• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义

    孙清泉 林晓 黄咸雨 陈丹

    孙清泉, 林晓, 黄咸雨, 陈丹, 2024. 鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义. 地球科学, 49(9): 3377-3386. doi: 10.3799/dqkx.2023.101
    引用本文: 孙清泉, 林晓, 黄咸雨, 陈丹, 2024. 鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义. 地球科学, 49(9): 3377-3386. doi: 10.3799/dqkx.2023.101
    Sun Qingquan, Lin Xiao, Huang Xianyu, Chen Dan, 2024. Charcoal Morphotypes and Potential Paleofire Significance in Middle-Late Holocene in the Dajiuhu Peatland, Hubei Province, Central China. Earth Science, 49(9): 3377-3386. doi: 10.3799/dqkx.2023.101
    Citation: Sun Qingquan, Lin Xiao, Huang Xianyu, Chen Dan, 2024. Charcoal Morphotypes and Potential Paleofire Significance in Middle-Late Holocene in the Dajiuhu Peatland, Hubei Province, Central China. Earth Science, 49(9): 3377-3386. doi: 10.3799/dqkx.2023.101

    鄂西大九湖泥炭全新世中期以来的炭屑形貌特征及古火灾意义

    doi: 10.3799/dqkx.2023.101
    基金项目: 

    国家自然科学基金区域联合基金重点项目 U20A2094

    国家自然科学基金项目 41102070

    国家自然科学基金项目 41571189

    详细信息
      作者简介:

      孙清泉(1997-),女,硕士研究生,自然地理学专业. ORCID:0000-0002-3750-6246. E-mail:qingquan_sun@cug.edu.cn

      通讯作者:

      林晓, ORCID: 0000-0003-3622-8077. E-mail: linxiao@cug.edu.cn

    • 中图分类号: P532

    Charcoal Morphotypes and Potential Paleofire Significance in Middle-Late Holocene in the Dajiuhu Peatland, Hubei Province, Central China

    • 摘要: 炭屑作为植物不完全燃烧的产物,记录了母源植物与古火灾的信息.通过分析大九湖泥炭钻孔中炭屑的形貌特征、浓度及长宽比,并与藿类通量、孢粉等生物源古环境指标进行对比,以揭示炭屑指标的古火灾和古环境意义.结果表明:炭屑的母源信息可由其几何形态、表面纹理及气孔结构来进行识别.炭屑的浓度与长宽比具有明显的阶段性变化,反映了古火灾的强度和主要燃烧生物材质的变化.主要分为两个阶段,全新世中期约8.5~4.3 ka B.P.期间,炭屑浓度普遍较高,与气候干旱相联系,古火灾事件与干旱高峰一致;但7.3~7.0 ka B.P.时段内炭屑浓度呈现低值,频繁降水制约了古火灾的发生.全新世晚期约4.3 ka B.P.以来,古气候由干旱转为湿润,炭屑含量波动性下降;但在3.6 ka B.P.和2.5 ka B.P.左右,波动异常明显,表明湿润背景下的干旱事件与火灾频发密切相关.据此,炭屑可作为与高山泥炭地干旱化相联系的古火灾代用指标.

       

    • 图  1  大九湖地貌及钻孔位置分布

      ZK3引自Xie et al.2013);ZK5引自Huang et al.2018);DJ引自朱诚等(2006)

      Fig.  1.  Geomorphology of the Dajiuhu peatland and locations of cores

      图  2  大九湖20ZK5-2钻孔剖面深度-年代序列

      Fig.  2.  The depth-age sequence of the 20ZK5-2 Core in the Dajiuhu peatland

      图  3  大九湖20ZK5-2钻孔中典型炭屑的光学显微镜照片

      分类代号见表 1

      Fig.  3.  The optical microscope photos with classification code of typical charcoal in the 20ZK5-2 Core

      图  4  20ZK5-2钻孔的植物残体含量(a);总有机碳含量(b);炭屑面积浓度(c);小炭屑平均长轴长度(d);大炭屑平均长轴长度(e);小炭屑平均长宽比(f);大炭屑平均长宽比(g)

      Fig.  4.  The variation sequence of plant residues content (a), TOC (b), charcoal area concentration (c), mean length of micro-charcoal (d), mean length of macro-charcoal (e), mean AR of micro-charcoal (f), mean AR (g) of macro-charcoal of the 20ZK5-2 Core

      图  5  大九湖的炭屑AR值与其他生物源古环境指标对比

      a. 炭屑面积浓度;b. 小炭屑平均长宽比;c. 大炭屑平均长宽比;d.藿类通量,Xie et al.(2013);e. 泥炭藓含量,石敏等(2008);f. 正构烷烃C23/C29,Huang et al.2018);g. 孢粉浓度,朱诚等(2006)

      Fig.  5.  Comparison between charcoal AR index and other biogenic paleoenvironmental proxies

      表  1  大九湖20ZK5-2钻孔中炭屑的形貌特征分类表

      Table  1.   The morphotypes of typical charcoal in the 20ZK5-2 Core

      分类 几何形状 亚类 表面特征 可能来源及参考文献
      A 多边形 A1 实心,边缘平直 -
      A2 实心,有条纹结构,边缘平直 木本植物纤维组织或木质部(Enache and Cumming, 2006)
      A3 有圆形、椭圆形孔洞,边缘平直或带锯齿 草本植物的叶片(Walsh et al., 2010)
      B 矩形 B1 实心,长条状,边缘平直 禾本科叶片和叶梢(Esperanza et al., 2022)
      B2 束状集合体,边缘和裂隙锯齿状 草本植物叶片(Dussol et al., 2021)
      B3 有孔洞,形成裂口,边缘平滑 禾本科或松科(Jensen et al., 2007; Mustaphi and Pisaric, 2014
      C 椭圆形 C1 实心或网状结构,边缘平滑 -
      圆形 C2 边缘平滑,有凸起或对称裂口 杉科、松科花粉
      D 不规则形 D1 实心针状,边缘平滑 植物叶片末梢
      D2 实心折枝状,边缘平滑或含断口 植物枝干分叉或植物根系等
      D3 圆形孔洞密布的薄片状 -
      下载: 导出CSV
    • Battarbee, R. W., 1984. Diatom Analysis and the Acidification of Lakes. Philosophical Transactions of the Royal Society of London. 305: 452-477. https://doi.org/10.1098/rstb.1984.0070
      Crawford, A. J., Belcher, C. M., 2014. Charcoal Morphometry for Paleoecological Analysis: The Effects of Fuel Type and Transportation on Morphological Parameters. Applications in Plant Sciences, 2(8): 1400004. https://doi.org/10.3732/apps.1400004
      Daniau, A. L., 2012. Predictability of Biomass Burning in Response to Climate Changes. Quaternary International, 279-280: 106. https://doi.org/10.1016/j.quaint.2012.07.471
      Dussol, L., Vannière, B., Purdue, L., et al., 2021. How to Highlight Slash-and-Burn Agriculture in Ancient Soils? A Modern Baseline of Agrarian Fire Imprint in the Guatemalan Lowlands Using Charcoal Particle Analysis. Journal of Archaeological Science: Reports, 35: 102725. https://doi.org/10.1016/j.jasrep.2020.102725
      Enache, M. D., Cumming, B. F., 2006. Tracking Recorded Fires Using Charcoal Morphology from the Sedimentary Sequence of Prosser Lake, British Columbia (Canada). Quaternary Research, 65(2): 282-292. https://doi.org/10.1016/j.yqres.2005.09.003
      Esperanza, T. R., Blanca, L. F. R., Socorro, L. G., et al., 2022. Charcoal Morphotypes and Potential Fuel Types from a Mexican Lake during MIS 5a and MIS 3. Journal of South American Earth Sciences, 115: 103724. https://doi.org/10.1016/j.jsames.2022.103724
      Hantson, S., Andela, N., Goulden, M. L., et al., 2022. Human-Ignited Fires Result in more Extreme Fire Behavior and Ecosystem Impacts. Nature Communications, 13(1): 2717. https://doi.org/10.1038/s41467-022-30030-2
      Huang, X. Y., Pancost, R. D., Xue, J. T., et al., 2018. Response of Carbon Cycle to Drier Conditions in the Mid-Holocene in Central China. Nature Communications, 9(1): 1369. https://doi.org/10.1038/s41467-018-03804-w
      Huang, X., Ding, K., Liu, J. Y., et al., 2023a. Smoke-Weather Interaction Affects Extreme Wildfires in Diverse Coastal Regions. Science, 379(6631): 457-461. https://doi.org/10.1126/science.add9843
      Huang, X. Y., Zhang, H. B., Griffiths, M. L., et al., 2023b. Holocene Forcing of East Asian Hydroclimate Recorded in a Subtropical Peatland from Southeastern China. Climate Dynamics, 60(3): 981-993. https://doi.org/10.1007/s00382-022-06333-x
      Huang, Y. B., Zhao, T. T., Xiang, W., et al., 2021. Stability of Organic Iron Complexes in Dajiuhu Peats and Its Ecological Significance. Earth Science, 46(5): 1862-1870 (in Chinese with English abstract).
      Jensen, K., Lynch, E. A., Calcote, R., et al., 2007. Interpretation of Charcoal Morphotypes in Sediments from Ferry Lake, Wisconsin, USA: Do Different Plant Fuel Sources Produce Distinctive Charcoal Morphotypes? The Holocene, 17(7): 907-915. https://doi.org/10.1177/0959683607082405
      Li, C. H., Tang, L. Y., Wan, H. W., et al., 2009. Vegetation and Human Activity in Yuyao (Zhejiang Province) Inferred from the Sporo-Pollen Record since the Late Pleistocene. Acta Micropalaeontologica Sinica, 26(1): 48-56 (in Chinese with English abstract).
      Li, Y. Y., Hou, S. F., Mo, D. W., 2009. Records for Pollen and Charcoal from Qujialing Archaeological Site of Hubei and Ancient Civilization Development. Journal of Palaeogeography (Chinese Edition), 11(6): 702-710 (in Chinese with English abstract).
      Liu, H. Y., Gu, Y. S., Ge, J. W., et al., 2022. The Response of the Dajiuhu Peatland Ecosystem to Hydrological Variations: Implications for Carbon Sequestration and Peatlands Conservation. Journal of Hydrology, 612: 128307. https://doi.org/10.1016/j.jhydrol.2022.128307
      Miao, Y. F., Wu, F. L., Warny, S., et al., 2019. Miocene Fire Intensification Linked to Continuous Aridification on the Tibetan Plateau. Geology, 47(4): 303-307. https://doi.org/10.1130/g45720.1
      Mustaphi, C. J. C., Pisaric, M. F. J., 2014. A Classification for Macroscopic Charcoal Morphologies Found in Holocene Lacustrine Sediments. Progress in Physical Geography: Earth and Environment, 38(6): 734-754. https://doi.org/10.1177/0309133314548886
      Pang, Y., Zhou, B., Xu, X. C., et al., 2022. Holocene Fire History and Its Influencing Factors in the Monsoon Region of East China. Quaternary Sciences, 42(2): 368-382 (in Chinese with English abstract).
      Pei, W. Q., Wan, S. M., Clift, P. D., et al., 2020. Human Impact Overwhelms Long-Term Climate Control of Fire in the Yangtze River Basin since 3.0 ka BP. Quaternary Science Reviews, 230: 106165. https://doi.org/10.1016/j.quascirev.2020.106165
      Scott, A. C., 2010. Charcoal Recognition, Taphonomy and Uses in Palaeoenvironmental Analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11-39. https://doi.org/10.1016/j.palaeo.2009.12.012
      Shi, M., Yu, J. X., Gu, Y. S., et al., 2008. Climate Changes in Interim of Late Pleistocene and Holocene in Dajiuhu Basin of Shennongjia, Hubei Province: Evidence from Pollen. Bulletin of Geological Science and Technology, 27(6): 24-28 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7849.2008.06.005
      Shuman, J. K., Balch, J. K., Barnes, R. T., et al., 2022. Reimagine Fire Science for the Anthropocene. PNAS Nexus, 1(3): pgac115. https://doi.org/10.1093/pnasnexus/pgac115
      Vachula, R. S., 2019. A Usage-Based Size Classification Scheme for Sedimentary Charcoal. The Holocene, 29(3): 523-527. https://doi.org/10.1177/0959683618816520
      Walsh, M. K., Pearl, C. A., Whitlock, C., et al., 2010. An 11000-Year-Long Record of Fire and Vegetation History at Beaver Lake, Oregon, Central Willamette Valley. Quaternary Science Reviews, 29(9-10): 1093-1106. https://doi.org/10.1016/j.quascirev.2010.02.011
      Wang, J. H., Jiang, Z. X., Xian, B. Z., et al., 2018. Advances in Paleowind Strength Reconstruction Techniques: Use of Transporting Capacity Analysis. Earth Science Frontiers, 25(2): 309-318 (in Chinese with English abstract).
      Wu, C., Sitch, S., Huntingford, C., et al., 2022. Reduced Global Fire Activity Due to Human Demography Slows Global Warming by Enhanced Land Carbon Uptake. Proceedings of the National Academy of Sciences of the United States of America, 119(20): e2101186119. https://doi.org/10.1073/pnas.2101186119
      Xie, S. C., Evershed, R. P., Huang, X. Y., et al., 2013. Concordant Monsoon-Driven Postglacial Hydrological Changes in Peat and Stalagmite Records and Their Impacts on Prehistoric Cultures in Central China. Geology, 41(8): 827-830. https://doi.org/10.1130/G34318.1
      Xu, C., Zhao, W., Yu, X. B., 2020. Decomposition of Wetland Plant Residue and Its Influencing Factors: A Review. Chinese Journal of Ecology, 39(11): 3865-3872 (in Chinese with English abstract).
      Xu, X., Li, F., Lin, Z. D., et al., 2021. Holocene Fire History in China: Responses to Climate Change and Human Activities. Science of the Total Environment, 753: 142019. https://doi.org/10.1016/j.scitotenv.2020.142019
      Xue, J. B., Zhong, W., Li, Q., et al., 2018. Holocene Fire History in Eastern Monsoonal Region of China and Its Controls. Palaeogeography, Palaeoclimatology, Palaeoecology, 496: 136-145. https://doi.org/10.1016/j.palaeo.2018.01.029
      Yang, G., Zhang, Y. M., Huang, X. Y., 2022. Fluctuations of Water Table Level in a Subtropical Peatland, Central China. Journal of Earth Science. In Press. https://doi.org/10.1007/s12583-022-1752-8
      Zhang, Y. M., Huang, X. Y., Wang, R. C., et al., 2020. The Distribution of Long-Chain N-Alkan-2-Ones in Peat can be Used to Infer Past Changes in pH. Chemical Geology, 544: 119622. https://doi.org/10.1016/j.chemgeo.2020.119622
      Zhao, P. F., Li, Y. Y., 2012. The Records of Sphagnum Spore and Charcoal in the Peatland of Daxing'an Mountain since 1 300 Years and Their Paleoenvironment Implication. Quaternary Sciences, 32(3): 563-564 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-7410.2012.03.24
      Zheng, B., Ciais, P., Chevallier, F., et al., 2023. Record-High CO2 Emissions from Boreal Fires in 2021. Science, 379(6635): 912-917. https://doi.org/10.1126/science.ade0805
      Zhu, C., Ma, C. M., Zhang, W. Q., et al., 2006. Pollen Record from Dajiuhu Basin of Shennongjia and Environmental Changes since 15.753 ka B. P. . Quaternary Sciences, 26(5): 814-826 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2006.05.017
      黄玉冰, 赵甜甜, 向武, 等, 2021. 大九湖泥炭沼泽源铁有机配合物的络合稳定性及其生态环境意义. 地球科学, 46(5): 1862-1870. doi: 10.3799/dqkx.2020.149
      李春海, 唐领余, 万和文, 等, 2009. 晚更新世以来浙江余姚地区植被变化及人类活动. 微体古生物学报, 26(1): 48-56.
      李宜垠, 侯树芳, 莫多闻, 2009. 湖北屈家岭遗址孢粉、炭屑记录与古文明发展. 古地理学报, 11(6): 702-710.
      庞洋, 周斌, 徐向春, 等, 2022. 中国东部季风区全新世火历史及其影响因素. 第四纪研究, 42(2): 368-382.
      石敏, 喻建新, 顾延生, 等, 2008. 神农架大九湖晚更新世与全新世之交的气候变化: 来自孢粉的信息. 地质科技情报, 27(6): 24-28.
      王俊辉, 姜在兴, 鲜本忠, 等, 2018. 古风力恢复研究进展: 利用介质的搬运能力. 地学前缘, 25(2): 309-318.
      许策, 赵玮, 于秀波, 2020. 湿地植物残体分解及其影响因素研究进展. 生态学杂志, 39(11): 3865-3872.
      赵鹏飞, 李宜垠, 2012. 大兴安岭泥炭地1 300年来泥炭藓孢子和炭屑记录及其指示意义. 第四纪研究, 32(3): 563-564.
      朱诚, 马春梅, 张文卿, 等, 2006. 神农架大九湖15.753 ka B. P. 以来的孢粉记录和环境演变. 第四纪研究, 26(5): 814-826.
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  247
    • HTML全文浏览量:  98
    • PDF下载量:  32
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-02-23
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回