Response Process and Mechanism of Sandstone Geothermal Reservoir Temperature to Reinjection Parameters
-
摘要: 研究地热尾水回灌引起的热储层内温度场演化对地热资源的可持续利用具有重要意义.本文通过大型砂槽仿真试验模型的渗透试验、示踪试验和回灌试验结合数值模拟方法,研究了回灌参数与开采井热突破时间的定量关系,并通过非线性拟合和参数敏感性分析讨论了流体粘度与密度对高温流体向低温流体回灌结果的影响,以及回灌参数对开采井热突破时间的影响程度和内在机理与规律.结果显示回灌水在不同渗透率的砂岩层内运移速率不同,开采井热突破时间t分别与Q‒0.85、ΔT‒0.21和R1.4呈线性关系.相关方程和分析结果表明,采灌温差ΔT在大于30 ℃时,其变化对开采井热突破时间t的影响已变得微弱,这是由于ΔT通过影响18.5 ℃等温线在温度过渡区内的相对位置来对开采井热突破时间t产生作用,而试验中采取的高温流体向低温流体回灌产生的误差可以引入粘度修正系数αμ修正.Abstract: The evolution of geo-temperature within the geothermal reservoir induced by reinjection of geothermal cooled water is of great importance for the sustainable utilization of geothermal resources. This study focuses on examining the quantitative relationship between reinjection parameters and the thermal breakthrough time of production wells. A simulation test using a large sand tank combined with numerical simulation methods was conducted. Permeation tests, tracer tests, and reinjection tests were performed in the simulation test model. Additionally, sensitivity analysis and nonlinear fitting were carried out to discuss the impact of fluid viscosity and density on reinjection results, as well as the degree of influence of reinjection parameters on the thermal breakthrough time of production wells and its underlying mechanisms and principles. The results show that the migration speed of reinjection water is different in sand reservoirs with different permeability, and the thermal breakthrough time t is linearly correlated with Q‒0.85, ΔT‒0.21, and R1.4. The correlation equation and analysis show that when the temperature difference between production and reinjection ΔT is more than 30 ℃, the influence of ΔT on the thermal breakthrough time of production well becomes weak, because ΔT exerts an effect on the thermal breakthrough time of production well t by influencing the relative position of the 18.5 ℃ isotherm in the temperature transition region, and the error for reinjection from high temperature fluid to low temperature fluid can be corrected by introducing the viscosity correction coefficient αμ.
-
表 1 采灌井与水位观测井结构参数表(mm)
Table 1. Structural parameters (mm) of production and reinjection wells and water level monitoring boreholes
井类型 钻孔直径 井壁直径 填充砾料厚度 滤水管孔眼直径 滤水管钢网间距 开采井 100 / / 10 0.5~1.0 回灌井 220 88 66 10 0.5~1.0 水位观测孔 70 / / 5 / 表 2 回灌参数敏感性研究取值
Table 2. Values of reinjection parameters for sensitivity analysis
回灌温度(℃) 回灌量(m3/h) 采灌井间距(m) 工况1 30、40、50、60 0.5 10 工况2 30 0.5、1.0、1.5、2.0 10 工况3 30 0.5 4、6、8、10 表 3 采灌井流量与稳定水位
Table 3. Flow rate and stable water level difference of production and reinjection wells
回灌井水位(m) 开采井水位(m) 采灌井水位差(m) 流量(m3/h) 5.94 3.53 2.41 1.10 5.61 3.72 1.89 0.72 5.38 4.19 1.19 0.52 表 4 砂槽数值模型参数取值表
Table 4. Parameter values for numerical model of sand tank
参数 单位 数值 孔隙度 中砂岩层 / 0.25 粗砂岩层 / 0.35 渗透率 中砂岩层 mD 3 000 粗砂岩层 mD 5 500 砂岩层热导率 W/(m·K) 2.4 砂岩层体积热容 J/(K·m3) 2 100 000 弥散度 中砂岩层 m 0.2 粗砂岩层 m 0.5 水的热导率 W/(m·K) 0.65 水的密度 kg/m3 998 表 5 高温回灌与低温回灌参数取值表
Table 5. Parameter values of high temperature and low temperature reinjections
高温回灌 初始温度 15 ℃ 15 ℃ 15 ℃ 15 ℃ 回灌温度 25 ℃ 35 ℃ 45 ℃ 55 ℃ 低温回灌 初始温度 25 ℃ 35 ℃ 45 ℃ 55 ℃ 回灌温度 15 ℃ 15 ℃ 15 ℃ 15 ℃ 采灌温差ΔT 10 ℃ 20 ℃ 30 ℃ 40 ℃ -
Bedre, M. G., Anderson, B. J., 2012. Sensitivity Analysis of Low-Temperature Geothermal Reservoirs: Effect of Reservoir Parameters on the Direct Use of Geothermal Energy. Transactions-Geothermal Resources Council, 36 2: 1255-1261 Bodvarsson, G., 1972. Thermal Problems in the Siting of Reinjection Wells. Geothermics, 1(2): 63-66. https://doi.org/10.1016/0375-6505(72)90013-2 Franco, A., Vaccaro, M., 2014. Numerical Simulation of Geothermal Reservoirs for the Sustainable Design of Energy Plants: A Review. Renewable and Sustainable Energy Reviews, 30: 987-1002. https://doi.org/10.1016/j.rser.2013.11.041 Ganguly, S., Mohan Kumar, M. S., 2014. Analytical Solutions for Transient Temperature Distribution in a Geothermal Reservoir Due to Cold Water Injection. Hydrogeology Journal, 22(2): 351-369. https://doi.org/10.1007/s10040-013-1048-2 He, M. C., Liu, B., Yao, L. H., et al., 2003. Study on the Theory of Seepage Field for Geothermal Single Well Reinjection. Acta Energiae Solaris Sinica, 24(2): 197-201 (in Chinese with English abstract). doi: 10.3321/j.issn:0254-0096.2003.02.012 Kang, F. X., 2018. Comprehensive Evaluation of Geothermal Clean Energy in Shandong Province. Science Press, Beijing (in Chinese). Kang, F. X., Shi, Q. P., Ma, Z. M., et al., 2023a. Genetic Mechanism of the Karst Geothermal Reservoir in Buried Uplifts of Basins: A Case Study of Heze. Acta Geologica Sinica, 97(1): 221-237 (in Chinese with English abstract). Kang, F. X., Zhao, J. C., Huang, X., et al., 2023b. Heat Accumulation Mechanism and Resources Potential of the Karst Geothermal Reservoir in Liangcun Buried Uplift of Linqing Depression. Earth Science, 48(3): 1080-1092 (in Chinese with English abstract). Kang, F. X., Zhao, J. C., Tan, Z. R., et al., 2021. Geothermal Power Generation Potential in the Eastern Linqing Depression. Acta Geologica Sinica-English Edition, 95(6): 1870-1881. https://doi.org/10.1111/ 1755-6724.14877 doi: 10.1111/1755-6724.14877 Lei, H. Y., Zhu, J. L., 2010. Modeling of Exploitation and Reinjection of Porous Medium Geothermal Reservoir. Acta Energiae Solaris Sinica, 31(12): 1633-1638 (in Chinese with English abstract). Liu, Z. T., Liu, S., Song, W. H., 2019. Change Characteristics of Geothermal Field for Geothermal Return Water Reinjection of Sandstone Reservoir in the Northern Shangdong. Acta Geologica Sinica, 93(S1): 149-156 (in Chinese with English abstract). doi: 10.1111/1755-6724.13999 Mottaghy, D., Pechnig, R., Vogt, C., 2011. The Geothermal Project Den Haag: 3D Numerical Models for Temperature Prediction and Reservoir Simulation. Geothermics, 40(3): 199-210. https://doi.org/10.1016/j.geothermics.2011.07.001 Obembe, A. D., Abu-Khamsin, S. A., Hossain, M. E., 2016. A Review of Modeling Thermal Displacement Processes in Porous Media. Arabian Journal for Science and Engineering, 41(12): 4719-4741. https://doi.org/10.1007/s13369-016-2265-5 Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2014. Experimental-Numerical Study of Heat Flow in Deep Low-Enthalpy Geothermal Conditions. Renewable Energy, 62: 716-730. https://doi.org/10.1016/j.renene.2013.08.037 Saeid, S., Al-Khoury, R., Nick, H. M., et al., 2015. A Prototype Design Model for Deep Low-Enthalpy Hydrothermal Systems. Renewable Energy, 77: 408-422. https://doi.org/10.1016/j.renene.2014.12.018 Sauty, J. P., Gringarten, A. C., Landel, P. A., et al., 1980. Lifetime Optimization of Low Enthalpy Geothermal Doublets. Advances in European Geothermal Research. Springer, Dordrecht, 706-719. https://doi.org/10.1007/978-94-009-9059-3_64 Seibt, P., Kellner, T., 2003. Practical Experience in the Reinjection of Cooled Thermal Waters Back into Sandstone Reservoirs. Geothermics, 32(4-6): 733-741. https://doi.org/10.1016/s0375-6505(03)00071-3 Sippel, J., Fuchs, S., Cacace, M., et al., 2013. Deep 3D Thermal Modelling for the City of Berlin (Germany). Environmental Earth Sciences, 70(8): 3545-3566. https://doi.org/10.1007/s12665-013-2679-2 Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract). Wu, L. J., Zhao, J. C., Li, A. Y., et al., 2016. Key Issues of Geothermal Resource Exploitation and Utilization in the Depression Area of Northern Shandong Province. Geology and Exploration, 52(2): 300-306 (in Chinese with English abstract). Xu, Z. K., Xu, S. G., Zhang, S. T., 2021. Hydro-Geochemistry of Anning Geothermal Field and Flow Channels Inferring of Upper Geothermal Reservoir. Earth Science, 46(11): 4175-4187 (in Chinese with English abstract). Zhao, J. C., 2013. Lubei Geothermal Tail Water Reinjection Experiments in Sandstone Reservoir. Shandong Land and Resources, 29(9): 23-30 (in Chinese with English abstract). Zhu, J. L., Zhu, X. M., Lei, H. Y., 2012. Analysis of Impact of Pressure Compensation between Geothermal Wells on Reinjection Effeciency. Acta Energiae Solaris Sinica, 33(1): 56-62 (in Chinese with English abstract). 何满潮, 刘斌, 姚磊华, 等, 2003. 地热单井回灌渗流场理论研究. 太阳能学报, 24(2): 197-201. doi: 10.3321/j.issn:0254-0096.2003.02.012 康凤新, 2018. 山东省地热清洁能源综合评价. 北京: 科学出版社. 康凤新, 史启朋, 马哲民, 等, 2023a. 盆地潜凸起岩溶热储地热田成因机理: 以菏泽潜凸起为例. 地质学报, 97(1): 221-237. 康凤新, 赵季初, 黄迅, 等, 2023b. 华北盆地梁村古潜山岩溶热储聚热机制及资源潜力. 地球科学, 48(3): 1080-1092. doi: 10.3799/dqkx.2022.324 雷海燕, 朱家玲, 2010. 孔隙型地热采灌开发方案的数值模拟研究. 太阳能学报, 31(12): 1633-1638. 刘志涛, 刘帅, 宋伟华, 等, 2019. 鲁北地区砂岩热储地热尾水回灌地温场变化特征分析. 地质学报, 93(S1): 149-156. 王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005 吴立进, 赵季初, 李艾银, 等, 2016. 鲁北坳陷区地热资源开发利用关键性问题研究. 地质与勘探, 52(2): 300-306. 徐梓矿, 徐世光, 张世涛, 2021. 安宁地热田浅部热储水化学特征及补给通道位置. 地球科学, 46(11): 4175-4187. doi: 10.3799/dqkx.2020.401 赵季初, 2013. 鲁北砂岩热储地热尾水回灌试验研究. 山东国土资源, 29(9): 23-30. 朱家玲, 朱晓明, 雷海燕, 2012. 地热回灌井间压差补偿对回灌效率影响的分析. 太阳能学报, 33(1): 56-62. -