• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据

    孙逊 刘超辉 段瑞涵

    孙逊, 刘超辉, 段瑞涵, 2024. 华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据. 地球科学, 49(9): 3122-3139. doi: 10.3799/dqkx.2023.095
    引用本文: 孙逊, 刘超辉, 段瑞涵, 2024. 华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据. 地球科学, 49(9): 3122-3139. doi: 10.3799/dqkx.2023.095
    Sun Xun, Liu Chaohui, Duan Ruihan, 2024. The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology. Earth Science, 49(9): 3122-3139. doi: 10.3799/dqkx.2023.095
    Citation: Sun Xun, Liu Chaohui, Duan Ruihan, 2024. The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology. Earth Science, 49(9): 3122-3139. doi: 10.3799/dqkx.2023.095

    华北克拉通东缘新元古代早期基性岩床的时代及其地质意义:来自锆石学的证据

    doi: 10.3799/dqkx.2023.095
    基金项目: 

    国家自然科学基金委员会面上项目 42172221

    国家自然科学基金委员会重大研究计划重点支持项目 92062214

    详细信息
      作者简介:

      孙逊(1995-),男,硕士研究生,主要从事前寒武纪地质学工作. ORCID:0000-0002-4712-8103. E-mail:429657312@qq.com

      通讯作者:

      刘超辉,ORCID: 0000-0003-2925-3573. E‐mail: denverliu82@gmail.com

    • 中图分类号: P588.12

    The Age and Geological Significance of Early Neoproterozoic Mafic Sills on the Eastern Margin of the North China Craton: Evidence from Zirconology

    • 摘要: 华北克拉通东缘新元古代基性岩床(墙)产出的构造背景对恢复该克拉通在Rodinia超大陆的位置具有重要意义.通过对大连和徐州地区4个基性岩床样品中锆石的结构、与其他矿物共生关系、微量元素特征进行分析,发现它们具有典型的基性岩浆锆石的结构和微量元素特征,大部分的结晶温度(约800~900 ℃)与大洋中脊玄武岩中的锆石一致,并且可以观察到部分锆石以包裹体形式出现在单斜辉石中.以上特征说明这些锆石形成于基性岩浆冷却结晶早期阶段,其U-Pb年龄(881 Ma、876 Ma、914 Ma、925 Ma)可以代表基性岩床的侵位时代,其微量元素表现出大陆岛弧岩浆锆石的特点.结合基性岩床(墙)的几何分布及岩浆活动持续时间,推测它们可能形成于与俯冲相关的拉张环境.

       

    • 图  1  华北克拉通构造划分(据Peng et al., 2011b)及研究区位置(a),大连地区地质简图及采样位置(b),徐州地区地质简图及采样位置(c)

      Fig.  1.  Tectonic subdivision of the North China Craton (after Peng et al., 2011b) and the location of study area (a), geological sketch map of Dalian (b) and Xuzhou (c) area and sampling locations

      图  2  研究区中元古代末期至新元古代地层柱简图(据Zhao et al., 2020修改)及采样层位

      By.斜锆石;DZ.碎屑锆石;Zr.岩浆锆石;*为本文数据.数据引自:a为Zhao et al.(2020);b为Zhang et al.(2021);c为Wu et al.(2022);d为Zhang et al.(2016);e为Yang et al.(2012);f为Liu et al.(2023);g为Zhao et al.(2022);h为高林志等(2009);i为Sun et al.(2020);j为Wang et al.(2012);k为He et al.(2017);l为Wan et al.(2019)

      Fig.  2.  Simplified stratigraphic columns of the late Mesoproterozoic to Neoproterozoic successions in the studied regions (after Zhao et al., 2020) and the layers for samples.

      图  3  基性岩床野外照片及其与围岩的接触关系

      Fig.  3.  Field photographs of mafic sills and their contact relationships with surrounding rock

      图  4  基性岩床显微照片(a、c、e和g);锆石与其他矿物共生关系(b、d、f和h)

      (-).单偏光照片;Pl.斜长石;Cpx.单斜辉石;Qtz.石英;Bt.黑云母;Zrn.锆石

      Fig.  4.  Microphotographs of mafic rocks (a, c, e and g); paragenetic relationship between zircon and other minerals (b, d, f and h)

      图  5  锆石阴极发光图像

      4个样品为相同的比例尺

      Fig.  5.  Zircon cathodoluminescence images

      图  6  基性岩床锆石的Wetherill谐和U-Pb年龄图

      插图是代表性锆石颗粒内部结构的CL图像,以及每颗锆石的结晶年龄.灰色和绿色椭圆分别代表非岩浆成因和不谐和的锆石,红色椭圆代表谐和年龄,测点数量及MSWD值见括号中

      Fig.  6.  Wetherill concordia plots of zircon U-Pb isotopic dating data

      图  7  锆石Hf-Ti图解(a)和锆石Th/U-Y图解(b)

      Fig.  7.  Plots of Hf versus Ti, and Th/U versus Y of zircon (b)

      图  8  锆石与含Ti矿物的共生关系

      Zrn.锆石;Ttn.榍石;Ilm.钛铁矿;Pl.斜长石;Di.透辉石;Bt.黑云母;Ap.磷灰石;Hbl.角闪石;Chl.绿泥石

      Fig.  8.  Paragenetic relationship between zircon and Ti bearing minerals

      图  9  锆石球粒陨石标准化稀土元素图解(据Sun and McDonough, 1989

      Fig.  9.  Chondrite-normalized REE diagram of zircon (after Sun and McDonough, 1989)

      图  10  华北克拉通~900 Ma基性岩墙(床)分布图(a); 华北克拉通~900 Ma基性岩墙(床)U-Pb年龄数据柱状图(b)

      Fig.  10.  Distribution map of ~900 Ma mafic sills of the North China Craton (a); histogram of U-Pb age data of ~900 Ma mafic sills from the North China Craton (b)

      图  11  华北克拉通东部新元古代基性岩墙(床)原始地幔标准化微量元素蛛网图

      图据Sun and McDonough(1989);基性岩墙(床)全岩微量元素数据来源于Peng et al.(2011a)Wang et al.(2012)Zhang et al.(2016)Zhu et al.(2019)Su et al.(2021);N-MORB(正常洋中脊玄武岩)、OIB(洋岛玄武岩)参考值来自Sun and McDonough(1989);IAB(岛弧玄武岩)参考值来自Kelemen et al.(2014)

      Fig.  11.  Primitive mantle-normalized spidergram for Neoproterozoic basic dykes (sills) in the eastern part of the North China craton

      图  12  锆石构造背景判别图(据Grimes et al., 2015)

      Fig.  12.  Plots of zircon tectonic background discrimination (after Grimes et al., 2015)

    • Belousova, E., Griffin, W., O'Reilly, S. Y., et al., 2002. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 143(5): 602-622. https://doi.org/10.1007/s00410-002-0364-7
      Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1-4): 175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
      Carley, T. L., Miller, C. F., Wooden, J. L., et al., 2014. Iceland is not a Magmatic Analog for the Hadean: Evidence from the Zircon Record. Earth and Planetary Science Letters, 405: 85-97. https://doi.org/10.1016/j.epsl.2014.08.015
      Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      Cederberg, J., Söderlund, U., Oliveira, E. P., et al., 2016. U-Pb Baddeleyite Dating of the Proterozoic Pará de Minas Dike Swarm in the São Francisco Craton (Brazil): Implications for Tectonic Correlation with the Siberian, Congo and North China Cratons: GFF, 138(1): 219-240. https://doi.org/10.1080/11035897.2015.1093543
      Chamberlain, K. R., Schmitt, A. K., Swapp, S. M., et al., 2010. In Situ U-Pb SIMS (IN-SIMS) Micro-Baddeleyite Dating of Mafic Rocks: Method with Examples. Precambrian Research, 183(3): 379-387. https://doi.org/10.1016/j.precamres.2010.05.004
      Coogan, L. A., Wilson, R. N., Gillis, K. M., et al., 2001. Near-Solidus Evolution of Oceanic Gabbros: Insights from Amphibole Geochemistry. Geochimica et Cosmochimica Acta, 65(23): 4339-4357. https://doi.org/10.1016/s0016-7037(01)00714-1
      Ferry, J. M., Watson, E. B., 2007. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 154(4): 429-437. https://doi.org/10.1007/s00410-007-0201-0
      Finch, R. J., Hanchar, J. M., Hoskin, P. W. O., et al., 2001. Rare-Earth Elements in Synthetic Zircon: Part 2. A Single-Crystal X-Ray Study of Xenotime Substitution. American Mineralogist, 86(5-6): 681-689. https://doi.org/10.2138/am-2001-5-608
      Gao, L. Z., Zhang, C. H., Liu, P. J., et al., 2009. Recognition of Meso-and Neoproterozoic Stratigraphic Framework in North and South China. Acta Geoscientica Sinica, 30(4): 433-446 (in Chinese with English abstract).
      Gao, Z. X., Xiong, Y. X., Gao, P., 1934. Preliminary Notes on Sinian Stratigraphy of North China. Bulletin of the Geological Society of China, 13: 243-288 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.1934.mp13001016.x
      Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646. https://doi.org/10.1130/G23603A.1
      Grimes, C. B., Wooden, J. L., Cheadle, M. J., et al., 2015. "Fingerprinting" Tectono-Magmatic Provenance Using Trace Elements in Igneous Zircon. Contributions to Mineralogy and Petrology, 170(5): 46. https://doi.org/10.1007/s00410-015-1199-3
      He, T. C., Zhou, Y., Vermeesch, P., et al., 2017. Measuring the 'Great Unconformity' on the North China Craton Using New Detrital Zircon Age Data. Geological Society, London, Special Publications, 448(1): 145-159. https://doi.org/10.1144/sp448.14
      Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627-630. https://doi.org/10.1130/0091-7613(2000)28627: reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28627:reecoz>2.0.co;2
      Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. https://doi.org/10.2113/0530027
      Hou, G. T., 2012. Mechanism for Three Types of Mafic Dyke Swarms. Geoscience Frontiers, 3(2): 217-223. https://doi.org/10.1016/j.gsf.2011.10.003
      Hou, G. T., Liu, Y. L., Li, J. H., et al., 2005. The SHRIMP U-Pb Chronology of Mafic Dyke Swarms: A Case Study of Laiwu Diabase Dykes in Western Shandong. Acta Petrologica et Mineralogica, 24(3): 179-185 (in Chinese with English abstract).
      Hu, J., Li, Z., Gong, W., et al., 2016. Main Tectonic Events and Metallogeny of the North China Craton. Springer, Singapore, 393-422.
      Huang, B., Johnson, T. E., Wilde, S. A., et al., 2022. Coexisting Divergent and Convergent Plate Boundary Assemblages Indicate Plate Tectonics in the Neoarchean. Nature Communications, 13(1): 6450. https://doi.org/10.1038/s41467-022-34214-8
      Kaczmarek, M. A., Müntener, O., Rubatto, D., 2008. Trace Element Chemistry and U-Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology, 155(3): 295-312. https://doi.org/10.1007/s00410-007-0243-3
      Kelemen, P. B., Hanghøj, K., Greene, A. R., 2014. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Turekian, K. K., ed., Treatise on Geochemistry (Second Edition). Elsevier, Oxford, 749-806.
      Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., et al., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos, 212-215: 397-414. https://doi.org/10.1016/j.lithos.2014.11.021
      Kusky, T. M., Polat, A., Windley, B. F., et al., 2016. Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth Science Reviews, 162: 387-432. https://doi.org/10.1016/j.earscirev.2016.09.002
      Li, Z. X., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1-4): 85-109. https://doi.org/10.1016/S0301-9268(02)00208-5
      Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-Up History of Rodinia: A Synthesis. Precambrian Research, 160(1-2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
      Li, S. K., Liu, X. L., Lu, Y. X., et al., 2022. Indication of Zircon Oxygen Fugacity to Different Mineralization Control Factors of Porphyry Deposits in Zhongdian Ore-Concentrated Area, Southern Yidun Arc. Earth Science, 47(4): 1435-1458 (in Chinese with English abstract).
      Li, X. H., 2021. The Major Driving Force Triggering Breakup of Supercontinent: Mantle Plumes or Deep Subduction? Acta Geologica Sinica, 95(1): 20-31 (in Chinese with English abstract).
      Liu, C. H., Zhao, G. C., Liu, F. L., et al., 2023. New Geochronological Results from Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton and Implications for the Reconstruction of Rodinia. GSA Bulletin, 135(9-10): 2575-2590. https://doi.org/10.1130/b36645.1
      Liu, F. L., Xu, Z. Q., Liou, J. G., et al., 2004. SHRIMP U-Pb Ages of Ultrahigh-Pressure and Retrograde Metamorphism of Gneisses, South-Western Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 22(4): 315-326. https://doi.org/10.1111/j.1525-1314.2004.00516.x
      Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. https://doi.org/10.1093/petrology/egp082
      Liu, C. H., Liu, F. L., 2015. The Mesoproterozoic Rifting in the North China Craton: A Case Study for Magmatism and Sedimentation of the Zhaertai-Bayan Obo-Huade Rift Zone. Acta Petrologica Sinica, 31(10): 3107-3128 (in Chinese with English abstract).
      Lu, Y. J., Loucks, R. R., Fiorentini, M., et al., 2016 Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347.
      Lu, S. N., Xiang, Z. Q., Li, H. K., et al., 2012. Response of the North China Craton to Rodinia Supercontinental Events: GOSEN Joining Hypothesis. Acta Geologica Sinica, 86(9): 1396-1406(in Chinese with English abstract).
      Ludwig, K. R., 2003, User's Manual for Isoplot 3.00: A Geochronologic Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley.
      Lyell, C., 2010. Principles of Geology, Volume 2. University of Chicago Press, Chicago.
      Merdith, A. S., Collins, A. S., Williams, S. E., et al., 2017. A Full-Plate Global Reconstruction of the Neoproterozoic. Gondwana Research, 50: 84-134. https://doi.org/10.1016/j.gr.2017.04.001
      Möller, A., O'Brien, P. J., Kennedy, A., et al., 2003. Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society of London Special Publications, 220(1): 65-81. https://doi.org/10.1144/GSL.SP.2003.220.01.04
      Ni, Z. Q., Arevalo, R., Piccoli, P., et al., 2020. A Novel Approach to Identifying Mantle-Equilibrated Zircon by Using Trace Element Chemistry. Geochemistry, Geophysics, Geosystems, 21(11): e2020GC009230. https://doi.org/10.1029/2020GC00923010.1002/essoar.10503454.1
      Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5): 649-675. https://doi.org/10.1007/s11430-014-5026-x
      Peng, P., 2016. Map of Precambrian Dyke Swarms and Related Plutonic/Volcanic Units in the North China Block (1∶2 500 000). Science Press, Beijing (in Chinese).
      Peng, P., Bleeker, W., Ernst, R. E., et al., 2011a. U-Pb Baddeleyite Ages, Distribution and Geochemistry of 925 Ma Mafic Dykes and 900 Ma Sills in the North China Craton: Evidence for a Neoproterozoic Mantle Plume. Lithos, 127(1-2): 210-221. https://doi.org/10.1016/j.lithos.2011.08.018
      Peng, P., Xu, H. R., Mitchell, R. N., et al., 2022. Earth's Oldest Hotspot Track at Ca. 1.8 Ga Advected by a Global Subduction System. Earth and Planetary Science Letters, 585: 117530. https://doi.org/10.1016/j.epsl.2022.117530
      Peng, P., Zhai, M. G., Li, Q., et al., 2011b. Neoproterozoic (~900 Ma) Sariwon Sills in North Korea: Geochronology, Geochemistry and Implications for the Evolution of the South-Eastern Margin of the North China Craton. Gondwana Research, 20(1): 243-254, https://doi.org/10.1016/j.gr.2010.12.011.
      Peters, S. E., Gaines, R. R., 2012. Formation of the 'Great Unconformity' as a Trigger for the Cambrian Explosion. Nature, 484(7394): 363-366. https://doi.org/10.1038/nature10969
      Srivastava, R. K., Srivastava, R. K., Ernst, R. E., 2011. Dyke Swarms: Keys for Geodynamic Interpretation. Springer, Berlin.
      Su, X. D., Peng, P., Foley, S., et al., 2021. Initiation of Continental Breakup Documented in Evolution of the Magma Plumbing System of the Ca. 925 Ma Dashigou Large Igneous Province, North China. Lithos, 384-385: 105984. https://doi.org/10.1016/j.lithos.2021.105984
      Sun, F. B., Peng, P., Zhou, X. Q., et al., 2020. Provenance Analysis of the Late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the Southeast North China Craton: Implications for Paleogeographic Reconstruction. Precambrian Research, 337: 105554. https://doi.org/10.1016/j.precamres.2019.105554
      Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
      Torsvik, T. H., 2003. The Rodinia Jigsaw Puzzle. Science, 300(5624): 1379-1381. https://doi.org/10.1126/science.1083469
      Wan, B., Tang, Q., Pang, K., et al., 2019. Repositioning the Great Unconformity at the Southeastern Margin of the North China Craton. Precambrian Research, 324: 1-17. https://doi.org/10.1016/j.precamres.2019.01.014
      Wang, C., Peng, P., Wang, X. P., et al., 2016. Nature of Three Proterozoic (1 680 Ma, 1 230 Ma and 775 Ma) Mafic Dyke Swarms in North China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 285: 109-126. https://doi.org/10.1016/j.precamres.2016.09.015
      Wang, Q. H., Yang, D. B., Xu, W. L., 2012. Neoproterozoic Basic Magmatism in the Southeast Margin of North China Craton: Evidence from Whole-Rock Geochemistry, U-Pb and Hf Isotopic Study of Zircons from Diabase Swarms in the Xuzhou-Huaibei Area of China. Science China Earth Sciences, 55(9): 1461-1479. https://doi.org/10.1007/s11430-011-4237-7
      Wang, Y. Y., Zeng, L. S., Hou, K. J., et al., 2022. Mantle Source Components and Magmatic Evolution for the Comei Large Igneous Province: Evidence from the Early Cretaceous Niangzhong Mafic Magmatism in Tethyan Himalaya. Journal of Earth Science, 33(1): 133-149. https://doi.org/10.1007/s12583-021-1464-5
      Wu, Z. J., Lu, C. H., Qiu, L. W., et al., 2022. New Detrital Zircon Geochronological Results from the Meso-Neoproterozoic Sandstones in the Southern-Eastern Liaoning Region, North China Craton, and Their Paleogeographic Implications. Precambrian Research, 381: 106847. https://doi.org/10.1016/j.precamres.2022.106847
      Wu, Y. B., Zheng, Y. F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16): 1589-1604 (in Chinese).
      Xiao, S. H., Shen, B., Tang, Q., et al., 2014. Biostratigraphic and Chemostratigraphic Constraints on the Age of Early Neoproterozoic Carbonate Successions in North China. Precambrian Research, 246: 208-225. https://doi.org/10.1016/j.precamres.2014.03.004
      Xiao, W., Windley, B., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      Xu, J. W., Zhu, G., 1995. Discussion on Tectonic Models for the Tan-Lu Fault Zone, Eastern China. Journal of Geology and Mineral Resources of North China, 10(2): 121-134 (in Chinese with English abstract).
      Xu, Y. G., He, B., Luo, Z. Y., et al., 2013. Study on Mantle Plume and Large Igneous Provinces in China: An Overview and Perspectives. Bulletin of Mineralogy, Petrology and Geochemistry, 32(1): 25-39 (in Chinese with English abstract).
      Yang, D. B., Yang, D. B., Xu, W. L., et al., 2012. U-Pb Ages and Hf Isotope Data from Detrital Zircons in the Neoproterozoic Sandstones of Northern Jiangsu and Southern Liaoning Provinces, China: Implications for the Late Precambrian Evolution of the Southeastern North China Craton. Precambrian Research, 216: 162-176. https://doi.org/10.1016/J.PRECAMRES.2012.07.002
      Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. https://doi.org/10.1016/j.gr.2011.02.005
      Zhai, M. G., Shao, J. A., Hao, J., et al., 2003. Geological Signature and Possible Position of the North China Block in the Supercontinent Rodinia. Gondwana Research, 6(2): 171-183. https://doi.org/10.1016/s1342-937x(05)70968-0
      Zhai, M. G., Hu, B., Peng, P., et al., 2014. Meso-Neoproterozoic Magmatic Events and Multistage Rifting in the NCC. Earth Science Frontiers, 21(1): 100-119 (in Chinese with English abstract).
      Zhang, S. H., Zhao, Y., Li, X. H., Ernst, R. E., et al., 2017. The 1.33-1.30 Ga Yanliao Large Igneous Province in the North China Craton: Implications for Reconstruction of the Nuna (Columbia) Supercontinent, and Specifically with the North Australian Craton. Earth and Planetary Science Letters, 465: 112-125. https://doi.org/10.1016/j.epsl.2017.02.034
      Zhang, S. H., Zhao, Y., Ye, H., et al., 2016. Early Neoproterozoic Emplacement of the Diabase Sill Swarms in the Liaodong Peninsula and Pre-Magmatic Uplift of the Southeastern North China Craton. Precambrian Research, 272: 203-225. https://doi.org/10.1016/j.precamres.2015.11.005
      Zhang, W., Liu, F. L., Liu, C. H., 2021. Provenance Transition from the North China Craton to the Grenvillian Orogeny-Related Source: Evidence from Late Mesoproterozoic-Early Neoproterozoic Strata in the Liao-Ji Area. Precambrian Research, 362: 106281. https://doi.org/10.1016/j.precamres.2021.106281
      Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222-223: 13-54. https://doi.org/10.1016/j.precamres.2012.09.017
      Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73. https://doi.org/10.1016/S0301-9268(00)00154-6
      Zhao, H. Q., Zhang, S. H., Ding, J. K., et al., 2020. New Geochronologic and Paleomagnetic Results from Early Neoproterozoic Mafic Sills and Late Mesoproterozoic to Early Neoproterozoic Successions in the Eastern North China Craton, and Implications for the Reconstruction of Rodinia. Geological Society of America Bulletin, 132(3-4): 739-766. https://doi.org/10.1130/B35198.1
      Zhao, H. Q., Zhang, S. H., Ren, W. Q., et al., 2022. New Paleomagnetic Results from the Ca. 1.0 Ga Jiayuan Formation of the Huaibei Group in the North China Craton, and Their Paleogeographic Implications. Precambrian Research, 379: 106807. https://doi.org/10.1016/j.precamres.2022.106807
      Zhao, T. P., Zhai, M. G., Xia, B., et al., 2004. SHRIMP Geochronology of Zircon from Volcanic Rocks of Xiong'Er Group: Constraints on the Initial Development Time of North China Craton Caprock. Chinese Science Bulletin, 49(22): 2342-2349 (in Chinese).
      Zhu, R. Z., Ni, P., Wang, G. G., et al., 2019. Geochronology, Geochemistry and Petrogenesis of the Laozhaishan Dolerite Sills in the Southeastern Margin of the North China Craton and Their Geological Implication. Gondwana Research, 67: 131-146. https://doi.org/10.1016/j.gr.2018.10.016
      高林志, 张传恒, 刘鹏举, 等, 2009. 华北‒江南地区中、新元古代地层格架的再认识. 地球学报, 30(4): 433-446.
      高振西, 熊永先, 高平, 1934. 中国北部震旦纪地层. 中国地质学会志, 13: 243-288.
      侯贵廷, 刘玉琳, 李江海, 等, 2005. 关于基性岩墙群的U-Pb SHRIMP地质年代学的探讨: 以鲁西莱芜辉绿岩岩墙为例. 岩石矿物学杂志, 24(3): 179-185.
      李守奎, 刘学龙, 卢映祥, 等, 2022. 锆石氧逸度对义敦岛弧南段中甸矿集区斑岩型矿床差异性成矿控制因素的指示. 地球科学, 47(4): 1435-1458. doi: 10.3799/dqkx.2021.079
      李献华, 2021. 超大陆裂解的主要驱动力: 地幔柱或深俯冲? 地质学报, 95(1): 20-31.
      刘超辉, 刘福来, 2015. 华北克拉通中元古代裂解事件: 以渣尔泰‒白云鄂博‒化德裂谷带岩浆与沉积作用研究为例. 岩石学报, 31(10): 3107-3128.
      陆松年, 相振群, 李怀坤, 等, 2012. 华北克拉通对罗迪尼亚超大陆事件的响应: GOSEN连接假设. 地质学报, 86(9): 1396-1406.
      彭澎, 2016. 华北陆块前寒武纪岩墙群及相关岩浆岩地质图说明书(1: 2 500 000). 北京: 科学出版社.
      吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约. 科学通报, 49(16): 1589-1604.
      徐嘉炜, 朱光, 1995. 中国东部郯庐断裂带构造模式讨论. 华北地质矿产杂志, 10(2): 121-134.
      徐义刚, 何斌, 罗震宇, 等, 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25-39.
      翟明国, 胡波, 彭澎, 等, 2014. 华北中‒新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119.
      赵太平, 翟明国, 夏斌, 等, 2004. 熊耳群火山岩锆石SHRIMP年代学研究: 对华北克拉通盖层发育初始时间的制约. 科学通报, 49(22): 2342-2349.
    • dqkxzx-49-9-3122-附表2.xlsx
      dqkxzx-49-9-3122-附表1.xlsx
    • 加载中
    图(12)
    计量
    • 文章访问数:  438
    • HTML全文浏览量:  218
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-13
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回