Effects of Hydrocarbon Generation on the Occurrence of Organic Nanopores during Thermal Maturity of Organic Matters
-
摘要: 纳米有机孔隙的发育情况在一定程度上关系到非常规天然气藏的经济效益,但有机质生烃对其形成演化的影响尚需深入研究,本文利用封闭热‒压模拟实验系统对鄂尔多斯盆地二叠系低熟腐殖煤样进行了生烃热模拟实验.基于TOC、岩石热解、气体吸附和扫描电镜观测等结果,刻画了低熟‒过熟不同阶段,煤样内不同类型纳米孔隙形成演化特征,探讨了有机质生烃对有机孔隙发育的影响及其程度.结果显示:低熟‒成熟干酪根初次裂解阶段,有机质颗粒内纳米有机孔隙不发育;高熟阶段中期‒过熟阶段早期,烃类二次裂解导致不同类型有机孔隙大量发育;过熟阶段中‒晚期,芳环缩聚反应促进了有机孔隙发育,尤其是孔径小于2 nm的有机孔隙强烈发育.可见,高演化阶段烃类二次裂解和芳环缩聚反应是有机质颗粒内有机孔隙形成的主要途径.该研究对深入理解沉积盆地深层页岩气和煤层气富集机理具有指导意义.Abstract: The development of organic nanopores is to some extent related to the economic benefits of unconventional natural gas reservoirs, but the influence of organic hydrocarbon generation on its formation and evolution needs in-depth study. In this paper, hydrous pyrolysis experiments were conducted on a Permian humic coal with low thermal maturity from the Ordos basin. The experimental results of TOC, Rock-Eval, gas adsorption and scanning electron microscope observation for the fresh and cocked coal samples are utilized to delineate the formation and evolution process of various nanopores within the fresh and cocked coal samples, and hence achieve a better understanding of the effects of hydrocarbon generation on the occurrence of organic nanopores from the low mature to overmature stages. The experimental results show that organic nanopores within the organic particles of pyrolyzed coal samples cannot be detected at the low mature to mature stages during which petroleum hydrocarbons were generated mainly by kerogen primary cracking. At the middle of high mature to the early of overmature stages, hydrocarbon generation from the secondary cracking of early formed crude oils resulted in the significant occurrence of various organic nanopores; At the middle to late of overmature stage, the polycondensation of aromatic rings within coal samples promoted the intensive formation of organic nanopores, in particular those with pore size < 2 nm. Accordingly, hydrocarbon secondary cracking and the polycondensation of aromatic rings within the pyrolyzed coals at high thermal maturity levels play a major role in the formation of organic nanopores. This study should be helpful to improving our understanding of the enrichment mechanisms for the deeply buried shale gas and coalbed methane.
-
表 1 原始煤样和热解煤样抽提前后TOC与岩石热解参数
Table 1. The TOC and Rock-Eval parameters of the original and pyrolyzed coal samples before and after organic solvent extraction
样品名称 实验温度(℃) 加热时间(h) 成熟度Ro (%) TOC(%) S1(mg/g) S2(mg/g) Tmax (℃) HI(mg/g TOC) 演化阶段 抽提前 抽提后 抽提前 抽提后 抽提前 抽提后 抽提前 抽提后 抽提前 抽提后 W0 0.60 39.30 38.00 0.11 3.40 15.81 17.25 448 449 40.23 45.39 低熟 W1 350 16.8 1.06 54.10 50.30 2.72 3.03 23.76 14.57 470 489 43.92 28.97 成熟 W2 350 48.0 1.38 57.60 53.30 11.64 3.26 35.88 14.06 507 531 62.29 26.38 高熟 W3 400 25.2 1.76 51.10 50.60 18.00 1.50 23.35 5.63 556 564 45.69 11.13 高熟 W4 400 84.0 1.88 55.80 53.30 8.60 1.73 7.85 3.50 568 567 14.07 6.57 高熟 W5 450 12.0 2.09 48.90 45.70 8.16 2.14 5.52 6.17 578 578 11.29 13.50 过熟 W6 450 24.0 2.29 59.40 53.60 9.99 1.80 3.94 2.66 580 575 6.63 4.96 过熟 W7 450 72.0 2.47 60.70 56.00 17.32 0.78 7.86 0.57 586 577 12.95 1.02 过熟 W8 500 12.0 2.70 57.50 54.20 10.25 1.16 2.85 0.87 367 396 4.96 1.61 过熟 W9 500 72.0 3.00 61.60 56.30 8.90 1.32 1.23 0.27 339 439 2.00 0.48 过熟 W10 550 24.0 3.67 59.90 55.80 2.70 1.39 0.40 0.18 414 420 0.67 0.32 过熟 W11 600 24.0 4.01 62.60 58.20 0.54 5.11 0.52 0.58 332 324 0.83 1.00 过熟 表 2 原始煤样和热解煤样抽提后气体吸附测试结果
Table 2. The gas adsorption analysis experimental results of original and pyrolyzed coal samples with organic solvent extraction
样品名称 Ro(%) 气体吸附量(cm3/g) 平均孔径(nm) 孔体积(cm3/g) 比表面积(m2/g) CO2 N2 总孔 微孔 介孔 宏孔 总孔 微孔 介孔 宏孔 W0 0.60 16.41 7.13 12.24 0.013 0.000 6 0.004 3 0.007 7 3.94 1.95 1.74 0.25 W1 1.06 19.76 8.62 20.36 0.022 0.000 6 0.007 0 0.014 9 4.61 1.72 2.41 0.47 W2 1.38 21.88 17.40 14.82 0.031 0.000 6 0.013 5 0.017 0 8.18 1.54 6.04 0.60 W3 1.76 19.60 35.47 11.54 0.087 0.004 3 0.034 4 0.048 2 30.24 9.73 18.86 1.65 W4 1.88 21.70 28.58 8.08 0.081 0.005 5 0.039 3 0.036 5 39.58 12.94 25.41 1.22 W5 2.09 18.80 21.41 17.58 0.077 0.002 0 0.032 3 0.042 7 18.56 5.45 11.61 1.50 W6 2.29 22.14 27.87 20.21 0.088 0.001 5 0.030 2 0.056 0 17.20 3.94 11.37 1.89 W7 2.47 23.89 31.51 11.46 0.094 0.004 8 0.041 8 0.048 0 38.89 10.76 26.48 1.65 W8 2.70 25.70 24.77 5.62 0.151 0.017 3 0.081 2 0.052 7 115.88 38.69 75.40 1.79 W9 3.00 28.61 56.42 2.57 0.140 0.044 8 0.041 7 0.053 2 166.95 135.08 30.16 1.71 W10 3.67 32.20 135.22 2.65 0.171 0.046 4 0.038 3 0.086 8 175.30 146.91 25.84 2.55 W11 4.01 36.74 110.98 2.14 0.162 0.071 3 0.030 8 0.059 7 256.11 230.12 24.29 1.70 注:孔径 < 2 nm为微孔,孔径在2~50 nm为介孔,孔径在50~300 nm为宏孔. -
Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. Ⅰ. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126 Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023 Cai, S. Y., Xiao, Q. L., Zhu, W. P., et al., 2021. Shale Reservoir Characteristics and Main Controlling Factors of Longmaxi Formation, Southern Sichuan Basin. Acta Sedimentologica Sinica, 39(5): 1100-1110 (in Chinese with English abstract). Chen, J. P., Zhao, C. Y., He, Z. H., 1997. Criteria for Evaluating the Hydrocarbon Generating Potential of Organic Matter in Coal Measures. Petroleum Exploration and Development, 24(1): 1-5, 91 (in Chinese with English abstract). Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129: 173-181. https://doi.org/10.1016/j.fuel.2014.03.058 Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26-31. https://doi.org/10.1016/j.coal.2012.08.004 Dong, C. M., Ma, C. F., Luan, G. Q., et al., 2015. Pyrolysis Simulation Experiment and Diagenesis Evolution Pattern of Shale. Acta Sedimentologica Sinica, 33(5): 1053-1061 (in Chinese with English abstract). Fu, J. M., Qin, K. Z., Wang, Y. F., 1995. Kerogen Geochemistry. Guangdong Science and Technology Press, Guangzhou (in Chinese). Guo, H. J., Jia, W. L., Peng, P. A., et al., 2017. Evolution of Organic Matter and Nanometer-Scale Pores in an Artificially Matured Shale Undergoing Two Distinct Types of Pyrolysis: A Study of the Yanchang Shale with Type Ⅱ Kerogen. Organic Geochemistry, 105: 56-66. https://doi.org/10.1016/j.orggeochem.2017.01.004 Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091 Hu, H. Y., 2013. Porosity Evolution of the Organic-Rich Shale with Thermal Maturity Increasing. Acta Petrolei Sinica, 34(5): 820-825 (in Chinese with English abstract). Hunt, J. M., 1996. Petroleum Geochemistry and Geology (Second Edition). W. H. Freeman and Company, New York. Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475-499. https://doi.org/10.1306/12190606068 Ji, L. M., Wu, Y. D., He, C., et al., 2016. High-Pressure Hydrocarbon-Generation Simulation and Pore Evolution Characteristics of Organic-Rich Mudstone and Shale. Acta Petrolei Sinica, 37(2): 172-181 (in Chinese with English abstract). Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 129-136 (in Chinese with English abstract). Ko, L. T., Loucks, R. G., Zhang, T. W., et al., 2016. Pore and Pore Network Evolution of Upper Cretaceous Boquillas (Eagle Ford-Equivalent) Mudrocks: Results from Gold Tube Pyrolysis Experiments. AAPG Bulletin, 100(11): 1693-1722. https://doi.org/10.1306/04151615092 Li, C. X., Xiao, Q. L., Chen, Q., et al., 2019. Evolution Characteristics and Controls of Shale Nanopores during Thermal Maturation of Organic Matter. Petroleum Geology & Experiment, 41(6): 901-909 (in Chinese with English abstract). Li, W., Zhu, Y. M., Chen, S. B., et al., 2013. Study of Coupling Mechanism between Hydrocarbon Generation and Structure Evolution in Low Rank Coal. Spectroscopy and Spectral Analysis, 33(4): 1052-1056 (in Chinese with English abstract). Li, X. C., Gao, J. X., Zhang, S., et al., 2022. Combined Characterization of Scanning Electron Microscopy, Pore and Crack Analysis System, and Gas Adsorption on Pore Structure of Coal with Different Volatilization. Earth Science, 47(5): 1876-1889 (in Chinese with English abstract). Liu, B., 2023. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, 48(12): 4641-4657 (in Chinese with English abstract). Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092 Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. Bulletin of the American Association of Petroleum Geologists, 96(6): 1071-1098. https://doi.org/10.1306/08171111061 Ma, Z. L., Zheng, L. J., Xu, X. H., et al., 2017. Thermal Simulation Experiment on the Formation and Evolution of Organic Pores in Organic-Rich Shale. Acta Petrolei Sinica, 38(1): 23-30 (in Chinese with English abstract). Marzec, A., 2002. Towards an Understanding of the Coal Structure: A Review. Fuel Processing Technology, 77-78: 25-32. https://doi.org/10.1016/s0378-3820(02)00045-0 Qin, K. Z., 1993. Chemical Change of Kerogen Structure and Hydrocarbon Generation. Journal of Petroleum University (Natural Science Edition), 17(S1): 232-242 (in Chinese with English abstract). Shuai, Y. H., Zhang, S. C., Chen, J. P., 2009. Comparison of the Oil Potential of Coal and Coaly Mudstone. Geochimica, 38(6): 583-590 (in Chinese with English abstract). Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603 Thommes, M., Kaneko, K., Neimark, A. V., et al., 2015. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9): 1051-1069. https://doi.org/10.1515/pac-2014-1117 Tian, H., Pan, L., Xiao, X. M., et al., 2013. A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods. Marine and Petroleum Geology, 48: 8-19. https://doi.org/10.1016/j.marpetgeo.2013.07.008 Tian, H., Wang, Z. M., Xiao, Z. Y., et al., 2006. Oil Cracking to Gases: Kinetic Modeling and Geological Significance. Chinese Science Bulletin, 51(22): 2763-2770. https://doi.org/10.1007/s11434-006-2188-8 Tian, X. H., Qu, H. J., Liu, X. S., et al., 2016. Discussion on Quartz Dissolution and Its Mechanisms of the Upper Paleozoic Tight Gas Reservoirs in the Eastern Ordos Basin. Natural Gas Geoscience, 27(11): 2005-2012, 2069 (in Chinese with English abstract). Van Niekerk, D., Mathews, J. P., 2010. Molecular Representations of Permian-Aged Vitrinite-Rich and Inertinite-Rich South African Coals. Fuel, 89(1): 73-82. https://doi.org/10.1016/j.fuel.2009.07.020 Wang, Y. P., Tian, J., Lu, J. L., et al., 2008. Residual Hydrocarbon and Its Secondary Cracking Gas Characteristics of Marine and Coal Source Rocks by Using Kinetic Simulation Methods of Hydrocarbon Generation and Expulsion. Marine Origin Petroleum Geology, 13(4): 44-48 (in Chinese with English abstract). Waples, D. W., 2000. The Kinetics of In-Reservoir Oil Destruction and Gas Formation: Constraints from Experimental and Empirical Data, and from Thermodynamics. Organic Geochemistry, 31(6): 553-575. https://doi.org/10.1016/s0146-6380(00)00023-1 Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract). Xiong, Y. Q., Jiang, W. M., Wang, X. T., et al., 2016. Formation and Evolution of Solid Bitumen during Oil Cracking. Marine and Petroleum Geology, 78: 70-75. https://doi.org/10.1016/j.marpetgeo.2016.09.008 Yang, R., He, S., Yi, J., et al., 2016. Nano-Scale Pore Structure and Fractal Dimension of Organic-Rich Wufeng-Long-Maxi Shale from Jiaoshiba Area, Sichuan Basin: Investigations Using FE-SEM, Gas Adsorption and Helium Pycnometry. Marine and Petroleum Geology, 70: 27-45. https://doi.org/10.1016/j.marpetgeo.2015.11.019 Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Characteristics, Types, and Prospects of Geological Sweet Sections in Giant Continental Shale Oil Provinces in China. Journal of Earth Science, 33(5): 1260-1277. https://doi.org/10.1007/s12583-022-1735-9 Yin, S., Ding, W. L., Chen, W. L., et al., 2015. A Review of Evolution Characteristic of Organic Microscopic Fabric and Hydrocarbon Significance of Coalification. Geological Science and Technology Information, 34(2): 145-151, 158 (in Chinese with English abstract). Zhao, W. Z., Wang, Z. Y., Zhang, S. C., et al., 2005. Oil Cracking: An Important Way for Highly Efficient Generation of Gas from Marine Source Rock Kitchen. Chinese Science Bulletin, 50(22): 2628-2635. https://doi.org/10.1360/982004-522 Zhao, X. G., Liu, X. Y., Dang, C. T., et al., 1992. Product Characteristics of Simulating Experimemt for Brown Coal Coalification and Its Geochemical Signifcance. Journal of Daqing Petroleum Institute, 16(3): 1-5 (in Chinese with English abstract). Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects(Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). Zou, C. N., Tao, S. Z., Hou, L. H., et al., 2011. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese). Zou, C. N., Yang, Z., Zhang, G. S., et al., 2023. Theory, Technology and Practice of Unconventional Petroleum Geology. Journal of Earth Science, 34(4): 951-965. https://doi.org/10.1007/s12583-023-2000-8 蔡苏阳, 肖七林, 朱卫平, 等, 2021. 川南龙马溪组页岩储层特征及主控因素. 沉积学报, 39(5): 1100-1110. 陈建平, 赵长毅, 何忠华, 1997. 煤系有机质生烃潜力评价标准探讨. 石油勘探与开发, 24(1): 1-5, 91. 董春梅, 马存飞, 栾国强, 等, 2015. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 33(5): 1053-1061. 傅家谟, 秦匡宗, 王廷芬, 等, 1995. 干酪根地球化学. 广州: 广东科技出版社. 胡海燕, 2013. 富有机质Woodford页岩孔隙演化的热模拟实验. 石油学报, 34(5): 820-825. 吉利明, 吴远东, 贺聪, 等, 2016. 富有机质泥页岩高压生烃模拟与孔隙演化特征. 石油学报, 37(2): 172-181. 贾承造, 郑民, 张永峰, 2012. 中国非常规油气资源与勘探开发前景. 石油勘探与开发, 39(2): 129-136. 李楚雄, 肖七林, 陈奇, 等, 2019. 页岩纳米级孔隙在有机质熟化过程中的演化特征及影响因素. 石油实验地质, 41(6): 901-909. 李伍, 朱炎铭, 陈尚斌, 等, 2013. 低煤级煤生烃与结构演化的耦合机理研究. 光谱学与光谱分析, 33(4): 1052-1056. 李祥春, 高佳星, 张爽, 等, 2022. 基于扫描电镜、孔隙‒裂隙分析系统和气体吸附的煤孔隙结构联合表征. 地球科学, 47(5): 1876-1889. doi: 10.3799/dqkx.2021.195 刘贝, 2023. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 48(12): 4641-4657. doi: 10.3799/dqkx.2022.130 马中良, 郑伦举, 徐旭辉, 等, 2017. 富有机质页岩有机孔隙形成与演化的热模拟实验. 石油学报, 38(1): 23-30. 秦匡宗, 1993. 干酪根的结构演化与成烃. 石油大学学报(自然科学版), 17(S1): 232-242. 帅燕华, 张水昌, 陈建平, 2009. 煤和煤系泥岩生油能力再评价. 地球化学, 38(6): 583-590. 田夏荷, 屈红军, 刘新社, 等, 2016. 鄂尔多斯盆地东部上古生界致密气储层石英溶蚀及其机理探讨. 天然气地球科学, 27(11): 2005-2012, 2069. 王云鹏, 田静, 卢家烂, 等, 2008. 利用生排烃动力学研究海相及煤系烃源岩的残留烃及其裂解成气特征. 海相油气地质, 13(4): 44-48. 肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248 尹帅, 丁文龙, 陈文玲, 等, 2015. 煤化作用过程中有机显微组构演化特征及生烃意义综述. 地质科技情报, 34(2): 145-151, 158. 赵锡嘏, 刘晓艳, 党长涛, 等, 1992. 褐煤煤化作用模拟实验产物特征及其地化意义. 大庆石油学院学报, 16(3): 1-5. 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. 邹才能, 陶士振, 侯连华, 等, 2011. 非常规油气地质. 北京: 地质出版社. -