Petrogenesis of the Lüliangshan Early Paleozoic Composite Granite Pluton in North Qaidam Tectonic Belt
-
摘要: 为探讨柴北缘西段绿梁山复式岩体的成因及其与大陆深俯冲‒折返过程的关系,对其开展了系统的岩石学、地球化学和同位素年代学研究.结果表明,该复式岩体由三期中酸性侵入岩构成,是柴北缘构造带早古生代陆壳深俯冲‒折返到造山带垮塌过程的岩浆响应.其中,Ⅰ期为似斑状花岗闪长岩,规模较小,形成年龄为436~430 Ma,是陆壳深俯冲/碰撞过程中加厚镁铁质下地壳部分熔融的产物;Ⅱ期为英云闪长岩‒正长花岗岩‒二长花岗岩,年龄介于400~390 Ma,由折返的超高压榴辉岩和下地壳镁铁质岩石在地壳伸展背景下部分熔融形成;Ⅲ期二云母花岗岩为绿梁山复式岩体的主体,形成年龄为365~360 Ma,具强过铝质S型花岗岩特征,是造山带去根、垮塌阶段中、上地壳变泥质岩部分熔融的产物.Abstract: Magmatism plays an important role in rebuilding evolutionary history of orogenic belts. This paper presents a systematic study of petrology, geochemistry and geochronology on the Lüliangshan granite pluton at west segment of the North Qaidam ultrahigh pressure metamorphic belt. The results show that the Lüliangshan pluton is a composite granite pluton formed in three magma periods in response to continental crust subduction, exhumation and mountain collapse. The first period (436-430 Ma) formed mainly small scale porphyry granodiorite, which is partial melting products of thickened mafic lower crust during continental subduction. The second period (400-390 Ma) formed tonalite and minor synogranite and monzonitic granite, which are partial melting products of exhumed eclogite-bearing ultrahigh pressure metamorphic terrane and lower continental crust during post-collisional extension. The third period (365-360 Ma) formed large scale two-mica granite, with strong peraluminous S-type granite geochemical characteristics and is partial melting products of metapelite during orogen unrooting and collapse.
-
Key words:
- geochemistry /
- zircon U-Pb dating /
- granite /
- Lüliangshan /
- North Qaidam /
- petrology
-
图 1 柴北缘绿梁山地区地质简图(据Song et al., 2005a修改)
Fig. 1. Geological map of Lüliangshan area in the North Qaidam(modified after Song et al., 2005a)
图 6 绿梁山复式岩体A/CNK-A/NK图解(a;Maniar and Piccoli, 1989)与SiO2-K2O图解(b;Peccerillo and Taylor, 1976)
Fig. 6. A/CNK-A/NK diagram (a; Maniar and Piccoli, 1989) and SiO2-K2O diagram (b; Peccerillo and Taylor, 1976) for Lüliangshan composite pluton
图 7 绿梁山复式岩体岩石球粒陨石标准化稀土配分模式图(a、c、e、g)和微量元素原始地幔标准化蛛网图(b、d、f、h)(标准化值据Sun and McDonough,1989)
Fig. 7. Chondrite-normalized REE patterns (a, c, e, g) and Primitive-mantle normalized spider diagrams (b, d, f, h) for Lüliangshan composite pluton(normalized data from Sun and McDonough, 1989)
图 8 绿梁山复式岩体Sr/Y-Y图解(a; Defant and Drummond,1990)和LaN/YbN-YbN图解(b; Petford and Atherton, 1996)
Fig. 8. Sr/Y-Y diagram(a; Defant and Drummond, 1990)and LaN/YbN-YbN diagram(b; Petford and Atherton, 1996)for Lüliangshan composite pluton
图 9 绿梁山复式岩体Y-10 000Ga/Al图解(Whalen et al., 1987)
Fig. 9. Y-10 000Ga/Al diagram for Lüliangshan composite pluton (Whalen et al., 1987)
-
Aikman, A. B., Harrison, T. M., Lin, D., 2008. Evidence for Early (> 44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, Southeastern Tibet. Earth and Planetary Science Letters, 274(1-2): 14-23. https://doi.org/10.1016/j.epsl.2008.06.038 Barbarin, B., 1999. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46(3): 605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 Bird, P., 1979. Continental Delamination and the Colorado Plateau. Journal of Geophysical Research: Solid Earth, 84(B13): 7561-7571. https://doi.org/10.1029/jb084ib13p07561 Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1-2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.042 Cao, Y. T., Liu, L., Chen, D. L., et al., 2017. Partial Melting during Exhumation of Paleozoic Retrograde Eclogite in North Qaidam, Western China. Journal of Asian Earth Sciences, 148: 223-240. https://doi.org/10.1016/j.jseaes.2017.09.009 Castillo, P. R., 2002. The Origin of some of the Adakite-Like and Nb-Enriched Lavas in Southern Philippines. Acta Petrologica Sinica, 18(2): 143-151. https://doi.org/10.1080/12265080208422884 Castillo, P. R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin, 51(3): 257-268. https://doi.org/10.1007/s11434-006-0257-7 Chen, D. L., Cao, Y. T., Liu, L., 2013. Partial Melting of UHP Terranes in the Western Segment of the North Qaidam during Exhumation: Constraints from Studies of Leucocratic Veins within Eclogite/Retrograde Eclogite. Chinese Science Bulletin, 58(22): 2209-2214 (in Chinese with English abstract). doi: 10.1360/csb2013-58-22-2209 Chen, D. L., Liu, L., Sun, Y., et al., 2009. Geochemistry and Zircon U-Pb Dating and Its Implications of the Yukahe HP/UHP Terrane, the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 259-272. https://doi.org/10.1016/j.jseaes.2008.12.001 Chen, D. L., Liu, L., Sun, Y., et al., 2012. Felsic Veins within UHP Eclogite at Xitieshan in North Qaidam, NW China: Partial Melting during Exhumation. Lithos, 136-139: 187-200. https://doi.org/10.1016/j. lithos.2011.11.006 doi: 10.1016/j.lithos.2011.11.006 Chen, D. L., Sun, Y., Liu, L., et al., 2005. Metamorphic Evolution of the Yuka Eclogite in the North Qaidam, NW China: Evidences from the Compositional Zonation of Garnet and Reaction Texture in the Rock. Acta Petrologica Sinica, 21(4): 1039-1048 (in Chinese with English abstract). Chen, D. L., Sun, Y., Liu, L., 2007. The Metamorphic Ages of the Country Rock of the Yukahe Eclogites in the North Qaidam and Its Geological Significance. Earth Science Frontiers, 14(1): 108-116 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60005-0 Chen, X., Schertl, H. P., Cambeses, A., et al., 2019b. From Magmatic Generation to UHP Metamorphic Overprint and Subsequent Exhumation: A Rapid Cycle of Plate Movement Recorded by the Supra-Subduction Zone Ophiolite from the North Qaidam Orogen. Lithos, 350: 105238. https://doi.org/10.1016/j.lithos.2019.105238 Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2018. Petrology and Geochemistry of High Niobium Eclogite in the North Qaidam Orogen, Western China: Implications for an Eclogite Facies Metamorphosed Island Arc Slice. Journal of Asian Earth Sciences, 164: 380-397. https://doi.org/10.1016/j.jseaes.2018.07.003 Chen, X., Xu, R. K., Zheng, Y. Y., et al., 2019a. The Geodynamic Setting of Dulan Eclogite-Type Rutile Deposits in the North Qaidam Orogen, Western China. Ore Geology Reviews, 110: 102936. https://doi.org/10.1016/j.oregeorev.2019.102936 Chen, Y. X., Song, S. G., Niu, Y. L., et al., 2014. Melting of Continental Crust during Subduction Initiation: A Case Study from the Chaidanuo Peraluminous Granite in the North Qilian Suture Zone. Geochimica et Cosmochimica Acta, 132: 311-336. https://doi.org/10.1016/j.gca.2014.02.011 Chung, S. L., Liu, D. Y., Ji, J. Q., et al., 2003. Adakites from Continental Collision Zones: Melting of Thickened Lower Crust Beneath Southern Tibet. Geology, 31(11): 1021-1024. https://doi.org/10.1130/g19796.1 Dai, L. Q., Zhao, Z. F., Zheng, Y. F., 2015. Tectonic Development from Oceanic Subduction to Continental Collision: Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens. Gondwana Research, 27(3): 1236-1254. https://doi.org/10.1016/j.gr.2013.12.005 Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821x(94)00237-s Defant, M. J., Drummond, M. S., 1990. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. https://doi.org/10.1038/347662a0 Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95(B13): 21503-21521. https://doi.org/10.1029/jb095ib13p21503 England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/jb094ib12p17561 Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432: 892-897. https://doi.org/10.1038/nature03162 Harrison, T. M., Blichert-Toft, J., Müller, W., et al., 2005. Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga. Science, 310(5756): 1947-1950. https://doi.org/10.1126/science.1117926 King, P. L., White, A. J. R., Chappell, B. W., et al., 1997. Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 38(3): 371-391. https://doi.org/10.1093/petroj/38.3.371 Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171-1174. https://doi.org/10.1130/g32316.1 Ligéois, J. P., Navez, J., Hertogen, J., et al., 1998. Contrasting Origin of Post-Collisional High-K Calc-Alkaline and Shoshonitic Versus Alkaline and Peralkaline Granitoids. The Use of Sliding Normalization. Lithos, 45(1-4): 1-28. https://doi.org/10.1016/S0024-4937(98)00023-1 Liu, X. C., Wu, Y. B., Gao, S., et al., 2012. First Record and Timing of UHP Metamorphism from Zircon in the Xitieshan Terrane: Implications for the Evolution of the Entire North Qaidam Metamorphic Belt. American Mineralogist, 97(7): 1083-1093. https://doi.org/10.2138/am.2012.4048 Ludwig, K., 2003. User's Manual for Isoplot 3.00: A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. https://doi.org/10.1130/0016-7606(1989)1010635: tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)1010635:tdog>2.3.co;2 Meng, F. C., Zhang, J. X., Yang, J. S., 2005. Tectono-Thermal Event of Post-HP/UHP Metamorphism in the Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 21(1): 45-56 (in Chinese with English abstract). Miller, C., Schuster, R., Klötzli, U., et al., 1999. Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. Journal of Petrology, 40(9): 1399-1424. https://doi.org/10.1093/petroj/40.9.1399 Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/BF00384745 Petford, N., Atherton, M., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology, 37(6): 1491-1521. https://doi.org/10.1093/petrology/37.6.1491 Rapp, R. P., Shimizu, N., Norman, M. D., et al., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160(4): 335-356. https://doi.org/10.1016/S0009-2541(99)00106-0 Ren, Y. F., Chen, D. L., Hauzenberger, C., et al., 2016. Petrology and Geochronology of Ultrahigh-Pressure Granitic Gneiss from South Dulan, North Qaidam Belt, NW China. International Geology Review, 58(2): 171-195. http://dx. doi.org/10.1080/00206814.2015.1058729 Ren, Y. F., Chen, D. L., Kelsey, D. E., et al., 2018. Metamorphic Evolution of a Newly Identified Mesoproterozoic Oceanic Slice in the Yuka Terrane and Its Implications for a Multi-Cyclic Orogenic History of the North Qaidam UHPM Belt. Journal of Metamorphic Geology, 36(4): 463-488. https://doi.org/10.1111/jmg.12300 Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2021. Grenvillian and Early Paleozoic Polyphase Metamorphism Recorded by Eclogite and Host Garnet Mica Schist in the North Qaidam Orogenic Belt. Geoscience Frontiers, 12: 101170. https://doi.org/10.1016/j.gsf.2021.101170 Ren, Y. F., Chen, D. L., Wang, H. J., et al., 2022. Origin and Metamorphic Evolution of Chachahe Eclogites, North Qaidam UHP Metamorphic Belt, NW China: Implications for Fate of Overriding Plate Material in Subduction Channel. Journal of Asian Earth Sciences, 236: 105331. https://doi.org/10.1016/j.jseaes.2022.105331 Ren, Y. F., Chen, D. L., Zhu, X. H., et al., 2019. Two Orogenic Cycles Recorded by Eclogites in the Yuka-Luofengpo Terrane: Implications for the Mesoproterozoic to Early Paleozoic Tectonic Evolution of the North Qaidam Orogenic Belt, NW China. Precambrian Research, 333: 105449. https://doi.org/10.1016/j.precamres.2019.105449 Roberts, M. P., Clemens, J. D., 1993. Origin of High-Potassium, Talc-Alkaline, I-Type Granitoids. Geology, 21(9): 825-828. https://doi.org/10.1130/0091-7613(1993)0210825: oohpta>2.3.co;2 doi: 10.1130/0091-7613(1993)0210825:oohpta>2.3.co;2 Song, S. G., Niu, Y. L., Su, L., et al., 2014. Adakitic (Tonalitic-Trondhjemitic) Magmas Resulting from Eclogite Decompression and Dehydration Melting during Exhumation in Response to Continental Collision. Geochimica et Cosmochimica Acta, 130(4): 42-62. https://doi.org/10.1016/j.gca.2014.01.008 Song, S. G., Su, L., Li, X. H., et al., 2010. Tracing the 850-Ma Continental Flood Basalts from a Piece of Subducted Continental Crust in the North Qaidam UHPM Belt, NW China. Precambrian Research, 183(4): 805-816. https://doi.org/10.1016/j.precamres.2010.09.008 Song, S. G., Su, L., Niu, Y. L., et al., 2007. Petrological and Geochemical Constraints on the Origin of Garnet Peridotite in the North Qaidam Ultrahigh-Pressure Metamorphic Belt, Northwestern China. Lithos, 96(1-2): 243-265. https://doi.org/10.1016/j.lithos.2006.09.017 Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 58(8): 1284-1304. https://doi.org/10.1007/s11430-015-5102-x Song, S. G., Yang, J. S., Xu, Z. Q., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644. https://doi.org/10.1046/j.1525-1314.2003.00469.x Song, S. G., Zhang, L. F., Chen, J., et al., 2005b. Sodic Amphibole Exsolutions in Garnet from Garnet-Peridotite, North Qaidam UHPM Belt, NW China: Implications for Ultradeep-Origin and Hydroxyl Defects in Mantle Garnets. American Mineralogist, 90(5-6): 814-820. https://doi.org/10.2138/am.2005.1684 Song, S. G., Zhang, L. F., Niu, Y. L., et al., 2005a. Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 234(1-2): 99-118. https://doi.org/10.1016/j.epsl.2005.02.036 Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 Wang, M. J., Song, S. G., Niu, Y. L., et al., 2014. Post-Collisional Magmatism: Consequences of UHPM Terrane Exhumation and Orogen Collapse, N. Qaidam UHPM Belt, NW China. Lithos, 210-211: 181-198. https://doi.org/10.1016/j.lithos.2014.10.006 Wang, Q., Hao, L. L., Zhang, X. Z., et al., 2020. Adakitic Rocks at Convergent Plate Boundaries: Compositions and Petrogenesis. Science China Earth Sciences, 63(12): 1992-2016. https://doi.org/10.1007/s11430-020-9678-y Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. https://doi.org/10.1007/BF00402202 Wu, C. L., Gao, Y. H., Wu, S. P., et al., 2007. Zircon SHRIMP U-Pb Dating of Granites from the Da Qaidam Area in the North Margin of Qaidam Basin, NW China. Acta Petrologica Sinica, 23(8): 1861-1875 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.08.008 Xia, Q. X., Zheng, Y. F., Chen, Y. X., 2013. Protolith Control on Fluid Availability for Zircon Growth during Continental Subduction-Zone Metamorphism in the Dabie Orogen. Journal of Asian Earth Sciences, 67: 93-113. https://doi.org/10.1016/j.jseaes.2013.02.014 Yang, J. J., Powell, R., 2008. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 26(6): 695-716. https://doi.org/10.1111/j.1525-1314.2008.00780.x Yang, J. S., Xu, Z. Q., Song, S. G., et al., 2001. Discovery of Coesite in the North Qaidam Early Palaeozoic Ultrahigh Pressure (UHP) Metamorphic Belt, NW China. Comptes Rendus de l'Académie des Sciences-Series IIA-Earth and Planetary Science, 333(11): 719-724. https://doi.org/10.1016/s1251-8050(01)01718-9 Yang, J. S., Zhang, J. X., Meng, F. C., et al., 2003. Ultrahigh Pressure Eclogites of the North Qaidam and Altun Mountains, Nw China and Their Protoliths. Earth Science Frontiers, 10(3): 291-314 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.03.026 Yang, S. X., Su, L., Song, S. G., et al., 2020. Melting of Subducted Continental Crust during Collision and Exhumation: Insights from Granitic Rocks from the North Qaidam UHP Metamorphic Belt, NW China. Lithos, 378-379: 105794. https://doi.org/10.1016/j.lithos.2020.105794 Yu, S. Y., Zhang, J. X., Del Real, P. G., 2012. Geochemistry and Zircon U-Pb Ages of Adakitic Rocks from the Dulan Area of the North Qaidam UHP Terrane, North Tibet: Constraints on the Timing and Nature of Regional Tectonothermal Events Associated with Collisional Orogeny. Gondwana Research, 21(1): 167-179. https://doi.org/10.1016/j.gr.2011.07.024 Yu, S. Y., Zhang, J. X., Li, H. K., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Lu-Hf Isotopic Composition of Eclogites and Their Host Gneisses in the Dulan Area, North Qaidam UHP Terrane: New Evidence for Deep Continental Subduction. Gondwana Research, 23(3): 901-919. https://doi.org/10.1016/j.gr.2012.07.018 Yu, S. Y., Zhang, J. X., Sun, D. Y., et al., 2015. Anatexis of Ultrahigh-Pressure Eclogite during Exhumation in the North Qaidam Ultrahigh-Pressure Terrane: Constraints from Petrology, Zircon U-Pb Dating, and Geochemistry. Geological Society of America Bulletin, 127(9-10): 1290-1312. https://doi.org/10.1130/b31162.1 Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2015. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287-316. https://doi.org/10.1144/sp412.8 Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3-4): 251-266. https://doi.org/10.1016/j.epsl.2011.01.005 Zhang, C., Zhang, L. F., van Roermund, H., et al., 2011. Petrology and SHRIMP U-Pb Dating of Xitieshan Eclogite, North Qaidam UHP Metamorphic Belt, NW China. Journal of Asian Earth Sciences, 42(4): 752-767. https://doi.org/10.1016/j.jseaes.2011.04.002 Zhang, G. B., Niu, Y. L., Song, S. G., et al., 2015a. Trace Element Behavior and P-T-T Evolution during Partial Melting of Exhumed Eclogite in the North Qaidam UHPM Belt (NW China): Implications for Adakite Genesis. Lithos, 226: 65-80. https://doi.org/10.1016/j.lithos.2014.12.009 Zhang, G. B., Song, S. G., Zhang, L. F., et al., 2008. The Subducted Oceanic Crust within Continental-Type UHP Metamorphic Belt in the North Qaidam, NW China: Evidence from Petrology, Geochemistry and Geochronology. Lithos, 104(1): 99-118. https://doi.org/10.1016/j.lithos.2007.12.001 Zhang, G. B., Zhang, L. F., Song, S. G., et al., 2009a. UHP Metamorphic Evolution and SHRIMP Geochronology of a Coesite-Bearing Meta-Ophiolitic Gabbro in the North Qaidam, NW China. Journal of Asian Earth Sciences, 35(3-4): 310-322. https://doi.org/10.1016/j.jseaes.2008.11.013 Zhang, G. B., Ellis, D. J., Christy, A. G., et al., 2010a. UHP Metamorphic Evolution of Coesite-Bearing Eclogite from the Yuka Terrane, North Qaidam UHPM Belt, NW China. European Journal of Mineralogy, 21(6): 1287-1300. https://doi.org/10.1127/0935-1221/2009/0021-1989 Zhang, J. X., Mattinson, C. G., Yu, S. Y., et al., 2010b. U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 28(9): 955-978. https://doi.org/10.1111/j.1525-1314.2010.00901.x Zhang, J. X., Meng, F. C., Li, J. P., et al., 2009b. Coesite in Eclogite from the North Qaidam Mountains and Its Implications. Chinese Science Bulletin, 54(6): 1105-1110. https://doi.org/10.1007/s11434-009-0074-x Zhang, J. X., Yang, J. S., Mattinson, C. G., et al., 2005. Two Contrasting Eclogite Cooling Histories, North Qaidam HP/UHP Terrane, Western China: Petrological and Isotopic Constraints. Lithos, 84(1-2): 51-76. https://doi.org/10.1016/j.lithos.2005.02.002 Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2015b. Partial Melting of Deeply Subducted Continental Crust during Exhumation: Insights from Felsic Veins and Host UHP Metamorphic Rocks in North Qaidam, Northern Tibet. Journal of Metamorphic Geology, 33(7): 671-694. https://doi.org/10.1111/jmg.12146 Zhang, L., Chen, R. X., Zheng, Y. F., et al., 2017. Whole-Rock and Zircon Geochemical Distinction between Oceanic- and Continental-Type Eclogites in the North Qaidam Orogen, Northern Tibet. Gondwana Research, 44: 67-88. https://doi.org/10.1016/j.gr.2016.10.021 Zheng, Y. F., Zhao, Z. F., Chen, Y. X., 2013. Continental Subduction Channel Processes: Plate Interface Interaction during Continental Collision. Chinese Science Bulletin, 58(35): 4371-4377. https://doi.org/10.1007/s11434-013-6066-x Zhou, B., Zheng, Y. Y., Tong, H. K., et al., 2014. Zircon Dating of Early Paleozoic Adakitic Granite on the Northern Margin of Qaidam Basin and Its Geological Significance. Geoscience, 28(5): 875-883 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2014.05.001 Zhou, C. A., Song, S. G., Allen, M. B., et al., 2021. Post-Collisional Mafic Magmatism: Insights into Orogenic Collapse and Mantle Modification from North Qaidam Collisional Belt, NW China. Lithos, 398-399: 106311. https://doi.org/10.1016/j.lithos.2021.106311 Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5: 14289. https://doi.org/10.1038/srep14289 Zhu, X. H., Chen, D. L., Wang, C., et al., 2015. The Initiation, Development and Termination of the Neoproterozoic-Early Paleozoic Ocean in the Northern Margin of Qaidam Basin. Acta Geologica Sinica, 89(2): 234-251 (in Chinese with English abstract). 陈丹玲, 曹玉亭, 刘良, 2013. 柴北缘西段超高压地体折返过程中的部分熔融: 榴辉岩及其退变产物中的浅色脉体研究. 科学通报, 58(22): 2209-2214. 陈丹玲, 孙勇, 刘良, 等, 2005. 柴北缘鱼卡河榴辉岩的变质演化: 石榴石成分环带及矿物反应结构的证据. 岩石学报, 21(4): 1039-1048. 陈丹玲, 孙勇, 刘良, 等, 2007. 柴北缘鱼卡河榴辉岩围岩的变质时代及其地质意义. 地学前缘, 14(1): 108-116. 孟繁聪, 张建新, 杨经绥, 2005. 柴北缘锡铁山早古生代HP/UHP变质作用后的构造热事件: 花岗岩和片麻岩的同位素与岩石地球化学证据. 岩石学报, 21(1): 45-56. 吴才来, 郜源红, 吴锁平, 等, 2007. 柴达木盆地北缘大柴旦地区古生代花岗岩锆石SHRIMP定年. 岩石学报, 23(8): 1861-1875. doi: 10.3969/j.issn.1000-0569.2007.08.008 杨经绥, 张建新, 孟繁聪, 等, 2003. 中国西部柴北缘‒阿尔金的超高压变质榴辉岩及其原岩性质探讨. 地学前缘, 10(3): 291-314. 周宾, 郑有业, 童海奎, 等, 2014. 柴北缘早古生代埃达克质花岗岩锆石定年及其地质意义. 现代地质, 28(5): 875-883. 朱小辉, 陈丹玲, 王超, 等, 2015. 柴达木盆地北缘新元古代‒早古生代大洋的形成、发展和消亡. 地质学报, 89(2): 234-251. -
dqkxzx-49-9-3106-附表1-2.docx
-