• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于定形相变材料的相变砂浆热力学性能

    王艳 曾长女 李皖皖 孙立军

    王艳, 曾长女, 李皖皖, 孙立军, 2023. 基于定形相变材料的相变砂浆热力学性能. 地球科学, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102
    引用本文: 王艳, 曾长女, 李皖皖, 孙立军, 2023. 基于定形相变材料的相变砂浆热力学性能. 地球科学, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102
    Wang Yan, Zeng Changnü, Li Wanwan, Sun Lijun, 2023. Thermodynamic Performance of Phase Change Mortar Based on Shape-Stabilized Phase Change Material. Earth Science, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102
    Citation: Wang Yan, Zeng Changnü, Li Wanwan, Sun Lijun, 2023. Thermodynamic Performance of Phase Change Mortar Based on Shape-Stabilized Phase Change Material. Earth Science, 48(12): 4680-4688. doi: 10.3799/dqkx.2023.102

    基于定形相变材料的相变砂浆热力学性能

    doi: 10.3799/dqkx.2023.102
    基金项目: 

    河南省重点研发与推广专项科技攻关 212102110027

    国家自然科学基金 31500394

    2021年河南省高等教育教学改革研究与实践项目 教研〔2021〕480号2021SJGLX146Y

    详细信息
      作者简介:

      王艳(1979-),女,博士,副教授,主要从事废物资源化利用及生态系统元素循环等方面研究工作. E-mail:wyzzti@163.com

    • 中图分类号: TK02

    Thermodynamic Performance of Phase Change Mortar Based on Shape-Stabilized Phase Change Material

    • 摘要: 普通砂浆受温度差异影响时,常常会产生温度变形、温度应力和温度裂缝,而现有相变砂浆的低热导率易导致相变不充分、储能效率低等问题,导致其自我调温能力低,也难以更好地控制由温度引起的变形、应力及裂缝.采用石蜡基相变材料制备储能型砂浆,并通过优选导热增强剂的比表面积、厚度等材料物理参数,从材料本身来提高相变基体热导率和相变砂浆储能速率,从而提升其自调温性能.设计并搭建了材料热性能测试平台,测试相变砂浆的蓄热和热应变发展规律.结果表明,相变材料掺量30%的砂浆试块上表面温度比普通砂浆块温度降低9.7 ℃,热应变降低27.54%,表明该相变材料提高了蓄热能力并显著提升了砂浆的温度自调控性能.

       

    • 图  1  膨胀石墨微观结构

      Fig.  1.  Microstructure of expanded graphite

      图  2  材料蓄热性能试验示意

      Fig.  2.  Platform of thermal storage performance test

      图  3  材料热适应性能试验示意

      Fig.  3.  Platform of thermal adaptability test

      图  4  不同PCM掺量的相变砂浆导热系数

      Fig.  4.  Thermal conductivity of phase change mortar with PCM content

      图  5  不同PCM掺量相变砂浆上表面温升曲线

      Fig.  5.  The temperature rising curve of the upper surface of phase change mortar with PCM content

      图  6  不同PCM掺量对相变砂浆热应变发展影响

      Fig.  6.  Influence of different PCM contents on thermal strain development of phase change mortar

      图  7  不同PCM掺量相变砂浆抗压强度

      Fig.  7.  Compressive strength of phase change mortar with different PCM contents

      图  8  不同PCM掺量相变砂浆抗折强度

      Fig.  8.  Flexural strength of phase change mortar with PCM content

      图  9  相变砂浆的微观形貌

      a.复合相变材料的SEM; b.相变砂浆的SEM

      Fig.  9.  Microscopic morphology of phase change mortar

      图  10  石蜡及复合相变材料的DSC曲线

      Fig.  10.  DSC curves of paraffin wax and composite phase change material

      图  11  不同PCM掺量相变砂浆DSC曲线

      Fig.  11.  DSC curve of phase change mortar with PCM contents

      表  1  相变砂浆配比(kg/m3)

      Table  1.   Mix proportions of phase change mortar (kg/m3)

      材料 PCM-0 PCM-5 PCM-10 PCM-20 PCM-30
      水泥 500 500 500 500 500
      300 300 300 300 300
      1 427.58 1 359.60 1 297.80 1 189.65 1 098.14
      PCM 0 19.06 36.39 66.71 111.89
      W/C 0.6 0.6 0.6 0.6 0.6
      下载: 导出CSV
    • Cao, Y. Z., 2018. Preparation and Performance Optimization of Cement-Based Phase Change Thermal Storage Mortar (Dissertation). Xi'an University of Technology, Xi'an(in Chinese with English abstract).
      Djamai, Z. I., Salvatore, F., Larbi, A. S., et al., 2019. Multiphysics Analysis of Effects of Encapsulated Phase Change Materials (PCMS) in Cement Mortars. Cement and Concrete Research, 119: 51-63. https://doi.org/10.1016/j.cemconres.2019.02.002
      Du, H. X., Wu, Z. X., Du, F., 2022. Effect of Polypropylene Fiber and Steel Bar on Thermal Strain of C60 High Performance Concrete Slab at High Temperature. Journal of Building Materials, 25(2): 142-149(in Chinese with English abstract).
      Guan, A. T., 2018. Study on Preparation and Properties of New Phase Change Temperature Control Materials (Dissertation). Dalian Jiaotong University, Dalian(in Chinese with English abstract).
      Guardia, C., Barluenga, G., Palomar, I., et al., 2019. Thermal Enhanced Cement-Lime Mortars with Phase Change Materials (PCM), Lightweight Aggregate and Cellulose Fibers. Construction and Building Materials, 221: 586-594. https://doi.org/10.1016/j.conbuildmat.2019.06.098
      Guo, J. W., Jiang, Y. Q., Wang, Y., et al., 2020. Thermal Storage and Thermal Management Properties of a Novel Ventilated Mortar Block Integrated with Phase Change Material for Floor Heating: An Experimental Study. Energy Conversion and Management, 205: 112288. https://doi.org/10.1016/j.enconman.2019.112288
      Kheradmand, M., Vicente, R., Azenha, M., et al., 2019. Influence of the Incorporation of Phase Change Materials on Temperature Development in Mortar at Early Ages: Experiments and Numerical Simulation. Construction and Building Materials, 225: 1036-1051. https://doi.org/10.1016/j.conbuildmat.2019.08.028
      Kong, D. Y., Pan, L. S., Zhan, S. L., et al., 2016. Preparation and Properties of Phase Change Ceramisite Loaded with Inorganic Salt Hydrate. Journal of the Chinese Ceramic Society, 44(7): 1051-1058(in Chinese with English abstract).
      Kong, S. Y., See, Z. H., Lee, C. L., et al., 2019. Thermal and Mechanical Properties of Mortar Incorporated with Paraffin/Palm Oil Fuel Ash Composite. Journal of Building Engineering, 26: 100923. https://doi.org/10.1016/j.jobe.2019.100923
      Lecompte, T., Le Bideau, P., Glouannec, P., et al., 2015. Mechanical and Thermo-Physical Behaviour of Concretes and Mortars Containing Phase Change Material. Energy and Buildings, 94: 52-60. https://doi.org/10.1016/j.enbuild.2015.02.044
      Li, W. W., Cheng, W. L., Xie, B., et al., 2017. Thermal Sensitive Flexible Phase Change Materials with High Thermal Conductivity for Thermal Energy Storage. Energy Conversion and Management, 149: 1-12. https://doi.org/10.1016/j.enconman.2017.07.019
      Liu, F. L., Zhu, J. Q., Ma, B. G., et al., 2016. Research Progress on Preparation and Application of Gypsum Phase Change Wallboard in Building Wall. Journal of the Chinese Ceramic Society, 44(8): 1178-1191(in Chinese with English abstract).
      Liu, Y. S., Xu, E. T., Xie, M. J., et al., 2018. Use of Calcium Silicate-Coated Paraffin/Expanded Perlite Materials to Improve the Thermal Performance of Cement Mortar. Construction and Building Materials, 189: 218-226. https://doi.org/10.1016/j.conbuildmat.2018.08.213
      Ma, J. L., Li, Q., Chen, X. R., 2022. Analysis of the Advantages of Carbon Neutral Geological Energy Storage in Hydraulically Connected Reservoirs. Earth Science (in Chinese with English abstract)(in press).
      Ren, J. W., Wang, T., Chen, Y. L., et al., 2020. Research Status and Application Potential of CO2 Mineralization. Earth Science, 45(7): 2413-2425(in Chinese with English abstract).
      Sang, G. C., Fan, M., Cui, X. L., et al., 2019. Thermal and Mechanical Properties of Phase-Change Thermal Energy Storage Mortar Based on Compression Forming Method. Journal of Building Materials, 22(5): 693-699(in Chinese with English abstract).
      Shi, J. Y., Tan, J. X., Liu, B. J., et al., 2020. Thermal and Mechanical Properties of Thermal Energy Storage Lightweight Aggregate Mortar Incorporated with Phase Change Material. Journal of Energy Storage, 32: 101719. https://doi.org/10.1016/j.est.2020.101719
      Wang, X. R., Liu, X., Zhang, X., et al., 2023. Vibration Response Caused by Silt Layer in Underground Subway under Small Radius Curve Tunnel. Earth Science, 48(6): 2415-2426(in Chinese with English abstract).
      Xiao, L. G., Song, S. A., Gao, S. Z., 2014. A Study of Preparation and Performance of the PCMs of the CA-LA Swelling Vitrified Beads. Proceedings of the 2015 International Conference on Material Science and Applications. Atlantis Press, Paris, France. https://doi.org/10.2991/icmsa-15.2015.133
      Yang, J., Meng, D., Wang, A. Q., et al., 2020. Improvement of Thermal Insulation Performance of Building Envelope with Phase Change Mortar. New Building Materials, 47(1): 104-107(in Chinese with English abstract).
      Yang, J., Qi, G. Q., Liu, Y., et al., 2016. Hybrid Graphene Aerogels/Phase Change Material Composites: Thermal Conductivity, Shape-Stabilization and Light-to-Thermal Energy Storage. Carbon, 100: 693-702. https://doi.org/10.1016/j.carbon.2016.01.063
      Zhang, N., Yuan, Y. P., Yuan, Y. G., et al., 2014. Effect of Carbon Nanotubes on the Thermal Behavior of Palmitic-Stearic Acid Eutectic Mixtures as Phase Change Materials for Energy Storage. Solar Energy, 110: 64-70. https://doi.org/10.1016/j.solener.2014.09.003
      曹艳洲, 2018. 水泥基相变储能砂浆的制备及性能优化(硕士学位论文). 西安: 西安理工大学.
      杜红秀, 吴振戌, 杜帆, 2022. PP纤维和钢筋对高温下C60HPC板热应变的影响. 建筑材料学报, 25(2): 142-149.
      关爱婷, 2018. 新型相变控温材料的制备及其性能研究(硕士学位论文). 大连: 大连交通大学.
      孔德玉, 潘罗晟, 詹树林, 等, 2016. 无机水合盐相变陶粒的制备与性能. 硅酸盐学报, 44(7): 1051-1058.
      刘凤利, 朱教群, 马保国, 等, 2016. 相变石膏板制备及其在建筑墙体中应用的研究进展. 硅酸盐学报, 44(8): 1178-1191.
      马建力, 李琦, 陈祥荣, 2022. 利用水力连通储层进行地质储能的优势分析. 地球科学(待刊).
      任京伟, 王涛, 陈雨雷, 等, 2020. CO2矿化研究现状及应用潜力. 地球科学, 45(7): 2413-2425. doi: 10.3799/dqkx.2020.027
      桑国臣, 樊敏, 崔晓玲, 等, 2019. 压力成型相变储能砂浆的热性能与力学性能. 建筑材料学报, 22(5): 693-699.
      王晓睿, 刘旭, 张昕, 等, 2023. 小半径曲线隧道下地铁运行对粉砂土层引起的振动响应规律. 地球科学, 48(6): 2415-2426. doi: 10.3799/dqkx.2023.063
      杨籍, 孟多, 王安琪, 等, 2020. 相变控温砂浆用于改善建筑围护结构保温性能的研究. 新型建筑材料, 47(1): 104-107.
    • 加载中
    图(11) / 表(1)
    计量
    • 文章访问数:  183
    • HTML全文浏览量:  260
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-15
    • 网络出版日期:  2024-01-03
    • 刊出日期:  2023-12-25

    目录

      /

      返回文章
      返回