The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology
-
摘要: 华北克拉通东缘新元古代基性岩床(墙)产出的构造背景对恢复该克拉通在Rodinia超大陆的位置具有重要意义.通过对大连和徐州地区4个基性岩床样品中锆石的结构、与其他矿物共生关系、微量元素特征进行分析,发现它们具有典型的基性岩浆锆石的结构和微量元素特征,大部分的结晶温度(约800~900 ℃)与大洋中脊玄武岩中的锆石一致,并且可以观察到部分锆石以包裹体形式出现在单斜辉石中.以上特征说明这些锆石形成于基性岩浆冷却结晶早期阶段,其U-Pb年龄(881 Ma、876 Ma、914 Ma、925 Ma)可以代表基性岩床的侵位时代,其微量元素表现出大陆岛弧岩浆锆石的特点.结合基性岩床(墙)的几何分布及岩浆活动持续时间,推测它们可能形成于与俯冲相关的拉张环境.Abstract: The tectonic setting of the Neoproterozoic mafic sills (dykes) in the eastern margin of the North China Craton is of great significance for reconstructing the position of the Craton in Rodinia supercontinent. By analyzing the structure, paragenetic relationship with other minerals, and trace element characteristics of zircons in four mafic rock sill samples from Dalian and Xuzhou regions, it is found that they have typical structural and trace element characteristics of mafic magmatic zircons. Most of the crystallization temperatures (about 800-900 ℃) are consistent with those of zircons in mid-ocean ridge basalts, and some zircons can be observed to appear in clinopyroxene as inclusions. The above characteristics indicate that these zircons were formed in the early stage of cooling crystallization of mafic magma. Their U-Pb ages (881 Ma, 876 Ma, 914 Ma, and 925 Ma) can represent the emplacement age of mafic sills, and their trace elements show the characteristics of continental island arc magmatic zircons. Based on the geometric distribution of mafic sills (dykes) and the duration of magmatic activity, we suggest that they may have formed in a subduction related tensile environment.
-
Key words:
- mafic sill /
- Neoproterozoic /
- North China Craton /
- zirconology /
- geochronology /
- mineralogy
-
图 1 华北克拉通构造划分(据Peng et al., 2011b)及研究区位置(a),大连地区地质简图及采样位置(b),徐州地区地质简图及采样位置(c)
Fig. 1. Tectonic subdivision of the North China Craton (after Peng et al., 2011b) and the location of study area (a), geological sketch map of Dalian (b) and Xuzhou (c) area and sampling locations
图 2 研究区中元古代末期至新元古代地层柱简图(据Zhao et al., 2020修改)及采样层位
By.斜锆石;DZ.碎屑锆石;Zr.岩浆锆石;*为本文数据.数据引自:a为Zhao et al.(2020);b为Zhang et al.(2021);c为Wu et al.(2022);d为Zhang et al.(2016);e为Yang et al.(2012);f为Liu et al.(2023);g为Zhao et al.(2022);h为高林志等(2009);i为Sun et al.(2020);j为Wang et al.(2012);k为He et al.(2017);l为Wan et al.(2019)
Fig. 2. Simplified stratigraphic columns of the late Mesoproterozoic to Neoproterozoic successions in the studied regions (after Zhao et al., 2020) and the layers for samples.
图 9 锆石球粒陨石标准化稀土元素图解(据Sun and McDonough, 1989)
Fig. 9. Chondrite-normalized REE diagram of zircon (after Sun and McDonough, 1989)
图 11 华北克拉通东部新元古代基性岩墙(床)原始地幔标准化微量元素蛛网图
图据Sun and McDonough(1989);基性岩墙(床)全岩微量元素数据来源于Peng et al.(2011a)、Wang et al.(2012)、Zhang et al.(2016)、Zhu et al.(2019)、Su et al.(2021);N-MORB(正常洋中脊玄武岩)、OIB(洋岛玄武岩)参考值来自Sun and McDonough(1989);IAB(岛弧玄武岩)参考值来自Kelemen et al.(2014)
Fig. 11. Primitive mantle-normalized spidergram for Neoproterozoic basic dykes (sills) in the eastern part of the North China craton
图 12 锆石构造背景判别图(据Grimes et al., 2015)
Fig. 12. Plots of zircon tectonic background discrimination (after Grimes et al., 2015)
-
Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7 Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008 Carley, T. L., Miller, C. F., Wooden, J. L., et al., 2014. Iceland is not a Magmatic Analog for the Hadean: Evidence from the Zircon Record. Earth and Planetary Science Letters, 405: 85-97. https://doi.org/10.1016/j.epsl.2014.08.015 Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049 Cederberg, J., Söderlund, U., Oliveira, E. P., et al., 2016. U-Pb Baddeleyite Dating of the Proterozoic Pará de Minas Dike Swarm in the São Francisco Craton (Brazil): Implications for Tectonic Correlation with the Siberian, Congo and North China Cratons: GFF, 138(1): 219-240. https://doi.org/10.1080/11035897.2015.1093543 Chamberlain, K. R., Schmitt, A. K., Swapp, S. M., et al., 2010. In Situ U-Pb SIMS (IN-SIMS) Micro-Baddeleyite Dating of Mafic Rocks: Method with Examples. Precambrian Research, 183(3): 379-387. https://doi.org/10.1016/j.precamres.2010.05.004 Coogan, L. A., Wilson, R. N., Gillis, K. M., et al., 2001. Near-Solidus Evolution of Oceanic Gabbros: Insights from Amphibole Geochemistry. Geochimica et Cosmochimica Acta, 65(23): 4339-4357. https://doi.org/10.1016/s0016-7037(01)00714-1 Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0 Finch, R. J., Hanchar, J. M., Hoskin, P. W. O., et al., 2001. Rare-Earth Elements in Synthetic Zircon: Part 2. A Single-Crystal X-Ray Study of Xenotime Substitution. American Mineralogist, 86(5-6): 681-689. https://doi.org/10.2138/am-2001-5-608 Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Recognition of Meso-and Neoproterozoic Stratigraphic Framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract). Gao, Z. X., Xiong, Y. X., Gao, P., 1934. Preliminary Notes on Sinian Stratigraphy of North China. Bulletin of the Geological Society of China, 13: 243-288 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1934.mp13001016.x Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1130/G23603A.1 Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3 He, T. C., Zhou, Y., Vermeesch, P., et al., 2017. Measuring the 'Great Unconformity' on the North China Craton Using New Detrital Zircon Age Data. Geological Society, London, Special Publications, 448(1): 145-159. https://doi.org/10.1144/sp448.14 Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2 Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027 Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. https://doi.org/10.1016/j.gsf.2011.10.003 Hou, G. T., Liu, Y. L., Li, J. H., et al., 2005. The SHRIMP U-Pb Chronology of Mafic Dyke Swarms: A Case Study of Laiwu Diabase Dykes in Western Shandong. Acta Petrologica et Mineralogica, 24(3): 179-185 (in Chinese with English abstract). Hu, J., Li, Z., Gong, W., et al., 2016. Main Tectonic Events and Metallogeny of the North China Craton. Springer, Singapore, 393-422. Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8 Kaczmarek, M. A., Müntener, O., Rubatto, D., 2008. Trace Element Chemistry and U-Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology, 155(3): 295-312. https://doi.org/10.1007/s00410-007-0243-3 Kelemen, P. B., Hanghøj, K., Greene, A. R., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Turekian, K. K., ed., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 749-806. Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212-215: 397-414. https://doi.org/10.1016/j.lithos.2014.11.021 Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002 Li, Z. X., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/S0301-9268(02)00208-5 Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435-1458 (in Chinese with English abstract). Li, X. H., 2021. The Major Driving Force Triggering Breakup of Supercontinent: Mantle Plumes or Deep Subduction? Acta Geologica Sinica, 95(1): 20-31 (in Chinese with English abstract). Liu, C. H., Zhao, G. C., Liu, F. L., et al., 2023. New Geochronological Results from Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton and Implications for the Reconstruction of Rodinia. GSA Bulletin, 135(9-10): 2575-2590. https://doi.org/10.1130/b36645.1 Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2004. SHRIMP U-Pb Ages of Ultrahigh-Pressure and Retrograde Metamorphism of Gneisses, South-Western Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 22(4): 315-326. https://doi.org/10.1111/j.1525-1314.2004.00516.x Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082 Liu, C. H., Liu, F. L., 2015. The Mesoproterozoic Rifting in the North China Craton: A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Petrologica Sinica, 31(10): 3107-3128 (in Chinese with English abstract). Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016 Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347. Lu, S. N., Xiang, Z. Q., Li, H. K., et al., 2012. Response of the North China Craton to Rodinia Supercontinental Events: GOSEN Joining Hypothesis. Acta Geologica Sinica, 86(9): 1396-1406(in Chinese with English abstract). Ludwig, K. R., 2003, User's Manual for Isoplot 3.00: A Geochronologic Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. Lyell, C., 2010. Principles of Geology, Volume 2. University of Chicago Press, Chicago. Merdith, A. S., Collins, A. S., Williams, S. E., et al., 2017. A Full-Plate Global Reconstruction of the Neoproterozoic. Gondwana Research, 50: 84-134. https://doi.org/10.1016/j.gr.2017.04.001 Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society of London Special Publications, 220(1): 65-81. https://doi.org/10.1144/GSL.SP.2003.220.01.04 Ni, Z. Q., Arevalo, R., Piccoli, P., et al., 2020. A Novel Approach to Identifying Mantle-Equilibrated Zircon by Using Trace Element Chemistry. Geochemistry, Geophysics, Geosystems, 21(11): e2020GC009230. https://doi.org/10.1029/2020GC00923010.1002/essoar.10503454.1 Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x Peng, P., 2016. Map of Precambrian Dyke Swarms and Related Plutonic/Volcanic Units in the North China Block (1∶2 500 000). Science Press, Beijing (in Chinese). Peng, P., Bleeker, W., Ernst, R. E., et al., 2011a. U-Pb Baddeleyite Ages, Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton: Evidence for a Neoproterozoic Mantle Plume. Lithos, 127(1-2): 210-221. https://doi.org/10.1016/j.lithos.2011.08.018 Peng, P., Xu, H. R., Mitchell, R. N., et al., 2022. Earth's Oldest Hotspot Track at Ca. 1.8 Ga Advected by a Global Subduction System. Earth and Planetary Science Letters, 585: 117530. https://doi.org/10.1016/j.epsl.2022.117530 Peng, P., Zhai, M. G., Li, Q., et al., 2011b. Neoproterozoic (~900 Ma) Sariwon Sills in North Korea: Geochronology, Geochemistry and Implications for the Evolution of the South-Eastern Margin of the North China Craton. Gondwana Research, 20(1): 243-254, https://doi.org/10.1016/j.gr.2010.12.011. Peters, S. E., Gaines, R. R., 2012. Formation of the 'Great Unconformity' as a Trigger for the Cambrian Explosion. Nature, 484(7394): 363-366. https://doi.org/10.1038/nature10969 Srivastava, R. K., Srivastava, R. K., Ernst, R. E., 2011. Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin. Su, X. D., Peng, P., Foley, S., et al., 2021. Initiation of Continental Breakup Documented in Evolution of the Magma Plumbing System of the Ca. 925 Ma Dashigou Large Igneous Province, North China. Lithos, 384-385: 105984. https://doi.org/10.1016/j.lithos.2021.105984 Sun, F. B., Peng, P., Zhou, X. Q., et al., 2020. Provenance Analysis of the Late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the Southeast North China Craton: Implications for Paleogeographic Reconstruction. Precambrian Research, 337: 105554. https://doi.org/10.1016/j.precamres.2019.105554 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Torsvik, T. H., 2003. The Rodinia Jigsaw Puzzle. Science, 300(5624): 1379-1381. https://doi.org/10.1126/science.1083469 Wan, B., Tang, Q., Pang, K., et al., 2019. Repositioning the Great Unconformity at the Southeastern Margin of the North China Craton. Precambrian Research, 324: 1-17. https://doi.org/10.1016/j.precamres.2019.01.014 Wang, C., Peng, P., Wang, X. P., et al., 2016. Nature of Three Proterozoic (1 680 Ma, 1 230 Ma and 775 Ma) Mafic Dyke Swarms in North China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 285: 109-126. https://doi.org/10.1016/j.precamres.2016.09.015 Wang, Q. H., Yang, D. B., Xu, W. L., 2012. Neoproterozoic Basic Magmatism in the Southeast Margin of North China Craton: Evidence from Whole-Rock Geochemistry, U-Pb and Hf Isotopic Study of Zircons from Diabase Swarms in the Xuzhou-Huaibei Area of China. Science China Earth Sciences, 55(9): 1461-1479. https://doi.org/10.1007/s11430-011-4237-7 Wang, Y. Y., Zeng, L. S., Hou, K. J., et al., 2022. Mantle Source Components and Magmatic Evolution for the Comei Large Igneous Province: Evidence from the Early Cretaceous Niangzhong Mafic Magmatism in Tethyan Himalaya. Journal of Earth Science, 33(1): 133-149. https://doi.org/10.1007/s12583-021-1464-5 Wu, Z. J., Lu, C. H., Qiu, L. W., et al., 2022. New Detrital Zircon Geochronological Results from the Meso-Neoproterozoic Sandstones in the Southern-Eastern Liaoning Region, North China Craton, and Their Paleogeographic Implications. Precambrian Research, 381: 106847. https://doi.org/10.1016/j.precamres.2022.106847 Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese). Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208-225. https://doi.org/10.1016/j.precamres.2014.03.004 Xiao, W., Windley, B., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020 Xu, J. W., Zhu, G., 1995. Discussion on Tectonic Models for the Tan-Lu Fault Zone, Eastern China. Journal of Geology and Mineral Resources of North China, 10(2): 121-134 (in Chinese with English abstract). Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39 (in Chinese with English abstract). Yang, D. B., Yang, D. B., Xu, W. L., et al., 2012. U-Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China: Implications for the Late Precambrian Evolution of the Southeastern North China Craton. Precambrian Research, 216: 162-176. https://doi.org/10.1016/J.PRECAMRES.2012.07.002 Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005 Zhai, M. G., Shao, J. A., Hao, J., et al., 2003. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Research, 6(2): 171-183. https://doi.org/10.1016/s1342-937x(05)70968-0 Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multistage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract). Zhang, S. H., Zhao, Y., Li, X. H., Ernst, R. E., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034 Zhang, S. H., Zhao, Y., Ye, H., et al., 2016. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005 Zhang, W., Liu, F. L., Liu, C. H., 2021. Provenance Transition from the North China Craton to the Grenvillian Orogeny-Related Source: Evidence from Late Mesoproterozoic-Early Neoproterozoic Strata in the Liao-Ji Area. Precambrian Research, 362: 106281. https://doi.org/10.1016/j.precamres.2021.106281 Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017 Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6 Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1 Zhao, H. Q., Zhang, S. H., Ren, W. Q., et al., 2022. New Paleomagnetic Results from the Ca. 1.0 Ga Jiayuan Formation of the Huaibei Group in the North China Craton, and Their Paleogeographic Implications. Precambrian Research, 379: 106807. https://doi.org/10.1016/j.precamres.2022.106807 Zhao, T. P., Zhai, M. G., Xia, B., et al., 2004. SHRIMP Geochronology of Zircon from Volcanic Rocks of Xiong'Er Group: Constraints on the Initial Development Time of North China Craton Caprock. Chinese Science Bulletin, 49(22): 2342-2349 (in Chinese). Zhu, R. Z., Ni, P., Wang, G. G., et al., 2019. Geochronology, Geochemistry and Petrogenesis of the Laozhaishan Dolerite Sills in the Southeastern Margin of the North China Craton and Their Geological Implication. Gondwana Research, 67: 131-146. https://doi.org/10.1016/j.gr.2018.10.016 高林志, 张传恒, 刘鹏举, 等, 2009. 华北‒江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433-446. 高振西, 熊永先, 高平, 1934. 中国北部震旦纪地层. 中国地质学会志, 13: 243-288. 侯贵廷, 刘玉琳, 李江海, 等, 2005. 关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨: 以鲁西莱芜辉绿岩岩墙为例. 岩石矿物学杂志, 24(3): 179-185. 李守奎, 刘学龙, 卢映祥, 等, 2022. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435-1458. doi: 10.3799/dqkx.2021.079 李献华, 2021. 超大陆裂解的主要驱动力: 地幔柱或深俯冲? 地质学报, 95(1): 20-31. 刘超辉, 刘福来, 2015. 华北克拉通中元古代裂解事件: 以渣尔泰‒白云鄂博‒化德裂谷带岩浆与沉积作用研究为例. 岩石学报, 31(10): 3107-3128. 陆松年, 相振群, 李怀坤, 等, 2012. 华北克拉通对罗迪尼亚超大陆事件的响应: GOSEN连接假设. 地质学报, 86(9): 1396-1406. 彭澎, 2016. 华北陆块前寒武纪岩墙群及相关岩浆岩地质图说明书(1: 2 500 000). 北京: 科学出版社. 吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604. 徐嘉炜, 朱光, 1995. 中国东部郯庐断裂带构造模式讨论. 华北地质矿产杂志, 10(2): 121-134. 徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39. 翟明国, 胡波, 彭澎, 等, 2014. 华北中‒新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119. 赵太平, 翟明国, 夏斌, 等, 2004. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342-2349. -
dqkxzx-49-9-3122-附表2.xlsx
dqkxzx-49-9-3122-附表1.xlsx
-