盆地能源利用示意图(据邹才能等,2023b)

      Fig.  10.  Schematic energy utilization in a super basin (after Zou et al., 2023b)

      表  1  非常规源岩层系油气的主要地质特征(据邹才能等,2017b修改)

      Table  1.   Main geologic features of unconventional source rock strata oil and gas (modified from Zou et al., 2017b)

      特征 页岩气 致密砂岩气 煤岩油 煤岩气 页岩油 致密油
      分布特征 靠近盆地沉降-沉积中心 盆地中心或斜坡部位 盆地或坳陷向斜区 盆地或坳陷向斜区 深凹或斜坡页岩发育地区 盆地中心或斜坡部位
      源储关系 生储盖三位一体 源储直接接触或邻近 生储盖三位一体 生储盖三位一体 生储盖三位一体 源储直接接触或邻近
      运移方式 无运移或烃源层内短距离初次运移 初次运移或短距离二次运移 无运移或烃源层内短距离初次运移 无运移或烃源层内短距离初次运移 无运移或烃源层内短距离初次运移 初次运移或短距离二次运移
      聚集作用 页岩内弥散式分布,裂缝区富集 构造区或裂缝区富集高产 / 裂隙或割理为富集区 存在纳米孔喉系统,裂缝发育区富集 构造区或裂缝区富集高产
      流体特征 以干气为主,吸附在干酪根、孔隙中,游离于裂缝中,一般游离气比例为40%~70% 含气饱和度差异大,多数小于60%,一般游离气比例为90%~100% 游离烃比例较低 吸附气、游离气,一般游离气比例为5%~30% 以中高成熟度石油为主,一般游离烃比例为10%~30% 以中高成熟度石油为主,一般游离烃比例为20%~50%
      产烃组成特征 初期产气游离气占比80%~100%,累计产气游离气占比30%~60% 初期产气游离气占比90%~100%,累计产气游离气占比95%~100% / 初期产气游离气占比5%~25%,累计产气游离气占比0%~15% 初期产油游离烃占比95%~100%,累计产烃游离烃占比90%~100% 初期产油游离烃占比90%~100%,累计产烃游离烃占比80%~100%
      开采工艺 产量低、采收率低、生产周期长,需水平井、分段压裂等技术 储层致密,自然产能低,常需水平井压裂改造等 无或低自然产能,需水平井原位加热等转化技术 低产,无自然产能,生产周期长,需水平井、压裂、原位燃烧等技术 产量低,无或低自然产能,需水平井压裂、原位加热等改造转化技术 储层致密,自然产能低,需水平井增能驱油压裂等针对性技术
      可采资源 世界 210×1012 m3 456×1012 m3 / 256×1012 m3 15 000×108 t (400~600)×108 t
      中国 (9~13)×1012 m3 (10~25)×1012 m3 约500×108 t 11×1012 m3 (200~300)×108 t (20~25)×108 t
      2022年产量 美国 8 069×108 m3 850×108 m3 / 214×108 m3 3.99×108 t
      中国 240×108 m3 579×108 m3 / 96×108 m3 320×104 t 约1 300×104 t
      典型实例 四川盆地南部奥陶系—志留系连续型和构造型页岩气、寒武系筇竹寺组及二叠系大隆组等页岩气 鄂尔多斯盆地石炭—二叠系、四川盆地三叠系等致密砂岩气 鄂尔多斯盆地三叠—侏罗系、准噶尔盆地东部及三塘湖盆地等煤岩油 鄂尔多斯盆地中东部、沁水石炭-二叠系等煤岩气 鄂尔多斯盆地三叠系、松辽盆地白垩系、准噶尔盆地二叠系、渤海湾盆地古近系等致密油、页岩油
      下载: 导出CSV

      表  2  非常规油气地质学与常规油气地质学、常规-非常规油气地质学的学科理论体系区别(杨智和邹才能,2022)

      Table  2.   Theoretical systems of unconventional, conventional, and conventional-unconventional petroleum geologies (after Yang and Zou, 2022)

      学科 常规油气地质学 非常规油气地质学 常规—非常规油气地质学
      研究对象 圈闭和油气藏 核心区和甜点区 圈闭群和甜点体
      研究方法 石油地质条件、成藏要素与动态过程分析等常规石油地质方法 场发射、环境扫描、激光共聚焦、微纳米CT、矿物组分等微观技术手段 常规-非常规油气共生盆地物理及数值模拟、源控论及源储共生系统、地质工程一体化等研究手段
      学科体系 学科基础 浮力圈闭成藏理论 连续型油气聚集理论 常规—非常规油气“共生聚集”理论
      沉积学科 中粗粒沉积学等 细粒沉积学等 源—汇系统沉积学
      储层学科 毫微米储层地质学 微纳米非常规储层地质学 多尺度常规-非常规储层地质学
      聚集成藏 浮力驱动成藏 油气(准)连续聚集 常规—非常规油气“共生聚集”
      理论核心 圈闭是否成藏 储集层油气是否连续聚集 剩余油气是否全部勘探开发
      评价重点 生、储、盖、圈、运、保“6要素”及最佳匹配关系 烃源性、储集性、含油性、流动性、成缝性和经济性“6特性”及匹配关系 烃源性、储集性、含油性、流动性、可采性与经济性“6特性”及其匹配关系
      评价目的 预测油气藏分布与潜力 预测“甜点区/段”分布及潜力 实现常规油气和非常规油气剩余资源的整体发现、极限开采和协同发展
      下载: 导出CSV

      表  3  非常规与常规、常规—非常规油气勘探开发工作的主要区别(杨智和邹才能,2022)

      Table  3.   Exploration and development of unconventional, conventional, and conventional–unconventional petroleum (after Yang and Zou, 2022)

      序号 工作重点 常规油气 非常规油气 常规—非常规油气
      1 地质研究 优选圈闭 优选核心区 优选剩余资源
      确定有效聚油气圈闭 确定富集“甜点区/段” 确定富油气“圈闭群”和“甜点体”
      2 技术攻关 地球物理区带目标预测 地球物理“储层甜点”预测 地球物理高分辨率空间预测
      直井、定向井 水平井体积压裂 地质工程一体化集成适用技术
      3 勘探方法 发现油气藏 突破“甜点区” 评价剩余资源
      确定圈闭边界 确定连续型油气区边界 确定常规、非常规油气资源边界
      4 开发方式 产能目标建设 平台式“工厂化”生产试验区建设 常规—非常规油气资源立体开发
      探索开发方式 探索降低成本工艺 探索一体化、低成本工艺
      5 开采模式 单井高产稳产 单井初期高产和长期累产 区块初期高产和长期累产
      注气液提高采收率 井间接替与注气等提高采收率 区块接替、注气等提高采收率
      6 关键地质图表 两图一表 圈闭平面构造分布图
      油气藏剖面图
      圈闭要素表
      三图一表 成熟烃源岩厚度平面分布图
      储层厚度平面分布图
      储层顶面构造图
      甜点区评价表
      三图一表 烃源岩供烃范围平面与剖面分布图
      有利储盖组合平面与剖面分布图
      剩余油气资源空间分布图
      圈闭群和甜点体评价表
      下载: 导出CSV

      表  4  中国源岩层系油气“甜点区/段”主要参数和评价标准(据杨智等,2021b,修改)

      Table  4.   Major parameters and evaluation criteria of source rock strata oil and gas sweet spots in China (modified from Yang et al., 2021b)

      资源类型 主要参数和标准
      致密油及中高成熟页岩油 烃源性:一般厚度大于50 m、TOC大于2%、Ro大于0.9%、面积大于200 km2
      储集性:一般厚度大于20 m、孔隙度大于6%、主流喉道半径大于100 nm、面积大于200 km2
      含油性:一般含油饱和度大于50%、游离烃占比大于30%
      流动性:一般相对高压系统、气油比大于50 m3/m3、原油黏度小于10 mPa·s,储层基质渗透率相对较高
      成缝性:一般纹层及天然裂缝较发育、岩石脆性矿物含量大于50%、水平应力差小于10 MPa
      经济性:一般埋深小于4 000 m、单井初产-累产-成本组合效益较好
      致密砂岩气 烃源性:一般厚度大于30 m、生气强度大于20×108 m3/km2、面积大于5 000 km2
      储集性:一般厚度大于30 m、孔隙度大于5%、主流喉道半径大于50 nm、面积大于5 000 km2
      含气性:一般含气饱和度大于50%、游离气占比大于90%、基本不含水
      流动性:一般为相对高压系统、甲烷含量大于90%,储层基质渗透率相对较高
      成缝性:一般天然裂缝较发育、岩石脆性矿物含量大于50%、水平应力差小于10 MPa
      经济性:单井初产-累产-成本组合效益较好
      油页岩油 一般厚度大于5 m,连续分布面积大于20 km2;有机质类型为Ⅰ型、Ⅱ1型;含油率大于8%;灰分产率低于75%
      中低成熟页岩油 一般TOC大于6%,有机质类型为Ⅰ型、Ⅱ1型;富有机质页岩集中段厚度大于15 m、净地比大于0.8,连续分布面积大于50 km2Ro一般为0.5%~1.0%;埋深小于3 000 m;顶底板封闭性好,断层不发育,且地层含水率小于5%
      页岩气 烃源性:一般厚度大于100 m、TOC大于2%、Ro大于1.5%、面积大于5 000 km2
      储集性:一般厚度大于20 m、孔隙度大于3%、主流喉道半径大于20 nm、面积大于5 000 km2
      含气性:一般含气量大于2 m3/t、游离气占比大于50%
      流动性:一般为超压系统、甲烷含量超过96%,储层基质渗透率相对较高
      成缝性:一般纹层及层理、天然裂缝较发育、岩石脆性矿物含量大于50%、泊松比0.1~0.3
      经济性:一般埋深小于4 200 m、单井初产-累产-成本组合效益较好
      煤岩气 一般煤层单层厚度大于5 m、面积大于50 km2;一般含气量大于5 m3/t、含气丰度大于2×108 m3/km2,吸附饱和度大于80%;一般为相对高压系统、甲烷含量大于95%,煤层原始渗透率相对较高;有效应力小于15 MPa,一般割理、天然裂缝较发育;一般埋深小于1 300 m、单井初产-累产-成本组合效益较好
      下载: 导出CSV
    • Dai, J. X., Ni, Y. Y., Wu, X. Q., 2012. Tight Gas in China and Its Significance in Exploration and Exploitation. Petroleum Exploration and Development, 39(3): 257-264(in Chinese with English abstract).
      Dou, L. R., Wen, Z. X., Wang, J. J., et al., 2022. Analysis of the World Oil and Gas Exploration Situation in 2021. Petroleum Exploration and Development, 49(5): 1033-1044(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60330-6
      Du, J. H., Hu, S. Y., Pang, Z. L., et al., 2019. The Types, Potentials and Prospects of Continental Shale Oil in China. China Petroleum Exploration, 24(5): 560-568(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.003
      EIA, 2023. Drilling Productivity Report: For Key Tight Oil and Shale Gas Regions. EIA Independent Statistics & Analysis, Washington, U. S. A..
      Gao, Z. Y., Xiong, S. L., 2021. Methane Adsorption Capacity Reduction Process of Water-Bearing Shale Samples and Its Influencing Factors: One Example of Silurian Longmaxi Formation Shale from the Southern Sichuan Basin in China. Journal of Earth Science, 32(4): 946-959. https://doi.org/10.1007/s12583-020-1120-5
      Guo, X. S., Hu, D. F., Li, Y. P., et al., 2017. Geological Factors Controlling Shale Gas Enrichment and High Production in Fuling Shale Gas Field. Petroleum Exploration and Development, 44(4): 481-491(in Chinese with English abstract).
      Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      Hu, S. Y., Zhao, W. Z., Hou, L. H., et al., 2020. Development Potential and Technical Strategy of Continental Shale Oil in China. Petroleum Exploration and Development, 47(4): 819-828(in Chinese with English abstract).
      Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geological Theory. Petroleum Exploration and Development, 44(1): 1-11(in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30002-2
      Jia, C. Z., Pang, X. Q., Song, Y., 2021. The Mechanism of Unconventional Hydrocarbon Formation: Hydrocarbon Self-Containment and Intermolecular Forces. Petroleum Exploration and Development, 48(3): 437-452(in Chinese with English abstract).
      Jia, C. Z., Zou, C. N., Yang, Z., et al., 2018. Significant Progress of Continental Petroleum Geology Theory in Basins of Central and Western China. Petroleum Exploration and Development, 45(4): 546-560(in Chinese with English abstract).
      Jiao, F. Z., Zou, C. N., Yang, Z., 2020. Geological Theory and Exploration & Development Practice of Hydrocarbon Accumulation Inside Continental Source Kitchens. Petroleum Exploration and Development, 47(6): 1067-1078(in Chinese with English abstract).
      Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil & Gas Geology, 40(3): 451-458(in Chinese with English abstract).
      Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287(in Chinese with English abstract).
      Kuang, L. C., Hou, L. H., Yang, Z., et al., 2021. Key Parameters and Methods of Lacustrine Shale Oil Reservoir Characterization. Acta Petrolei Sinica, 42(1): 1-14(in Chinese with English abstract). doi: 10.1038/s41401-020-0366-x
      Li, G. X., Zhu, R. K., 2020. Progress, Challenges and Key Issues of Unconventional Oil and Gas Development of CNPC. China Petroleum Exploration, 25(2): 1-13(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.001
      Li, J. R., Yang, Z., Wu, S. T., et al., 2021. Key Issues and Development Direction of Petroleum Geology Research of Source Rock Strata in China. Advances in Geo-Energy Research, 5(2): 121-126. https://doi.org/10.46690/ager.2021.02.02
      Li, M. W., Ma, X. X., Jiang, Q. G., et al., 2019. Enlightenment from Formation Conditions and Enrichment Characteristics of Marine Shale Oil in North America. Petroleum Geology and Recovery Efficiency, 26(1): 13-28(in Chinese with English abstract).
      Li, N., Feng, Z., Wu, H. L., et al., 2023. New Advances in Methods and Technologies for Well Logging Evaluation of Continental Shale Oil in China. Acta Petrolei Sinica, 44(1): 28-44(in Chinese with English abstract).
      Li, Y., Zhao, Q. M., Lü, Q., et al., 2022. Evaluation Technology and Practice of Continental Shale Oil Development in China. Petroleum Exploration and Development, 49(5): 955-964(in Chinese with English abstract).
      Liu, H., Kuang, L. C., Li, G. X., et al., 2020. Considerations and Suggestions on Optimizing Completion Methods of Continental Shale Oil in China. Acta Petrolei Sinica, 41(4): 489-496(in Chinese with English abstract).
      Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China. Petroleum Exploration and Development, 45(1): 161-169(in Chinese with English abstract).
      Ma, Y. S., Cai, X. Y., Zhao, P. R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574(in Chinese with English abstract).
      Ma, Y. S., Feng, J. H., Mu, Z. H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-30(in Chinese with English abstract).
      National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2014. Geological Evaluation Method for Tight Sandstone Gas: GB/T30501-2014. Standards Press of China, Beijing(in Chinese).
      National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2015. Geological Evaluation Method for Shale Gas: GB/T 31483-2015. Standards Press of China, Beijing(in Chinese).
      National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2018. Geological Evaluation Method for Tight Oil: GB/T 34906-2017. Standards Press of China, Beijing(in Chinese).
      National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2020. Geological Evaluation Method for Shale Oil: GB/T 38718-2020. Standards Press of China, Beijing(in Chinese).
      Pollastro, R. M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551-578. https://doi.org/10.1306/06200606007
      Schmoker, J. W., 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. U. S. Geological Survey Digital Data Series DDS-30, Washington.
      Song, Y., Liu, S. B., Ma, X. Z., et al., 2016. Research on Formation Model and Geological Evaluation Method of the Middle to High Coal Rank Coalbed Methane Enrichment and High Production Area. Earth Science Frontiers, 23(3): 1-9(in Chinese with English abstract).
      Sun, H. Q., Cai, X. Y., Zhou, D. H., et al., 2019. Practice and Prospect of SINOPEC Shale Oil Exploration. China Petroleum Exploration, 24(5): 569-575(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.004
      Sun, J. S., Xu, C. Y., Kang, Y. L., et al., 2020. Research Progress and Development Recommendations Covering Damage Mechanisms and Protection Technologies for Tight/Shale Oil and Gas Reservoirs. Petroleum Drilling Techniques, 48(4): 1-10(in Chinese with English abstract).
      Sun, L. D., 2020. Gulong Shale Oil (Preface). Petroleum Geology and Oilfield Development in Daqing, 39(3): 1-7(in Chinese with English abstract).
      Sun, L. D., Zou, C. N., Jia, A. L., et al., 2019. Development Characteristics and Orientation of Tight Oil and Gas in China. Petroleum Exploration and Development, 46(6): 1015-1026(in Chinese with English abstract).
      Sun, Z. D., Jia, C. Z., Li, X. F., et al., 2011. Unconventional Oil and Gas Exploration and Development. Petroleum Industry Press, Beijing (in Chinese).
      Wang, S. M., Wang, H., Ren, S. H., et al., 2022. Potential Analysis and Technical Conception of Exploitation and Utilization of Tar-Rich Coal in Western China. Strategic Study of CAE, 24(3): 49-57(in Chinese with English abstract).
      Wang, X. N., Li, J. R., Jiang, W. Q., et al., 2022. Characteristics, Current Exploration Practices, and Prospects of Continental Shale Oil in China. Advances in Geo-Energy Research, 6(6): 454-459. https://doi.org/10.46690/ager.2022.06.02
      Wu, S. T., Li, S. X., Yuan, X. J., et al., 2021. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32(4): 850-862. https://doi.org/10.1007/s12583-020-1050-2
      Yang, H., Niu, X. B., Xu, L. M., et al., 2016. Exploration Potential of Shale Oil in Chang7 Member, Upper Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 43(4): 511-520(in Chinese with English abstract).
      Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015a. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42(5): 555-565(in Chinese with English abstract).
      Yang, Z., Zou, C. N., Wu, S. T., et al., 2015b. Characteristics of Nano-Sized Pore-Throat in Unconventional Tight Reservoir Rocks and Its Scientific Value. Journal of Shenzhen University (Science and Engineering), 32(3): 257-265(in Chinese with English abstract). doi: 10.3724/SP.J.1249.2015.03257
      Yang, Z., Li, Q. Y., Wu, S. T., et al., 2017. Evidence of the Near-Source Accumulation of the Tight Sandstone Gas in Northern Ordos Basin, North-Central China. Acta Geologica Sinica (English Edition), 91(5): 1820-1835. https://doi.org/10.1111/1755-6724.13413
      Yang, Z., Zou, C. N., 2019. "Exploring Petroleum Inside Source Kitchen": Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1): 173-184(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30017-5
      Yang, Z., Zou, C. N., 2022. Orderly "Symbiotic Enrichment" of Conventional & Unconventional Oil and Gas-Discussion on Theory and Technology of Conventional & Unconventional Petroleum Geology. Acta Geologica Sinica, 96(5): 1635-1653(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.008
      Yang, Z., Zou, C. N., Chen, J. J., et al., 2021a. "Exploring Petroleum inside or near the Source Kitchen": Innovations in Petroleum Geology Theory and Reflections on Hydrocarbon Exploration in Key Fields. Acta Petrolei Sinica, 42(10): 1310-1324(in Chinese with English abstract).
      Yang, Z., Zou, C. N., Wu, S. T., et al., 2021b. From Source Control Theory to Source-Reservoir Symbiosis System: On the Theoretical Understanding and Practice of Source Rock Strata Oil and Gas Geology in China. Acta Geologica Sinica, 95(3): 618-631(in Chinese with English abstract).
      Yang, Z., Zou, C. N., Fu, J. H., et al., 2019. Characteristics and "Sweet Area (Section)" Evaluation of Continuous Tight & Shale Oil and Gas in Ordos Basin, North-Central China. Journal of Earch Sciences and Environment, 41(4): 459-474(in Chinese with English abstract). doi: 10.3969/j.issn.1672-6561.2019.04.006
      Yang, Z., Zou, C. N., Hou, L. H., et al., 2019a. Division of Fine-Grained Rocks and Selection of "Sweet Sections" in the Oldest Continental Shale in China: Taking the Coexisting Combination of Tight and Shale Oil in the Permian Junggar Basin. Marine and Petroleum Geology, 109: 339-348. https://doi.org/10.1016/j.marpetgeo.2019.06.010
      Yang, Z., Zou, C. N., Wu, S. T., et al., 2019b. Formation, Distribution and Resource Potential of the "Sweet Areas (Sections)" of Continental Shale Oil in China. Marine and Petroleum Geology, 102: 48-60. https://doi.org/10.1016/j.marpetgeo.2018.11.049
      Yang, Z., Zou, C. N., Gu, Z. D., et al., 2022a. Geological Characteristics and Main Challenges of Onshore Deep Oil and Gas Development in China. Advances in Geo-Energy Research, 6(3): 264-266. https://doi.org/10.46690/ager.2022.03.09
      Yang, Z., Zou, C. N., Wu, S. T., et al., 2022b. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9
      Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Reservoir Fracturing or Hydrocarbon Generating? —On the Reservoir and Source Rock Properties of Source Rock Strata Oil and Gas. Acta Geologica Sinica, 96(1): 183-194(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.01.015
      Yerkin, D., 2012. Energy Reshaping the World. Zhu, Y. B., Yan, Z. M., eds., Translation. Petroleum Industry Press, Beijing.
      Yu, G., Lu, R. Q., Liu, J., et al., 2023. Energy Transition and Energy Cooperation under the New Situation—Review of International Energy Executive Forum 2022. International Petroleum Economics, 31(2): 23-29(in Chinese with English abstract).
      Zhang, J. C., Jin, Z. J., Yuan, M. S., 2004. Reservoiring Mechanism of Shale Gas and Its Distribution. Natural Gas Industry, 24(7): 15-18, 131(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2004.07.005
      Zhao, W. Z., Bian, C. S., Li, Y. X., et al., 2023. Organic Matter Transformation Ratio, Hydrocarbon Expulsion Efficiency and Shale Oil Enrichment Type in Chang 7-3 Shale of Upper Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 50(1): 12-23(in Chinese with English abstract).
      Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5
      Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2020. Geological Characteristics and Exploration Breakthrough of Shale Oil in Member 3 of Shahejie Formation of Qibei Subsag, Qikou Sag. Acta Petrolei Sinica, 41(6): 643-657(in Chinese with English abstract).
      Zhu, R. K., Zou, C. N., Wu, S. T., et al., 2019. Mechanism for Generation and Accumulation of Continental Tight Oil in China. Oil & Gas Geology, 40(6): 1168-1184(in Chinese with English abstract).
      Zou, C. N., 2017. Unconventional Petroleum Geology (2nd Edition). Petroleum Industry Press, Beijing.
      Zou, C. N., Ding, Y. H., Lu, Y. J., et al., 2017a. Concept, Technology and Practice of "Man-Made Reservoirs" Development. Petroleum Exploration and Development, 44(1): 144-154(in Chinese with English abstract).
      Zou, C. N., Zhao, Q., Dong, D. Z., et al., 2017b. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Natural Gas Geoscience, 28(12): 1781-1796(in Chinese with English abstract).
      Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-177. doi: 10.11698/PED.2016.02.02
      Zou, C. N., Feng, Y. L., Yang, Z., et al., 2022a. What are the Lacustrine Fine-Grained Gravity Flow Sedimentation Process and the Genetic Mechanism of Sweet Sections for Shale Oil? Earth Science, 47(10): 3864-3866(in Chinese with English abstract).
      Zou, C. N., Ma, F., Pan, S. Q., et al., 2022b. Earth Energy Evolution, Human Development and Carbon Neutral Strategy. Petroleum Exploration and Development, 49(2): 411-428(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022c. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Li, G. X., et al., 2022d. Why Can China Realize the Continental "Shale Oil Revolution"? Earth Science, 47(10): 3860-3863(in Chinese with English abstract).
      Zou, C. N., Guo, Q., Yang, Z., et al., 2019. Resource Potential and Core Area Prediction of Lacustrine Tight Oil: The Triassic Yanchang Formation in Ordos Basin, China. AAPG Bulletin, 103(6): 1493-1523. https://doi.org/10.1306/11211816511
      Zou, C. N., Feng, Y. L., Yang, Z., et al., 2023a. Fine-Grained Gravity Flow Sedimentation and Its Influence on Development of Shale Oil Sweet Intervals in Lacustrine Basins in China. Petroleum Exploration and Development, 50(3): 1-15(in Chinese with English abstract).
      Zou, C. N., Ma, F., Pan, S. Q., et al., 2023b. Global Energy Transition Revolution and the Connotation and Pathway of the Green and Intelligent Energy System. Petroleum Exploration and Development, 50(3): 1-15(in Chinese with English abstract).
      Zou, C. N., Ma, F., Pan, S. Q., et al., 2023c. Formation and Distribution Potential of Global Shale Oil and the Developments of Continental Shale Oil Theory and Technology in China. Earth Science Frontiers, 30(1): 128-142(in Chinese with English abstract).
      Zou, C. N., Wu, S. T., Yang, Z., et al., 2023d. Progress, Challenge and Significance of Building a Carbon Industry System in the Context of Carbon Neutrality Strategy. Petroleum Exploration and Development, 50(1): 190-205(in Chinese with English abstract).
      Zou, C. N., Pan, S. Q., Jing, Z. H., et al., 2020a. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Sun, S. S., et al., 2020b. "Exploring Petroleum Inside Source Kitchen": Shale Oil and Gas in Sichuan Basin. Scientia Sinica (Terrae), 50(7): 903-920(in Chinese).
      Zou, C. N., Qiu, Z., Poulton, S. W., et al., 2018. Ocean Euxinia and Climate Change "Double Whammy" Drove the Late Ordovician Mass Extinction. Geology, 46(6): 535-538. https://doi.org/10.1130/g40121.1
      Zou, C. N., Yang, Z., He, D. B., et al., 2018. Theory, Technology and Prospects of Conventional and Unconventional Natural Gas. Petroleum Exploration and Development, 45(4): 575-587(in Chinese with English abstract).
      Zou, C. N., Qiu, Z., Zhang, J. Q., et al., 2022. Unconventional Petroleum Sedimentology: A Key to Understanding Unconventional Hydrocarbon Accumulation. Engineering, 18: 62-78. https://doi.org/10.1016/j.eng.2022.06.016
      Zou, C. N.,. Tao, S. Z., Hou, L. H., et al., 2014a. Unconventional Petroleum Geology (2nd Edition). Geological Publishing House, Beijing(in Chinese).
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2014b. Conventional and Unconventional Petroleum "Orderly Accumulation": Concept and Practical Significance. Petroleum Exploration and Development, 41(1): 14-27(in Chinese with English abstract).
      Zou, C. N., Tao, S. Z., Yuan, X, J., et al., 2009. The Formation Conditions and Distribution Characteristics of Continuous Petroleum Accumulations. Acta Petrolei Sinica, 30(3): 324-331.
      Zou, C. N., Yang, Z., Cui, J. W., et al., 2013a. Formation Mechanism, Geological Characteristics and Development Strategy of Nonmarine Shale Oil in China. Petroleum Exploration and Development, 40(1): 14-26(in Chinese with English abstract).
      Zou, C. N., Zhang, G. S., Yang, Z., et al., 2013b. Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon: On Unconventional Petroleum Geology. Petroleum Exploration and Development, 40(4): 385-399, 454(in Chinese with English abstract). http://www.researchgate.net/publication/286972936_Geological_concepts_characteristics_resource_potential_and_key_techniques_of_unconventional_hydrocarbon_On_unconventional_petroleum_geology
      Zou, C. N., Yang, Z., Dai, J. X., et al., 2015. The Characteristics and Significance of Conventional and Unconventional Sinian-Silurian Gas Systems in the Sichuan Basin, Central China. Marine and Petroleum Geology, 64: 386-402. https://doi.org/10.1016/j.marpetgeo.2015.03.005
      Zou, C. N., Yang, Z., Huang, S. P., et al., 2019a. Resource Types, Formation, Distribution and Prospects of Coal-Measure Gas. Petroleum Exploration and Development, 46(3): 433-442(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Wang, H. Y., et al., 2019b. "Exploring Petroleum inside Source Kitchen": Jurassic Unconventional Continental Giant Shale Oil & Gas Field in Sichuan Basin, China. Acta Geologica Sinica, 93(7): 1551-1562(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Zhang, G. S., et al., 2019c. Establishment and Practice of Unconventional Oil and Gas Geology. Acta Geologica Sinica, 93(1): 12-23(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Tao, S. Z., et al., 2012a. Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26(in Chinese with English abstract).
      Zou, C. N., Zhu, R. K., Wu, S. T., et al., 2012b. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations: Taking Tight Oil and Tight Gas in China as an Instance. Acta Petrolei Sinica, 33(2): 173-187(in Chinese with English abstract).
      Zou, C. N., Yang, Z., Tao, S. Z., et al., 2013. Continuous Hydrocarbon Accumulation over a Large Area as a Distinguishing Characteristic of Unconventional Petroleum: The Ordos Basin, North-Central China. Earth-Science Reviews, 126: 358-369. https://doi.org/10.1016/j.earscirev.2013.08.006
      Zou, C. N., Yang, Z., Zhu, R. K., et al., 2015. Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geologica Sinica, 89(6): 979-1007(in Chinese with English abstract).
      Zou, C. N., Zhao, Q., Cong, L. Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14(in Chinese with English abstract).
      Zou, C. N., Zhu, R. K., Bai, B., et al., 2011. First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value. Acta Petrologica Sinica, 27(6): 1857-1864(in Chinese with English abstract).
      戴金星, 倪云燕, 吴小奇, 2012. 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 39(3): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm
      窦立荣, 温志新, 王建君, 等, 2022.2021年世界油气勘探形势分析与思考. 石油勘探与开发, 49(5): 1033-1044. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205019.htm
      杜金虎, 胡素云, 庞正炼, 等, 2019. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 24(5): 560-568. doi: 10.3969/j.issn.1672-7703.2019.05.003
      郭旭升, 胡东风, 李宇平, 等, 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
      胡素云, 赵文智, 侯连华, 等, 2020. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm
      贾承造, 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm
      贾承造, 庞雄奇, 宋岩, 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm
      贾承造, 邹才能, 杨智, 等, 2018. 陆相油气地质理论在中国中西部盆地的重大进展. 石油勘探与开发, 45(4): 546-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804002.htm
      焦方正, 邹才能, 杨智, 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm
      金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
      金之钧, 朱如凯, 梁新平, 等, 2021. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106021.htm
      匡立春, 侯连华, 杨智, 等, 2021. 陆相页岩油储层评价关键参数及方法. 石油学报, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm
      黎茂稳, 马晓潇, 蒋启贵, 等, 2019. 北美海相页岩油形成条件、富集特征与启示. 油气地质与采收率, 26(1): 13-28. doi: 10.13673/j.cnki.cn37-1359/te.2019.01.002
      李国欣, 朱如凯, 2020. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001
      李宁, 冯周, 武宏亮, 等, 2023. 中国陆相页岩油测井评价技术方法新进展. 石油学报, 44(1): 28-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202301003.htm
      李阳, 赵清民, 吕琦, 等, 2022. 中国陆相页岩油开发评价技术与实践. 石油勘探与开发, 49(5): 955-964. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202205011.htm
      刘合, 匡立春, 李国欣, 等, 2020. 中国陆相页岩油完井方式优选的思考与建议. 石油学报, 41(4): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004013.htm
      马新华, 谢军, 2018. 川南地区页岩气勘探开发进展及发展前景. 石油勘探与开发, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm
      马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
      马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004
      全国石油天然气标准化技术委员会, 2014. 致密砂岩气地质评价方法: GB/T30501-2014. 北京: 中国标准出版社.
      全国石油天然气标准化技术委员会, 2015. 页岩气地质评价方法: GB/T31483-2015. 北京: 中国标准出版社.
      全国石油天然气标准化技术委员会, 2018. 致密油地质评价方法: GB/T34906-2017. 北京: 中国标准出版社.
      全国石油天然气标准化技术委员会, 2020. 页岩油地质评价方法: GB/T38718-2020. 北京: 中国标准出版社.
      宋岩, 柳少波, 马行陟, 等, 2016. 中高煤阶煤层气富集高产区形成模式与地质评价方法. 地学前缘, 23(3): 1-9. doi: 10.13745/j.esf.2016.03.001
      孙焕泉, 蔡勋育, 周德华, 等, 2019. 中国石化页岩油勘探实践与展望. 中国石油勘探, 24(5): 569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004
      孙金声, 许成元, 康毅力, 等, 2020. 致密/页岩油气储层损害机理与保护技术研究进展及发展建议. 石油钻探技术, 48(4): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202004001.htm
      孙龙德, 2020. 古龙页岩油(代序). 大庆石油地质与开发, 39(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003001.htm
      孙龙德, 邹才能, 贾爱林, 等, 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm
      孙赞东, 贾承造, 李相方, 等, 2011. 非常规油气勘探与开发. 北京: 石油工业出版社.
      王双明, 王虹, 任世华, 等, 2022. 西部地区富油煤开发利用潜力分析和技术体系构想. 中国工程科学, 24(3): 49-57. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202203006.htm
      杨华, 牛小兵, 徐黎明, 等, 2016. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力. 石油勘探与开发, 43(4): 511-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm
      杨智, 侯连华, 陶士振, 等, 2015a. 致密油与页岩油形成条件与"甜点区"评价. 石油勘探与开发, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm
      杨智, 邹才能, 2019. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
      杨智, 邹才能, 2022. 论常规-非常规油气有序"共生富集": 兼论常规-非常规油气地质学理论技术. 地质学报, 96(5): 1635-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205008.htm
      杨智, 邹才能, 陈建军, 等, 2021a. "进(近)源找油": 油气地质理论创新与重点领域勘探思考. 石油学报, 42(10): 1310-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202110005.htm
      杨智, 邹才能, 付金华, 等, 2019. 大面积连续分布是页岩层系油气的标志特征: 以鄂尔多斯盆地为例. 地球科学与环境学报, 41(4): 459-474. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202205004.htm
      杨智, 邹才能, 吴松涛, 等, 2015b. 含油气致密储层纳米级孔喉特征及意义. 深圳大学学报(理工版), 32(3): 257-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201503006.htm
      杨智, 邹才能, 吴松涛, 等, 2021b. 从源控论到源储共生系统: 论源岩层系油气地质理论认识及实践. 地质学报, 95(3): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103002.htm
      杨智, 邹才能, 吴松涛, 等, 2022. 造缝产烃还是改质造烃?——论含油气源岩层系的储集层属性和烃源岩属性. 地质学报, 96(1): 183-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201012.htm
      余国, 陆如泉, 刘佳, 等, 2023. 新形势下的能源转型与能源合作: "2022年国际能源发展高峰论坛"综述. 国际石油经济, 31(2): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-GJJJ202302004.htm
      张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15-18, 131. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200407004.htm
      赵文智, 卞从胜, 李永新, 等, 2023. 鄂尔多斯盆地三叠系长7-3亚段页岩有机质转化率、排烃效率与页岩油主富集类型. 石油勘探与开发, 50(1): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301002.htm
      赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
      赵贤正, 周立宏, 蒲秀刚, 等, 2020. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破. 石油学报, 41(6): 643-657. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202006003.htm
      朱如凯, 邹才能, 吴松涛, 等, 2019. 中国陆相致密油形成机理与富集规律. 石油与天然气地质, 40(6): 1168-1184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906002.htm
      邹才能, 丁云宏, 卢拥军, 等, 2017a. "人工油气藏"理论、技术及实践. 石油勘探与开发, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm
      邹才能, 赵群, 董大忠, 等, 2017b. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
      邹才能, 冯有良, 杨智, 等, 2022a. 湖盆细粒重力流沉积作用过程及甜点层发育机制是什么?地球科学, 47(10): 3864-3866. doi: 10.3799/dqkx.2022.842
      邹才能, 马锋, 潘松圻, 等, 2022b. 论地球能源演化与人类发展及碳中和战略. 石油勘探与开发, 49(2): 411-428. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202018.htm
      邹才能, 杨智, 董大忠, 等, 2022c. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
      邹才能, 杨智, 李国欣, 等, 2022d. 中国为什么可以实现陆相"页岩油革命"?地球科学, 47(10): 3860-3863. doi: 10.3799/dqkx.2022.841
      邹才能, 冯有良, 杨智, 等, 2023a. 中国湖盆细粒重力流沉积作用及其对页岩油"甜点段"发育的影响. 石油勘探与开发, 50(3): 1-15.
      邹才能, 马锋, 潘松圻, 等, 2023b. 世界能源转型革命与绿色智慧能源体系内涵及路径. 石油勘探与开发, 50(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202303018.htm
      邹才能, 马锋, 潘松圻, 等, 2023c. 全球页岩油形成分布潜力及中国陆相页岩油理论技术进展. 地学前缘, 30(1): 128-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202301011.htm
      邹才能, 吴松涛, 杨智, 等, 2023d. 碳中和战略背景下建设碳工业体系的进展、挑战及意义. 石油勘探与开发, 50(1): 190-205. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202301018.htm
      邹才能, 潘松圻, 荆振华, 等, 2020a. 页岩油气革命及影响. 石油学报, 41(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001001.htm
      邹才能, 杨智, 孙莎莎, 等, 2020b. "进源找油": 论四川盆地页岩油气. 中国科学: 地球科学, 50(7): 903-920. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202205008.htm
      邹才能, 陶士振, 侯连华, 等, 2014a. 非常规油气地质学. 北京: 地质出版社.
      邹才能, 杨智, 张国生, 等, 2014b. 常规-非常规油气"有序聚集"理论认识及实践意义. 石油勘探与开发, 41(1): 14-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401002.htm
      邹才能, 杨智, 崔景伟, 等, 2013a. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201301003.htm
      邹才能, 张国生, 杨智, 等, 2013b. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学. 石油勘探与开发, 40(4): 385-399, 454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm
      邹才能, 杨智, 何东博, 等, 2018. 常规-非常规天然气理论、技术及前景. 石油勘探与开发, 45(4): 575-587. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804005.htm
      邹才能, 杨智, 黄士鹏, 等, 2019a. 煤系天然气的资源类型、形成分布与发展前景. 石油勘探与开发, 46(3): 433-442. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903003.htm
      邹才能, 杨智, 王红岩, 等, 2019b. "进源找油": 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551-1562. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201907001.htm
      邹才能, 杨智, 张国生, 等, 2019c. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201901003.htm
      邹才能, 杨智, 陶士振, 等, 2012a. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
      邹才能, 朱如凯, 吴松涛, 等, 2012b. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例. 石油学报, 33(2): 173-187. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201202002.htm
      邹才能, 杨智, 朱如凯, 等, 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201506001.htm
      邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm
      邹才能, 朱如凯, 白斌, 等, 2011. 中国油气储层中纳米孔首次发现及其科学价值. 岩石学报, 27(6): 1857-1864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  1436
    • HTML全文浏览量:  1282
    • PDF下载量:  270
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-05-01
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回