• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    砂岩热储温度场对回灌参数的响应机理与规律

    李嘉龙 康凤新 白通 张平平 李振函 赵强

    李嘉龙, 康凤新, 白通, 张平平, 李振函, 赵强, 2024. 砂岩热储温度场对回灌参数的响应机理与规律. 地球科学, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099
    引用本文: 李嘉龙, 康凤新, 白通, 张平平, 李振函, 赵强, 2024. 砂岩热储温度场对回灌参数的响应机理与规律. 地球科学, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099
    Li Jialong, Kang Fengxin, Bai Tong, Zhang Pingping, Li Zhenhan, Zhao Qiang, 2024. Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters. Earth Science, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099
    Citation: Li Jialong, Kang Fengxin, Bai Tong, Zhang Pingping, Li Zhenhan, Zhao Qiang, 2024. Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters. Earth Science, 49(9): 3318-3333. doi: 10.3799/dqkx.2023.099

    砂岩热储温度场对回灌参数的响应机理与规律

    doi: 10.3799/dqkx.2023.099
    基金项目: 

    国家自然科学基金项目 42072331

    国家自然科学基金项目 U1906209

    泰山学者工程专项经费 tstp20230626

    详细信息
      作者简介:

      李嘉龙(1995-),男,博士研究生,主要从事地热资源勘查开发与回灌研究. ORCID:0009-0004-2607-5892. E-mail:769277007@qq.com

      通讯作者:

      康凤新, ORCID:0000-0002-3615-8729. E-mail: kangfengxin@126.com

    • 中图分类号: P314

    Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters

    • 摘要: 研究地热尾水回灌引起的热储层内温度场演化对地热资源的可持续利用具有重要意义.本文通过大型砂槽仿真试验模型的渗透试验、示踪试验和回灌试验结合数值模拟方法,研究了回灌参数与开采井热突破时间的定量关系,并通过非线性拟合和参数敏感性分析讨论了流体粘度与密度对高温流体向低温流体回灌结果的影响,以及回灌参数对开采井热突破时间的影响程度和内在机理与规律.结果显示回灌水在不同渗透率的砂岩层内运移速率不同,开采井热突破时间t分别与Q‒0.85、ΔT‒0.21R1.4呈线性关系.相关方程和分析结果表明,采灌温差ΔT在大于30 ℃时,其变化对开采井热突破时间t的影响已变得微弱,这是由于ΔT通过影响18.5 ℃等温线在温度过渡区内的相对位置来对开采井热突破时间t产生作用,而试验中采取的高温流体向低温流体回灌产生的误差可以引入粘度修正系数αμ修正.

       

    • 图  1  砂槽仿真模型结构示意

      Fig.  1.  Schematic diagram of the sand tank simulation test model

      图  2  砂槽井孔设计俯视图

      Fig.  2.  Top view of the sand tank simulation test model

      图  3  温度与压力监测点及编号

      Fig.  3.  Temperature and pressure monitoring points and labels

      图  4  水样采样点及编号

      Fig.  4.  Water sample sampling points and labels

      图  5  回灌温度30 ℃时砂槽内部温度云图

      a. Z1截面;b. Z3截面

      Fig.  5.  Temperature cloud diagrams of the sand tank for a reinjection temperature of 30 ℃

      图  6  回灌温度50 ℃时砂槽内部温度云图

      a. Z1截面;b. Z3截面

      Fig.  6.  Temperature cloud diagrams of the sand tank for a reinjection temperature of 50 ℃

      图  7  示踪试验钼酸铵浓度历时变化散点图

      a. Cc1点和Cc3点;b. 开采井

      Fig.  7.  Change in ammonium molybdate concentration in tracer tests

      图  8  参数拟合曲线

      a. 水文地质参数拟合;b. 热物性参数拟合

      Fig.  8.  Fitting curve of parameter

      图  9  不同采灌温差开采井水温变化曲线

      Fig.  9.  Water temperature variations in production well for different temperature differences between production and reinjection

      图  10  不同回灌量开采井水温变化曲线

      Fig.  10.  Water temperature variations in production well for different reinjection amounts

      图  11  不同采灌井间距开采井水温变化曲线

      Fig.  11.  Variations in water temperature in production well for different spacings between the production and reinjection wells

      图  12  回灌量与热突破时间关系

      Fig.  12.  Relationship between reinjection amount and thermal breakthrough time

      图  13  采灌温差与热突破时间关系

      Fig.  13.  Relationship between the thermal breakthrough time and the temperature difference of production and reinjection

      图  14  采灌井间距与热突破时间关系

      Fig.  14.  Relationship between production and reinjection well spacing and thermal breakthrough time

      图  15  回灌量与热突破时间关系

      Fig.  15.  Relationship between reinjection amount and thermal breakthrough time

      图  16  开采井温度对采灌温差的敏感性曲线

      Fig.  16.  Sensitivity of production well temperature to temperature difference between production and reinjection

      图  17  采灌温差与热突破时间关系拟合

      Fig.  17.  Fitting of the relationship between the thermal breakthrough time and the temperature difference of production and reinjection

      图  18  开采井温度对采灌井间距的敏感性曲线

      Fig.  18.  Sensitivity of production well temperature to the spacing between the production and reinjection wells

      图  19  采灌井间距与热突破时间关系拟合

      Fig.  19.  Fitting of the relationship between the production and reinjection well spacing and the thermal breakthrough time

      图  20  开采井温度对回灌量的敏感性曲线

      Fig.  20.  Sensitivity of well temperature to reinjection amount

      图  21  回灌量与热突破时间关系拟合

      a. 不同采灌温差ΔT;b. 不同采灌井间距R

      Fig.  21.  Fitting of the relationship between the reinjection amount and the thermal breakthrough time

      图  22  不同采灌温差下高温回灌和低温回灌开采井温度变化曲线

      Fig.  22.  Temperature variation curves of production well with high temperature and low temperature reinjection under different temperature differences between production and reinjection

      图  23  不同采灌温差下高温回灌和低温回灌开采井热突破时间散点图

      Fig.  23.  Scatter diagram of thermal breakthrough time of production well with high temperature and low temperature reinjection under different temperature differences between production and reinjection

      图  24  粘性修正系数αμ与采灌流体动力粘度差Δμ关系拟合

      Fig.  24.  Fitting of the relationship between the viscosity correction factor αμ and the difference of dynamic viscosity Δμ of production and reinjection

      图  25  热突破时间与采灌井间距、回灌量关系(采灌温差ΔT=30 ℃)

      Fig.  25.  Relationships between the thermal breakthrough time and the production and reinjection well spacing and reinjection amount (ΔT=30 ℃)

      图  26  不同采灌温差ΔT开采井发生热突破时井筒周边温度云图

      Fig.  26.  Temperature graph of boreholes surrounding during thermal breakthrough in production well with different temperature difference ΔT

      a. ΔT=10 ℃; b. ΔT=20 ℃; c. ΔT=30 ℃; d. ΔT=40 ℃

      图  27  不同采灌温差第2.5天时Z3截面中轴线和平面温度分布

      Fig.  27.  Temperature distribution of central axis and plane of Z3 section at 2.5 d with different temperature difference

      表  1  采灌井与水位观测井结构参数表(mm)

      Table  1.   Structural parameters (mm) of production and reinjection wells and water level monitoring boreholes

      井类型 钻孔直径 井壁直径 填充砾料厚度 滤水管孔眼直径 滤水管钢网间距
      开采井 100 / / 10 0.5~1.0
      回灌井 220 88 66 10 0.5~1.0
      水位观测孔 70 / / 5 /
      下载: 导出CSV

      表  2  回灌参数敏感性研究取值

      Table  2.   Values of reinjection parameters for sensitivity analysis

      回灌温度(℃) 回灌量(m3/h) 采灌井间距(m)
      工况1 30、40、50、60 0.5 10
      工况2 30 0.5、1.0、1.5、2.0 10
      工况3 30 0.5 4、6、8、10
      下载: 导出CSV

      表  3  采灌井流量与稳定水位

      Table  3.   Flow rate and stable water level difference of production and reinjection wells

      回灌井水位(m) 开采井水位(m) 采灌井水位差(m) 流量(m3/h)
      5.94 3.53 2.41 1.10
      5.61 3.72 1.89 0.72
      5.38 4.19 1.19 0.52
      下载: 导出CSV

      表  4  砂槽数值模型参数取值表

      Table  4.   Parameter values for numerical model of sand tank

      参数 单位 数值
      孔隙度 中砂岩层 / 0.25
      粗砂岩层 / 0.35
      渗透率 中砂岩层 mD 3 000
      粗砂岩层 mD 5 500
      砂岩层热导率 W/(m·K) 2.4
      砂岩层体积热容 J/(K·m3) 2 100 000
      弥散度 中砂岩层 m 0.2
      粗砂岩层 m 0.5
      水的热导率 W/(m·K) 0.65
      水的密度 kg/m3 998
      下载: 导出CSV

      表  5  高温回灌与低温回灌参数取值表

      Table  5.   Parameter values of high temperature and low temperature reinjections

      高温回灌 初始温度 15 ℃ 15 ℃ 15 ℃ 15 ℃
      回灌温度 25 ℃ 35 ℃ 45 ℃ 55 ℃
      低温回灌 初始温度 25 ℃ 35 ℃ 45 ℃ 55 ℃
      回灌温度 15 ℃ 15 ℃ 15 ℃ 15 ℃
      采灌温差ΔT 10 ℃ 20 ℃ 30 ℃ 40 ℃
      下载: 导出CSV
    • Bedre, M. G., Anderson, B. J., 2012. Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy. Transactions-Geothermal Resources Council, 36 2: 1255-1261
      Bodvarsson, G., 1972. Thermal Problems in the Siting of Reinjection Wells. Geothermics, 1(2): 63-66. https://doi.org/10.1016/0375-6505(72)90013-2
      Franco, A., Vaccaro, M., 2014. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renewable and Sustainable Energy Reviews, 30: 987-1002. https://doi.org/10.1016/j.rser.2013.11.041
      Ganguly, S., Mohan Kumar, M. S., 2014. Analytical Solutions for Transient Temperature Distribution in a Geothermal Reservoir Due to Cold Water Injection. Hydrogeology Journal, 22(2): 351-369. https://doi.org/10.1007/s10040-013-1048-2
      He, M. C., Liu, B., Yao, L. H., et al., 2003. Study on the Theory of Seepage Field for Geothermal Single Well Reinjection. Acta Energiae Solaris Sinica, 24(2): 197-201 (in Chinese with English abstract). doi: 10.3321/j.issn:0254-0096.2003.02.012
      Kang, F. X., 2018. Comprehensive Evaluation of Geothermal Clean Energy in Shandong Province. Science Press, Beijing (in Chinese).
      Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023a. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract).
      Kang, F. X., Zhao, J. C., Huang, X., et al., 2023b. Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression. Earth Science, 48(3): 1080-1092 (in Chinese with English abstract).
      Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica-English Edition, 95(6): 1870-1881. https://doi.org/10.1111/ 1755-6724.14877 doi: 10.1111/1755-6724.14877
      Lei, H. Y., Zhu, J. L., 2010. Modeling of Exploitation and Reinjection of Porous Medium Geothermal Reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638 (in Chinese with English abstract).
      Liu, Z. T., Liu, S., Song, W. H., 2019. Change Characteristics of Geothermal Field for Geothermal Return Water Reinjection of Sandstone Reservoir in the Northern Shangdong. Acta Geologica Sinica, 93(S1): 149-156 (in Chinese with English abstract). doi: 10.1111/1755-6724.13999
      Mottaghy, D., Pechnig, R., Vogt, C., 2011. The Geothermal Project Den Haag: 3D Numerical Models for Temperature Prediction and Reservoir Simulation. Geothermics, 40(3): 199-210. https://doi.org/10.1016/j.geothermics.2011.07.001
      Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., 2016. A Review of Modeling Thermal Displacement Processes in Porous Media. Arabian Journal for Science and Engineering, 41(12): 4719-4741. https://doi.org/10.1007/s13369-016-2265-5
      Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2014. Experimental-Numerical Study of Heat Flow in Deep Low-Enthalpy Geothermal Conditions. Renewable Energy, 62: 716-730. https://doi.org/10.1016/j.renene.2013.08.037
      Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2015. A Prototype Design Model for Deep Low-Enthalpy Hydrothermal Systems. Renewable Energy, 77: 408-422. https://doi.org/10.1016/j.renene.2014.12.018
      Sauty, J. P., Gringarten, A. C., Landel, P. A., et al., 1980. Lifetime Optimization of Low Enthalpy Geothermal Doublets. Advances in European Geothermal Research. Springer, Dordrecht, 706-719. https://doi.org/10.1007/978-94-009-9059-3_64
      Seibt, P., Kellner, T., 2003. Practical Experience in the Reinjection of Cooled Thermal Waters Back into Sandstone Reservoirs. Geothermics, 32(4-6): 733-741. https://doi.org/10.1016/s0375-6505(03)00071-3
      Sippel, J., Fuchs, S., Cacace, M., et al., 2013. Deep 3D Thermal Modelling for the City of Berlin (Germany). Environmental Earth Sciences, 70(8): 3545-3566. https://doi.org/10.1007/s12665-013-2679-2
      Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract).
      Wu, L. J., Zhao, J. C., Li, A. Y., et al., 2016. Key Issues of Geothermal Resource Exploitation and Utilization in the Depression Area of Northern Shandong Province. Geology and Exploration, 52(2): 300-306 (in Chinese with English abstract).
      Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract).
      Zhao, J. C., 2013. Lubei Geothermal Tail Water Reinjection Experiments in Sandstone Reservoir. Shandong Land and Resources, 29(9): 23-30 (in Chinese with English abstract).
      Zhu, J. L., Zhu, X. M., Lei, H. Y., 2012. Analysis of Impact of Pressure Compensation between Geothermal Wells on Reinjection Effeciency. Acta Energiae Solaris Sinica, 33(1): 56-62 (in Chinese with English abstract).
      何满潮, 刘斌, 姚磊华, 等, 2003. 地热单井回灌渗流场理论研究. 太阳能学报, 24(2): 197-201. doi: 10.3321/j.issn:0254-0096.2003.02.012
      康凤新, 2018. 山东省地热清洁能源综合评价. 北京: 科学出版社.
      康凤新, 史启朋, 马哲民, 等, 2023a. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例. 地质学报, 97(1): 221-237.
      康凤新, 赵季初, 黄迅, 等, 2023b. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力. 地球科学, 48(3): 1080-1092. doi: 10.3799/dqkx.2022.324
      雷海燕, 朱家玲, 2010. 孔隙型地热采灌开发方案的数值模拟研究. 太阳能学报, 31(12): 1633-1638.
      刘志涛, 刘帅, 宋伟华, 等, 2019. 鲁北地区砂岩热储地热尾水回灌地温场变化特征分析. 地质学报, 93(S1): 149-156.
      王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005
      吴立进, 赵季初, 李艾银, 等, 2016. 鲁北坳陷区地热资源开发利用关键性问题研究. 地质与勘探, 52(2): 300-306.
      徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401
      赵季初, 2013. 鲁北砂岩热储地热尾水回灌试验研究. 山东国土资源, 29(9): 23-30.
      朱家玲, 朱晓明, 雷海燕, 2012. 地热回灌井间压差补偿对回灌效率影响的分析. 太阳能学报, 33(1): 56-62.
    • 加载中
    图(27) / 表(5)
    计量
    • 文章访问数:  398
    • HTML全文浏览量:  118
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-22
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回