• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性

    张钰 曹自成 陈红汉 谷茸 李海英

    张钰, 曹自成, 陈红汉, 谷茸, 李海英, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
    引用本文: 张钰, 曹自成, 陈红汉, 谷茸, 李海英, 2023. 顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性. 地球科学, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
    Zhang Yu, Cao Zicheng, Chen Honghan, Gu Rong, Li Haiying, 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103
    Citation: Zhang Yu, Cao Zicheng, Chen Honghan, Gu Rong, Li Haiying, 2023. Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin. Earth Science, 48(6): 2168-2188. doi: 10.3799/dqkx.2023.103

    顺北地区不同走滑断裂带奥陶系油气成藏期次及其贡献度差异性

    doi: 10.3799/dqkx.2023.103
    基金项目: 

    国家重点自然科学基金项目 41730421

    国家科技重大专项 2016ZX05004-001

    详细信息
      作者简介:

      张钰(1981-),男,高级工程师,主要从事油气勘探研究与管理.E-mail:zhangyu.xbsj@sinope.com

      通讯作者:

      曹自成,研究员,从事油气勘探工作.E-mail: caozc.xbsj@sinopec.com

    • 中图分类号: P618

    Difference of Hydrocarbon Charging Events and Their Contribution Percentages to Ordovician Reservoirs among Strike-Slip Fault Belts in Shunbei Area, Tarim Basin

    • 摘要: 塔里木盆地顺北地区不同走滑断裂带和同一条走滑断裂带不同段奥陶系断溶体油藏原油物化特性存在显著差异性.揭示这种差异性的成因机理对该地区油气勘探开发具有重要意义.通过采集顺北地区17口井共100块岩心样品开展流体包裹体系统分析,在油气成藏期次划分和成藏时期厘定的基础上,以原油密度计算APIo与显微荧光光谱参数QF-535关系为“桥梁”,运用单个油包裹体统计分布模型对各期次成藏贡献度(contribution percentage, CP)进行了定量评价;通过比较油藏原油物化特性参数(密度、粘度、气/油比和Ro-MPI1)和各期次单个油包裹体显微荧光光谱参数(QF-535、λmax和CP),结果表明:(1)顺北地区断溶体油藏总体发育4期成藏,分别为加里东晚期(438.2~405.8 Ma)、海西晚期-印支早期(297.8~219.5 Ma)、燕山中-晚期(139.9~106.1 Ma)和喜山中-晚期(29.0~0.3 Ma);(2)顺北地区走滑断裂带断溶体油藏原油物化特性存在自西向东、自北而南原油密度和粘度下降、气/油比和原油成熟度(Ro-MPI1)增加趋势,造成其空间变化的主要原因是存在自西向东、自北而南晚期(第三期、第四期)油充注贡献度和气侵程度增加所致.

       

    • 图  1  顺北地区T74界面走滑断裂及取样钻井位置图(a, b)和工区奥陶系综合柱状图(c)

      Fig.  1.  Map showing the strike-slip faults and sampling wells location on T74 boundary in Shunbei area (a, b) and the synthetic Ordovician lithological column (c)

      图  2  在UV(365 nm)激发下原油/油包裹体显微荧光光谱成熟度参数定义(据Munz,2001)

      Fig.  2.  The definitions of microspectrofluorimetric thermal maturity parameters of crude oil/individual oil inclusion under UV excitation (365 nm)(after Munz, 2001)

      图  3  塔里木盆地奥陶系原油APIo-QF-535关系图

      Fig.  3.  Plot of QF-535 vs. APIo of the Ordovician crude oils in Tarim basin

      图  4  顺北地区走滑断裂带中下奥陶统油包裹体油荧光观察照片

      a.SHB7井,O1-2y,7 728.80 m,硅质灰岩.裂缝充填方解石裂纹中检测到一期发蓝绿色荧光的孤立分布的油包裹体;b~b'.SHB2井,O1-2y,7 737.00 m,溶洞充填方解石中检测到团簇状分布的发亮蓝色荧光的油包裹体及盐水包裹体,为原生包裹体;c~c'.SHB52A井,O1-2y,7 782.05 m,泥晶灰岩,裂缝充填方解石中检测到随机分布流体包裹体;d~d'.SHB5-8井,O2yj,7 678.84 m,泥晶灰岩.溶洞充填方解石裂纹中检测到一期发亮蓝色荧光的次生油包裹体沿愈合裂纹分布;e~e'.SHB5-8井,O2yj,7 678.84 m,泥晶灰岩.裂缝充填方解石中观察到一期发亮蓝色荧光的次生油包裹体沿长愈纹分布;f~f'.SHB5井,O2yj,7 426.90 m,溶洞充填方解石中检测到一期发蓝绿色荧光油包裹体及盐水包裹体;g.SHB52A井,O1-2y,8 121.61 m,云质泥晶灰岩,沿生长带分布流体包裹体

      Fig.  4.  Microphotos under UV and transmission lights of oil inclusions in the Middle and Lower Ordovician in strike-slip faults of Shunbei area

      图  5  顺北地区奥陶系单个油包裹体显微荧光光谱

      Fig.  5.  The micro-beam fluorescent spectrums of the Ordovician individual oil inclusions in Shunbei area

      图  6  顺北地区奥陶系单个油包裹体和原油APIo统计直方图

      Fig.  6.  The statistical histograms APIo of the Ordovician individual oil inclusions and crude oils in Shunbei area

      图  7  顺北地区典型均一温度-埋藏史投影求取油气充注年龄

      Fig.  7.  The charging ages of oil determined by homogenization temperatures projecting on burial historic curves for typical wells in Shunbei area

      图  8  顺北地区走滑断裂带奥陶系油气成藏期次划分和成藏时期确定图

      Fig.  8.  The diagram showing the determinations of hydrocarbon charging events and ages in the strike-slip faults Ordovician in Shunbei area

      图  9  油气充注成藏贡献度理想模式图

      Fig.  9.  The ideal model of contribution percentages for each hydrocarbon charging events

      图  10  顺北地区不同走滑断裂带原油物化特性参数分布特征

      Fig.  10.  The physical and chemical characteristic parameter distribution of crude oils in the different strike-slip faults in Shunbei area

      图  11  顺北地区不同走滑断裂带包裹体油和油藏原油QF-535和λmax比较

      Fig.  11.  Comparison of QF-535 and λmax of oil inclusions and reservoir oils among the different strike-slip faults in Shunbei area

      图  12  顺北地区油气成藏期次及其贡献度平面展布图

      Fig.  12.  The map showing the hydrocarbon charging events and their contribution percentage distributions in Shunbei area

      表  1  塔里木盆地奥陶系原油密度和显微荧光光谱参数

      Table  1.   Data of the densities and microspectrofluorimetric parameters for crude oils of the Ordovician reservoirs in Tarim basin

      序号 井号 层位 深度(m) QF-535 密度
      (g/cm3)
      APIo②
      1 TK915-4 O2yj 5 758~5 832 0.872 0.863 32.52
      2 TP46 O2yj 6 256.57~6 313.00 1.244 0.902 25.37
      3 S9702 O2yj 5 545~5 570 1.066 0.910 23.94
      4 YJ1-9X O2yj 7 152.17~7 290.00 0.601 0.800 45.40
      5 YJ2-14 O2yj 7 083.18~7 166.00 1.106 0.840 36.99
      6 TS301 O1-2y 6 274~6 478 3.060 1.027 6.25
      7 S48 O1-2y 5 363~5 370 2.740 0.966 15.06
      8 TK6100 O1-2y 5 476.24~5 595.19 2.409 0.957 16.30
      9 YQX1 O1-2y 5 773.52~5 850.00 1.550 0.863 32.46
      10 TS3 O1-2y 5 822.45~6 168.24 2.250 1.010 8.60
      11 YB1-2X O1-2y 5 105~5 809 1.547 0.935 19.90
      12 T314 O1-2y 5 611.00~5 632.50 1.486 0.855 33.94
      13 TK469 O1-2y 5 413.13~5 559.82 1.939 0.969 14.54
      14 TK210 O1-2y 5 448.33~5 680.00 2.361 0.945 18.27
      15 AD25 O3 5 868~6 595 1.696 0.930 20.63
      16 SHB1-2 O2yj 7 469.00~7 569.47 0.53 0.796 46.26
      17 SHB1-3 O2yj 7 255.70~7 357.89 0.35 0.794 46.71
      18 SHB1-3 O2yj 7 255.70~7 357.89 0.46 0.795 46.49
      19 SHB1-4 O2yj 7 459.00~7 561.96 0.55 0.798 45.82
      20 SHB1-5 O2yj 7 474.52~7 576.19 0.64 0.798 45.82
      21 SHB1-6 O2yj 7 288.16~7 399.75 0.45 0.789 47.84
      22 SHB1-7 O2yj 7 339.36~7 456.00 0.72 0.799 45.60
      23 SHB1-14 O2yj 7 580.00~7 710.00 0.71 0.799 45.60
      24 SHB1-15 O2yj +O1-2y 7 614.00~8 010.00 0.60 0.794 46.71
      25 SHB1-8 O1-2y 7 415.50~7 571.64 0.83 0.798 45.82
      26 SHB1-9 O1-2y 7 372.74~7 630.00 0.36 0.804 44.50
      27 SHBP3H O1-2y 7 395.52~7 639.71 0.81 0.797 46.04
      28 SHB2 O2yj +O1-2y 7 348.60~7 753.00 0.80 0.796 46.26
      29 SHB2 O2yj +O1-2y 7 348.60~8 169.30 0.78 0.810 43.19
      30 SHBP1H O1-2y 7 372.74~7 630.00 0.77 0.812 42.76
      31 SHB3 O1-2y 7 518.82~7 891.26 0.49 0.814 42.33
      32 SHB5-2 O2yj 7 460.33~7 527.16 0.79 0.826 39.81
      33 SHB5 O2yj 7 315.00~7 950.06 0.84 0.829 39.19
      34 SHB51X O2yj 7 753.64~7 876.00 0.63 0.804 44.50
      35 SHB7 O1-2y 7 568.46~7 863.66 1.65 0.855 24.46
      注:①在20 ℃下测定的原油密度;②运用公式(3)计算获得原油的APIo.
      下载: 导出CSV

      表  2  顺北地区奥陶系储层单个油包裹体显微荧光光谱成熟度参数

      Table  2.   Data of microspectrofluorimetric maturity parameters for individual oil inclusions of the Ordovician reservoirs in Shunbei area

      井号 层位 深度(m) 测量数(个) 显微荧光光谱参数平均值 APIo③
      包裹体油/原油 λmax(nm) QF-535
      SHB2 O2yj+O1-2y 7 525.30~7 734.64 56 包裹体油第一期 547 1.58 25.38
      7 521.70 包裹体油第二期 493 0.82 38.68
      7 522.56~7 737.68 包裹体油第四期 475 0.73 46.40
      O2yj+O1-2y 7 348.60~7 753.00 1 油藏原油 494 0.80 46.26
      SHB1-3 O2yj 7 268.60~7 279.40 44 包裹体油第一期 539 1.24 30.03
      7 268.60~7 288.00 包裹体油第二期 518 1.04 33.47
      7 265.50~7 288.00 包裹体油第三期 487 0.90 36.29
      O2yj 7 255.70~7 357.89 1 油藏原油 470 0.46 49.39
      SHB1-7 O2yj+O3q 7 255.90~7 356.80 31 包裹体油第一期 542 1.31 28.96
      包裹体油第二期 516 1.09 32.55
      包裹体油第三期 488 0.85 37.40
      O2yj 7 339.36~7 456.00 1 油藏原油 480 0.72 45.60
      SHBP3H O2yj 7 432.30~7 435.07 74 包裹体油第一期 549 1.65 24.63
      包裹体油第二期 521 0.97 39.60
      包裹体油第三期 485 0.72 48.53
      O1-2y 7 395.52~7 639.71 1 油藏原油 454 0.81 46.04
      SHB5 O2yj 7 331.27~7 427.00 80 包裹体油第一期 544 1.30 29.11
      包裹体油第二期 521 1.01 34.81
      包裹体油第三期 487 0.83 43.80
      O2yj 7 315.00~7 950.06 1 油藏原油 494 0.80 39.19
      SHB51X O2yj 7 558.30~7 571.25 13 包裹体油第一期 541 1.58 25.32
      包裹体油第二期 517 1.24 30.06
      包裹体油第三期 495 0.90 36.33
      O2yj 7 753.64~7 876.00 1 油藏原油 492 0.63 44.50
      SHB5-8 O2yj 7 678.55~7 687.95 52 包裹体油第一期 505 1.14 31.62
      包裹体油第二期 496 0.93 35.68
      包裹体油第三期 485 0.67 42.15
      O2yj 7 678~8 024 1 油藏原油 492 0.63 38.88
      SHB52A O2yj+ O1-2y 7 671.86~7 901.64 包裹体油第一期 564 1.73 23.49
      包裹体油第二期 488 0.78 39.14
      包裹体油第三期 454 0.47 48.83
      O2yj+ O1-2y 7 644~8 137 1 油藏原油 492 0.63 45.82
      SHB55X O2yj 7 736.00 11 包裹体油第一期 504 1.75 23.34
      O2yj 7 708~8 725 1 油藏原油 459 0.82 42.10
      SHB7 O1-2y 7 728.90~7 729.32 30 包裹体油第一期 540 1.57 23.53
      包裹体油第二期 518 1.37 28.64
      O1-2y 7 568.46~7 863.66 1 油藏原油 502 1.65 24.46
      注:③包裹体油APIo是据公式(4)计算获得.
      下载: 导出CSV

      表  3  顺北地区走滑断裂带奥陶系流体包裹体显微测温数据

      Table  3.   Data of averaged homogenization temperatures for oil inclusions and aqueous inclusions of the Ordovician reservoirs in the strike-slip faults of Shunbei area

      井号 深度
      (m)
      宿主矿物 流体包裹体产状 油包裹体均一温度(℃) 盐水包裹体均一温度(℃)
      换算盐度平均值%NaCl
      Th1 Th2 Th3 Th4
      SHB1-3 7 268.30 裂缝充填方解石 原生 Th2=80.0
      溶洞充填方解石 原生 Th2=83.5 126.2
      SHB1-7 7 352.13 裂缝充填方解石 原生 105.8
      次生 104.4 122.9 156.5 175.0
      SHB1-7 7 356.80 裂缝充填方解石 原生 94.6 108.4
      次生 Th1=54.7 95.7
      SHB5-8 7 678.84 裂缝充填方解石 次生 Th1=62.4;Th2=105.5;Th3=136.8 86.1
      溶洞充填方解石 原生 Th1=49.0;Th2=70.0;Th3=115.7 96.3 110.5
      SHB5-8 7680.10 裂缝充填方解石 次生 102.4
      溶洞充填方解石 原生 89.8 111.9
      SHB5-8 7 681.50 溶洞充填方解石 原生 90.2
      次生 Th1=56.5;Th2=91.7;Th3=103.5 90.0 113.1
      SHB5-8 7 683.60 裂缝充填方解石 原生 90.1 109.3
      溶洞充填方解石 原生 92.2 102.2
      SHB7 7728.80 裂缝充填方解石 原生 103.6 122.9 156.1
      次生 Th2=72.2 102.0 127.3
      SHB7 7 728.90 溶孔充填方解石 原生 108.0 125.2
      次生 Th2=80.9 114.0
      SHB51X 7 567.29 溶洞充填方解石 原生 82.0 117.4 224.1
      下载: 导出CSV

      表  4  顺北地区走滑断裂带奥陶系油气成藏期次和成藏时期

      Table  4.   Data of hydrocarbon charging events and ages in the strike-slip faults of the Ordovician in Shunbei area

      井号 走滑断裂分段性 层位 成藏期次及年龄(Ma)
      第一期 第二期 第三期 第四期
      SHB2 平行SB1拉分段 O2yj 423.2~405.8 263.1~252.5 3.9~2.1
      O1-2y 425.1~408.7 267.6~250.8 9.7~0.3
      SHB1-3 SB1拉分段 O2yj 422.1~407.2 297.8~264.1 18.7~3.2
      SHB1-7 SB1平移段 O3q 249.8 13.1~3.2
      O2yj 434.1~429.4 298.7~242.3 14.6~2.2
      SHBP3H SB1分支拉分段 O2yj 258.0~256.8 139.9~106.1 29.0~12.5
      SHB5 SB5北段压隆段 O2yj 435.8~425.6 251.0~219.5
      SHB51X SB5中段拉分段 O2yj 250.5~229.8
      SHB5-8 SB5中段拉分段 O2yj 427.2~413.2 291.6~231.5 128.6
      SHB52A SB5分支挤压段 O2yj 285.0~276.5 21.2~19.8
      O1-2y 424.8 268.2
      SHB55X SB5南段复式拉分 O2yj 438.2 290.5
      SHB7 挤压段 O1-2y 437.2~424.1 260.0~236.8
      成藏时期 加里东晚期
      (438.2~405.8 Ma)
      海西晚期-印支早期
      (298.7~242.3 Ma)
      燕山期
      (139.9~106.1 Ma)
      喜山中-晚期
      (29.0~0.3 Ma)
      下载: 导出CSV

      表  5  顺北地区走滑断裂带奥陶系各成藏期次贡献度

      Table  5.   The contribution percentages of each hydrocarbon charging events in the strike-slip faults Ordovician in Shunbei area

      井号 走滑断裂分段性 层位 成藏贡献度(%)
      第一期 第二期 第三期 第四期
      SHB2 平行SB1拉分段 O2yj+O1-2y 油充注 1.67 未充注 98.33
      SHB1-3 SB1拉分段 O2yj 油充注 油充注 未充注 油充注+气侵改造
      SHB1-7 SB1平移段 O2yj+O3q 油充注 油充注 未充注 油充注+气侵改造
      SHBP3H SB1分支拉分段 O2yj 未充注 贡献度很小 27.75 72.25
      SHB5 SB5北段压隆段 O2yj 52.07 47.93 未充注 未充注
      SHB51X SB5中段拉分段 O2yj 未充注 油充注 未充注 气侵改造(?)
      SHB5-8 SB5中段拉分段 O2yj 贡献度很小 77.42 22.58 未充注
      SHB52A SB5分支挤压段 O2yj+O1-2y 贡献度很小 42.48 未充注 57.52
      SHB55X SB5南段复式拉分 O2yj 油充注 油充注 未充注 气侵改造(?)
      SHB7 挤压段 O1-2y 81.68 18.32 未充注 未充注
      成藏时期 加里东晚期
      (438.2~405.8 Ma)
      海西晚期-印支早期
      (298.7~242.3 Ma)
      燕山期
      (139.9~106.1 Ma)
      喜山中-晚期
      (29.0~0.3 Ma)
      下载: 导出CSV
    • Blamey, N. J. F., Ryder, A. G., Feely, M., et al., 2008. The Application of Structured-Light Illumination Microscopy to Hydrocarbon-Bearing Fluid Inclusions. Geofluids, 8(2): 102-112. https://doi.org/10.1111/j.1468-8123.2008.00209.x
      Cao, Z. C., Lu, Q. H., Gu, Y., et al., 2020. Characteristics of Ordovician Reservoirs in Shunbei 1 and 5 Fault Zones, Tarim Basin. Oil & Gas Geology, 41(5): 975-984 (in Chinese with English abstract).
      Chai, C. Y., 2018. Geochemical Characterization of Crude Oil in Shuntuoguole Low-Uplift of Tarim Basin(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      Chai, Z., Chen, Z. H., Liu, H., et al., 2020. Light Hydrocarbons and Diamondoids of Light Oils in Deep Reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the Evaluation on Thermal Maturity, Secondary Alteration and Source Characteristics. Marine and Petroleum Geology, 117: 104388. https://doi.org/10.1016/j.marpetgeo.2020.104388
      Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150(in Chinese with English abstract).
      Chen, H. H., 2014. Microspectrofluorimetric Characterization and Thermal Maturity Assessment of Individual Oil Inclusion. Acta Petrolei Sinica, 35(3): 584-590(in Chinese with English abstract).
      Chen, H. H., Wu, Y., Feng, Y., et al., 2014. Timing and Chronology of Hydrocarbon Charging in the Ordovician of Tahe Oilfield, Tarim Basin, NW China. Oil & Gas Geology, 35(6): 806-819(in Chinese with English abstract).
      Cheng, B., Liu, H., Cao, Z. C., et al., 2020. Origin of Deep Oil Accumulations in Carbonate Reservoirs within the North Tarim Basin: Insights from Molecular and Isotopic Compositions. Organic Geochemistry, 139: 103931. https://doi.org/10.1016/j.orggeochem.2019.103931
      Cui, J. W., Tang, Z. M., 2011. Tectonic Framework of the Tarim Basin and Its Tectonic Stress Field Analysis. Acta Petrologica Sinica, 27(1): 231-242(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2018. Characteristics of Differential Activities in Major Strike-Slip Fault Zones and Their Control on Hydrocarbon Enrichment in Shunbei Area and Its Surroundings, Tarim Basin. Oil & Gas Geology, 39(5): 878-888(in Chinese with English abstract).
      Deng, S., Li, H. L., Zhang, Z. P., et al., 2019. Structural Characterization of Intracratonic Strike-Slip Faults in the Central Tarim Basin. AAPG Bulletin, 103(1): 109-137. https://doi.org/10.1306/06071817354
      Gao, X. G., Wu, X., Hong, C. J., et al., 2018. Geochemical Characteristics of Ordovician Crude Oil in the No. 1 Fault Zone of Shunbei Oilfield. Petroleum Geology and Engineering, 32(6): 37-40, 118 (in Chinese with English abstract).
      Gogonenkov, G. N., Timurziev, A. I., 2010. Strike-Slip Faults in the West Siberian Basin: Implications for Petroleum Exploration and Development. Russian Geology and Geophysics, 51(3): 304-316. https://doi.org/10.1016/j.rgg.2010.02.007
      Goldstein, R., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course, 31: 129892756. https://doi.org/10.2110/SCN.94.31
      Gu, R., Yun, L., Zhu, X. X., et al., 2020. Oil and Gas Sources in Shunbei Oilfield, Tarim Basin. Petroleum Geology & Experiment, 42(2): 248-254, 262 (in Chinese with English abstract).
      Gu, Y., Huang, J. W., Jia, C. S., et al., 2020. Research Progress on Marine Oil and Gas Accumulation in Tarim Basin. Petroleum Geology & Experiment, 42(1): 1-12 (in Chinese with English abstract).
      Gu, Y., Wan, Y. L., Huang, J. W., et al., 2019. Prospects for Ultra-Deep Oil and Gas in the "Deep Burial and High Pressure" Tarim Basin. Petroleum Geology & Experiment, 41(2): 157-164 (in Chinese with English abstract).
      Harding, T. P., 1974. Petroleum Traps Associated with Wrench Faults. AAPG Bulletin, 58(7): 1290-1304. https://doi.org/10.1306/83d91669-16c7-11d7-8645000102c1865d
      He, D. F., Zhou, X. Y., Yang, H. J., et al., 2008. Formation Mechanism and Tectonic Types of Intracratonic Paleo-Uplifts in the Tarim Basin. Earth Science Frontiers, 15(2): 207-221 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.024
      Jiao, C. L., He, B. Z., Wang, T. Y., et al., 2018. Types and Quantitative Characterization of Reservoir Spaces of the Ultra-Deep Limestone Reservoirs in the Yijianfang Formation during the Middle Ordovician, Shuntuoguole Area, Tarim Basin. Acta Petrologica Sinica, 34(6): 1835-1846 (in Chinese with English abstract).
      Jiao, F. Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839 (in Chinese with English abstract).
      Jiao, F. Z., 2018. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin. Oil & Gas Geology, 39(2): 207-216 (in Chinese with English abstract).
      Karlsen, D. A., Nedkvitne, T., Larter, S. R., et al., 1993. Hydrocarbon Composition of Authigenic Inclusions: Application to Elucidation of Petroleum Reservoir Filling History. Geochimica et Cosmochimica Acta, 57(15): 3641-3659. https://doi.org/10.1016/0016-7037(93)90146-n
      Li, C. Q., Chen, H. H., Liu, H. M., 2010. Identification of Hydrocarbon Charging Events by Using Micro-Beam Fluorescence Spectra of Petroleum Inclusions. Earth Science, 35(4): 657-662 (in Chinese with English abstract).
      Li, M. C., Shan, X. Q., Ma, C. H., et al., 2005. An Approach to Hydrocarbon Accumulation Period. Xinjiang Petroleum Geology, 26(5): 587-591 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2005.05.030
      Li, Y. T., Qi, L. X., Zhang, S. N., et al., 2019. Characteristics and Development Mode of the Middle and Lower Ordovician Fault-Karst Reservoir in Shunbei Area, Tarim Basin. Acta Petrolei Sinica, 40(12): 1470-1484 (in Chinese with English abstract). doi: 10.7623/syxb201912006
      Lin, B., Zhang, X., Kuang, A. P., et al., 2021. Structural Deformation Characteristics of Strike-Slip Faults in Tarim Basin and Their Hydrocarbon Significance: A Case Study of No. 1 Fault and No. 5 Fault in Shunbei Area. Acta Petrolei Sinica, 42(7): 906-923 (in Chinese with English abstract).
      Liu, Y. C., Qiu, N. S., Li, H. L., et al., 2020. Terrestrial Heat Flow and Crustal Thermal Structure in the Northern Slope of Tazhong Uplift in Tarim Basin. Geothermics, 83: 101709. https://doi.org/10.1016/j.geothermics.2019.101709
      Lu, X. B., Hu, W. G., Wang, Y., et al., 2015. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin. Oil & Gas Geology, 36(3): 347-355 (in Chinese with English abstract).
      Lu, X. B., Yang, M., Wang, Y., et al., 2018. Geological Characteristics of 'Strata-Bound' and 'Fault-Controlled' Reservoirs in the Northern Tarim Basin: Taking the Ordovician Reservoirs in the Tahe Oil Field as an Example. Petroleum Geology & Experiment, 40(4): 461-469 (in Chinese with English abstract).
      Luo, M. X., Xia, Y. T., Shao, X. M., et al., 2019. Geochemical Characteristics and Origin of Oil from Different Strata in Shunbei Oil and Gas Field, Tarim Basin. Petroleum Geology & Experiment, 41(6): 849-854 (in Chinese with English abstract).
      Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753 (in Chinese with English abstract).
      Ma, A. L., Lin, H. X., Yun, L., et al., 2021. Characteristics of Diamondoids in Oils from the Ultra-Deep Ordovician in the North Shuntuoguole Area in Tarim Basin, NW China. Natural Gas Geoscience, 32(3): 334-346 (in Chinese with English abstract).
      Ma, Q. Y., Cao, Z. C., Jiang, H. S., et al., 2020. Source-Connectivity of Strike Slip Fault Zone and Its Relationship with Oil and Gas Accumulation in Tahe-Shunbei Area, Tarim Basin. Marine Origin Petroleum Geology, 25(4): 327-334 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.04.005
      Munz, I. A., 2001. Petroleum Inclusions in Sedimentary Basins: Systematics, Analytical Methods and Applications. Lithos, 55(1-4): 195-212. https://doi.org/10.1016/s0024-4937(00)00045-1
      Ping, H. W., Chen, H. H., Song, G. Q., et al., 2012. Contributions Degree of Petroleum Charging to Oil and Gas Accumulation and Its Significance. Earth Science, 37(1): 163-170 (in Chinese with English abstract).
      Qi, L. X., 2016. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin. China Petroleum Exploration, 21(3): 38-51 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.03.004
      Qi, L. X., 2020. Characteristics and Inspiration of Ultra-Deep Fault-Karst Reservoir in the Shunbei Area of the Tarim Basin. China Petroleum Exploration, 25(1): 102-111(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.010
      Qi, L. X., Yun, L., Cao, Z. C., et al., 2021. Geological Reserves Assessment and Petroleum Exploration Targets in Shunbei Oil & Gas Field. Xinjiang Petroleum Geology, 42(2): 127-135(in Chinese with English abstract).
      Siljeström, S., Volk, H., George, S. C., et al., 2013. Analysis of Single Oil-Bearing Fluid Inclusions in Mid-Proterozoic Sandstones (Roper Group, Australia). Geochimica et Cosmochimica Acta, 122: 448-463. https://doi.org/10.1016/j.gca.2013.08.010
      Su, A., Chen, H. H., Feng, Y. X., et al., 2020. Dating and Characterizing Primary Gas Accumulation in Precambrian Dolomite Reservoirs, Central Sichuan Basin, China: Insights from Pyrobitumen Re-Os and Dolomite U-Pb Geochronology. Precambrian Research, 350: 105897. https://doi.org/10.1016/j.precamres.2020.105897
      Su, J., Wang, X. M., Yang, H. J., et al., 2021. Hydrothermal Alteration and Hydrocarbon Accumulations in Ultra-Deep Carbonate Reservoirs along a Strike-Slip Fault System, Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 203: 108605. https://doi.org/10.1016/j.petrol.2021.108605
      Wang, Q., Hao, F., Cao, Z. C., et al., 2021. Geochemistry and Origin of the Ultra-Deep Ordovician Oils in the Shunbei Field, Tarim Basin, China: Implications on Alteration and Mixing. Marine and Petroleum Geology, 123: 104725. https://doi.org/10.1016/j.marpetgeo.2020.104725
      Wang, X. S., Li, J. C., Wang, S. M., et al., 1997. Oil and Gas Accumulation and Structural Stress Field in Tarim Basin. Acta Petrolei Sinica, 18(1): 23-28 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1997.01.004
      Wang, Y. W., 2019. Multiple Originanl Mechanisms of the Ordovician Reservoir and Their Control on Hydrocarbon Charging in Shuntuoguole Area, Tarim Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      Wang, Y. W., Chen, H. H., Guo, H. F., et al., 2019. Hydrocarbon Charging History of the Ultra-Deep Reservoir in Shun 1 Strike-Slip Fault Zone, Tarim Basin. Oil & Gas Geology, 40(5): 972-989 (in Chinese with English abstract).
      Wu, X., Li, D., Zhu, X. X., et al., 2022. Influence of Geothermal Field on Ultra-Deep Ordovician Oil and Gas in Shunbei Field, Tarim Basin: A Case Study of Shunbei No. 5 Strike-Slip Fault. Petroleum Geology & Experiment, 44(3): 402-412 (in Chinese with English abstract).
      Yin, A., Zuza, A. V., Pappalardo, R. T., 2016. Mechanics of Evenly Spaced Strike-Slip Faults and Its Implications for the Formation of Tiger-Stripe Fractures on Saturn's Moon Enceladus. Icarus, 266: 204-216. https://doi.org/10.1016/j.icarus.2015.10.027
      Yun, L., 2021a. Controlling Effect of NE Strike-Slip Fault System on Reservoir Development and Hydrocarbon Accumulation in the Eastern Shunbei Area and Its Geological Significance, Tarim Basin. China Petroleum Exploration, 26(3): 41-52 (in Chinese with English abstract).
      Yun, L., 2021b. Hydrocarbon Accumulation of Ultra-Deep Ordovician Fault-Karst Reservoirs in Shunbei Area. Xinjiang Petroleum Geology, 42(2): 136-142 (in Chinese with English abstract).
      Yun, L., Deng, S., 2022. Structural Styles of Deep Strike-Slip Faults in Tarim Basin and the Characteristics of Their Control on Reservoir Formation and Hydrocarbon Accumulation: A Case Study of Shunbei Oil and Gas Field. Acta Petrolei Sinica, 43(6): 770-787 (in Chinese with English abstract).
      Zeng, Z. P., Wang, M. F., Ni, J. H., 2002. Discussion on the Problems of Organic Inclusion Method in the Study of Oil and Gas Accumulation Periods. Natural Gas Geoscience, 13(Suppl. 1): 55-59 (in Chinese with English abstract).
      Zhao, L. B., Huang, Z. L., Gao, G., et al., 2005. Discussions on the Application of Inclusions to Hydrocarbon Reservoir Forming Stages. Oil & Gas Recovery Technology, 12(6): 6-9 (in Chinese with English abstract).
      曹自成, 路清华, 顾忆, 等, 2020. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征. 石油与天然气地质, 41(5): 975-984. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202005009.htm
      柴程玉, 2018. 塔里木盆地顺托果勒低隆起原油地球化学特征(硕士学位论文). 北京: 中国地质大学.
      陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003
      陈红汉, 2014. 单个油包裹体显微荧光特性与热成熟度评价. 石油学报, 35(3): 584-590. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201403026.htm
      陈红汉, 吴悠, 丰勇, 等, 2014. 塔河油田奥陶系油气成藏期次及年代学. 石油与天然气地质, 35(6): 806-819. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201406010.htm
      崔军文, 唐哲民, 2011. 塔里木盆地构造格架和构造应力场分析. 岩石学报, 27(1): 231-242. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201101016.htm
      邓尚, 李慧莉, 张仲培, 等, 2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系. 石油与天然气地质, 39(5): 878-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201805004.htm
      高晓歌, 吴鲜, 洪才均, 等, 2018. 顺北油田1号断裂带奥陶系原油地球化学特征. 石油地质与工程, 32(6): 37-40, 118. doi: 10.3969/j.issn.1673-8217.2018.06.009
      谷茸, 云露, 朱秀香, 等, 2020. 塔里木盆地顺北油田油气来源研究. 石油实验地质, 42(2): 248-254, 262. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202002012.htm
      顾忆, 黄继文, 贾存善, 等, 2020. 塔里木盆地海相油气成藏研究进展. 石油实验地质, 42(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202001003.htm
      顾忆, 万旸璐, 黄继文, 等, 2019. "大埋深、高压力"条件下塔里木盆地超深层油气勘探前景. 石油实验地质, 41(2): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201902002.htm
      何登发, 周新源, 杨海军, 等, 2008. 塔里木盆地克拉通内古隆起的成因机制与构造类型. 地学前缘, 15(2): 207-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200802029.htm
      焦存礼, 何碧竹, 王天宇, 等, 2018. 顺托果勒奥陶系一间房组超深层灰岩储层类型及储集空间定量表征. 岩石学报, 34(6): 1835-1846. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806019.htm
      焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      焦方正, 2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景. 石油与天然气地质, 39(2): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201802002.htm
      李纯泉, 陈红汉, 刘惠民, 2010. 利用油包裹体微束荧光光谱判识油气充注期次. 地球科学, 35(4): 657-662. doi: 10.3799/dqkx.2010.080
      李明诚, 单秀琴, 马成华, 等, 2005. 油气成藏期探讨. 新疆石油地质, 26(5): 587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201702010.htm
      李映涛, 漆立新, 张哨楠, 等, 2019. 塔里木盆地顺北地区中: 下奥陶统断溶体储层特征及发育模式. 石油学报, 40(12): 1470-1484. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
      林波, 张旭, 况安鹏, 等, 2021. 塔里木盆地走滑断裂构造变形特征及油气意义: 以顺北地区1号和5号断裂为例. 石油学报, 42(7): 906-923. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107007.htm
      鲁新便, 胡文革, 汪彦, 等, 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm
      鲁新便, 杨敏, 汪彦, 等, 2018. 塔里木盆地北部"层控" 与"断控" 型油藏特征: 以塔河油田奥陶系油藏为例. 石油实验地质, 40(4): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202205006.htm
      罗明霞, 夏永涛, 邵小明, 等, 2019. 塔里木盆地顺北油气田不同层系原油地球化学特征对比及成因分析. 石油实验地质, 41(6): 849-854. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201906009.htm
      马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157
      马安来, 林会喜, 云露, 等, 2021. 塔里木盆地顺北地区奥陶系超深层原油金刚烷化合物分布及意义. 天然气地球科学, 32(3): 334-346. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202103002.htm
      马庆佑, 曹自成, 蒋华山, 等, 2020. 塔河—顺北地区走滑断裂带的通源性及其与油气富集的关系. 海相油气地质, 25(4): 327-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004005.htm
      平宏伟, 陈红汉, 宋国奇, 等, 2012. 油气充注成藏贡献度及其意义. 地球科学, 37(1): 163-170. doi: 10.3799/dqkx.2012.016
      漆立新, 2016. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义. 中国石油勘探, 21(3): 38-51. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201603004.htm
      漆立新, 2020. 塔里木盆地顺北超深断溶体油藏特征与启示. 中国石油勘探, 25(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001010.htm
      漆立新, 云露, 曹自成, 等, 2021. 顺北油气田地质储量评估与油气勘探方向. 新疆石油地质, 42(2): 127-135. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102001.htm
      王喜双, 李晋超, 王绍民, 等, 1997. 塔里木盆地构造应力场与油气聚集. 石油学报, 18(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.003.htm
      王玉伟, 2019. 顺托果勒地区奥陶系储层多成因形成机制及对油气充注的控制作用(博士学位论文). 武汉: 中国地质大学.
      王玉伟, 陈红汉, 郭会芳, 等, 2019. 塔里木盆地顺1走滑断裂带超深储层油气充注历史. 石油与天然气地质, 40(5): 972-989. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201905003.htm
      吴鲜, 李丹, 朱秀香, 等, 2022. 塔里木盆地顺北油气田地温场对奥陶系超深层油气的影响: 以顺北5号走滑断裂带为例. 石油实验地质, 44(3): 402-412. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203004.htm
      云露, 2021a. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义. 中国石油勘探, 26(3): 41-52. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202103004.htm
      云露, 2021b. 顺北地区奥陶系超深断溶体油气成藏条件. 新疆石油地质, 42(2): 136-142. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202102002.htm
      云露, 邓尚, 2022. 塔里木盆地深层走滑断裂差异变形与控储控藏特征: 以顺北油气田为例. 石油学报, 43(6): 770-787. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202206003.htm
      曾治平, 王敏芳, 倪建华, 2002. 油气成藏期次研究中有机包裹体方法存在问题探讨. 天然气地球科学, 13(增刊1): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX2002Z1010.htm
      赵力彬, 黄志龙, 高岗, 等, 2005. 关于用包裹体研究油气成藏期次问题的探讨. 油气地质与采收率, 12(6): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS200506001.htm
    • 加载中
    图(12) / 表(5)
    计量
    • 文章访问数:  524
    • HTML全文浏览量:  984
    • PDF下载量:  129
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-08-27
    • 刊出日期:  2023-06-25

    目录

      /

      返回文章
      返回