Buried Hill Reservoir Characteristics and Its Geophysical Identification Methods for Condensate Gas Field of Bozhong A
-
摘要: 渤中A凝析气田为典型的大型太古代变质岩潜山气田,岩性主要为片麻岩、变质二长花岗岩、变质花岗闪长岩和碎裂二长花岗岩,储集空间以裂缝-孔隙和孔隙-裂缝的组合类型为主. 纵向上潜山划分为半风化带和潜山内幕,半风化带普遍发育网状缝和粒内溶蚀孔,形成储集性能好的块状储集体,潜山内幕非均质性强,储集性能差于半风化带;裂缝是有效的储集空间又是良好的渗流通道,大断层附近裂缝相对富集. 孔隙型储层的储集空间多为粒间孔和溶蚀孔,主要发育在潜山顶部或潜山内幕断层附近;半风化带储层物性及其溶蚀孔隙展布与断裂密切相关,古地貌高点和断裂系统发育耦合区是有利的储层发育区带;裂缝的密度和开度对气井无阻流量和产量有重要影响.Abstract: Bozhong A condensate gas field is a typical large Archean metamorphic buried hill gas field. Its reservoir lithology is mainly composed of gneiss, metamorphic monzogranite, metamorphic granodiorite and cataclastic monzogranite. The reservoir space is dominated by fracture⁃pore and pore⁃fracture combination types. Vertically, the buried hill is divided into semi⁃weathered zone and buried hill interior. The semi⁃weathered zone is generally developed with network fractures and intragranular dissolution pores, forming a massive reservoir with good reservoir guality. The buried hill interior is highly heterogeneous, and the reservoir guality is worse than that of the semi⁃weathered zone; Fracture system are both effective reservoir space and good seepage channel. The fracture is relatively rich near the major fracture. The reservoir space of porous reservoirs is mainly intergranular pores and dissolution pores, which are mainly developed at the top of the buried hill or near the fault inside the buried hill; The physical properties of the reservoir and the distribution of its dissolution pores in the semi⁃weathered zone are closely related to the faults; The density and opening of the fractures have an important impact on the open flow and production of the gas well.
-
表 1 渤中A凝析气田地层简表
Table 1. Brief table of Bozhong A condensate gas field formation
表 2 渤中A凝析气田中新太古界潜山变质岩岩性测井识别标准
Table 2. Lithologic logging identification standard of metamorphic rocks in Meso⁃Neoarchean buried hill of Bozhong A condensate gas field
岩石测井分类 常规测井响应特征 自然伽马GAPI 岩性系数f 变质二长花岗岩类 > 133 < 0.04 变质花岗闪长岩类 < 133 < 0.04 碎裂二长花岗岩类 > 133 > 0.04 碎裂花岗闪长岩类 < 133 > 0.04 表 3 渤中A凝析气田中新太古界潜山侵入岩岩性测井识别标准
Table 3. Lithologic logging identification standard of Meso⁃Neoarchean buried hill intrusive rocks in Bozhong A condensate gas field
岩石测井分类 常规测井响应特征 自然伽马GAPI 岩性系数f 基性侵入岩 < 120 > 0.05 中性侵入岩 > 120 < 0.05 表 4 研究区中新太古界潜山气层有效厚度确定标准
Table 4. Determination standard of effective thickness of Meso⁃Neoarchean buried hill gas reservoir in study area
层位 储层类型 岩性 物性 含油性 电性 定性标准 孔隙度 显示 △tg 深电阻率 纵波时差 斯通利波时差差值 (深电阻率-浅电阻率)/深电阻率 录井 常规测井 成像测井 阵列声波测井 % % Ω·m μs/ft μs/ft 新太古界 孔隙型、裂缝-孔隙型、孔隙-裂缝型 变质岩 ≥2 荧光以上 ≥19 ≤510 ≥53 ≥4 - 气测组分齐全 高阻背景下的低阻特征,三孔隙度增大及深浅侧向有一定的幅度差 直观识别潜山地层裂缝发育段 利用中心频率和斯通利波时差曲线识别裂缝发育段 裂缝型 - 荧光以上 ≥19 ≤30 000 - ≥1.5 ≥0.29 表 5 渤中A凝析气田中新太古界潜山储层特征表
Table 5. Characteristics of Meso⁃Neoarchean buried hill reservoir in Bozhong a condensate gas field
区
块层位 地层厚度 储层厚度 储层岩性 储集类型 储层物性 非均质性 孔隙度 渗透率 m m % mD 19-6 Ar 480.6~825.4 69.4~206.3 变质岩 裂缝-孔隙型 3.1~4.4 4.7~7.5 非均质 21-2 Ar 448.0 102.7 变质岩 裂缝-孔隙型 2.9 6.5 非均质 表 6 渤中A凝析气田宽方位地震资料储层地震相划分
Table 6. Reservoir seismic facies division of Bozhong A condensate gas field based on wide azimuth seismic data
表 7 渤中A凝析气田不同个数方程反演算法误差分析
Table 7. Error analysis of inversion algorithm for different number equations in Bozhong A condensate gas field
方程个数 理论值 反演值 相对误差分析(%) $ \frac{\mathrm{\Delta }{I}_{\mathrm{p}}}{\overline{{I}_{\mathrm{p}}}} $ $ \frac{\mathrm{\Delta }{I}_{\mathrm{s}}}{\overline{{I}_{\mathrm{s}}}} $ $ {\gamma }^{\left(v\right)} $ $ \frac{\mathrm{\Delta }{I}_{\mathrm{p}}}{\overline{{I}_{\mathrm{p}}}} $ $ \frac{\mathrm{\Delta }{I}_{\mathrm{s}}}{\overline{{I}_{\mathrm{s}}}} $ $ {\gamma }^{\left(v\right)} $ $ \mathrm{e}\mathrm{r}\left(\frac{\mathrm{\Delta }{I}_{\mathrm{p}}}{\overline{{I}_{\mathrm{p}}}}\right) $ $ \mathrm{e}\mathrm{r}\left(\frac{\mathrm{\Delta }{I}_{\mathrm{s}}}{\overline{{I}_{\mathrm{s}}}}\right) $ $ \mathrm{e}\mathrm{r}\left[{\gamma }^{\left(v\right)}\right] $ 3 0.262 0.242 0.20 0.262 0.236 0.199 0 2.479 0.5 5 0.262 0.242 0.20 0.262 0.243 0.203 0 0.413 1.5 10 0.262 0.242 0.20 0.269 0.250 0.183 2.672 3.306 8.5 20 0.262 0.242 0.20 0.268 0.263 0.190 2.290 8.678 5.0 100 0.262 0.242 0.20 0.264 0.280 0.206 0.763 15.702 3.0 1000 0.262 0.242 0.20 0.267 0.279 0.212 1.908 15.289 6.0 表 8 渤中A凝析气田生产试验区开发井地质特征和生产效果对比表
Table 8. Comparison of geological characteristics and production effects of development wells in Bozhong A condensate field
井号 生产井段(m) 气层厚度(斜厚,m) 储层净毛比 储层物性 裂缝参数统计 投产初期实际 无阻流量评价 孔隙度(%) 渗透率(mD) 裂缝密度(条/m) 裂缝开度(μm) 日产气
(104 m3)日产油(m3) 压差(MPa) 推荐无阻流量 4 4 411~4 499.8
(强凤化带)220.1 55.8 4.1 3.6 1.0~16.0, 平均5 0.2~693, 平均110 30 293 3 100 A5H 4 981~5 798
强、次凤化带)324.8 39.9 4.9 6.1 0.8~17.6, 平均4.4 1.3~7 825, 平均7 28 327 14 104 A7 4 646~4 974
(强、凤化带)296.5 69.8 4.4 3.6 0.8~17.5, 平均4.3 7.5~4 049, 平均245 27 261 9 130 A4H 4 516~4 717
(强凤化带为主)302.1 77.4 5.7 5.3 0.6~27.1, 平均5.7 5.2~888, 平均57 21 195 13 80 A6 5 046~5 565
(强、凤化带)234.0 44.5 3.8 2.4 0.8~16.3, 平均3.1 3.3~546, 平均44 15 138 16 47 A2 4 435~4 733
(强、凤化带)238.3 60.0 4.9 - 0.8~18.7, 平均4.4 1.0~1 281, 平均85 5 55 26 22 A1H 4 393~4 467
(强风化带)285.8 64.2 6.0 - 0.8~15.3, 平均4.2 4.3~946,平均95 10 62 23 30 A3 4 478~5 469
(强、次凤化带、内耳带)352.5 47.7 3.4 1.4 0.9~10.6, 平均3.6 1.0~1 214,平均72 出木产能低 合计 一 - 105 1 040 - 69 -
Bakulin, A., Alexandrov, D., Sidorov, A., et al., 2009. Acoustic Waves in Sand⁃Screened Deepwater Completions: Comparison of Experiments and Modeling. Geophysics, 74(1): E45-E56. https://doi.org/10.1190/1.3002769 Chen, H. Z., Yin, X. Y., Zhang, J. Q., et al., 2014. Seismic Inversion for Fracture Rock Physics Parameters Using Azimuthally Anisotropic Elastic Impedance. Chinese Journal of Geophysics, 57(10): 3431-3441(in Chinese with English abstract). doi: 10.6038/cjg20141029 Deng, Y. H., 2015. Formation Mechanism and Exploration Practice of Large⁃Medium Buried⁃Hill Oil Fields in Bohai Sea. Acta Petrolei Sinica, 36(3): 253-261(in Chinese with English abstract). Fan, T. E., Niu, T., Fan, H. J., et al., 2021. Archaeozoic Buried⁃Hill Reservoir of Bozhong 19⁃6 Condensate Field: Main Controlling Factors and Development Model. Marine Geology & Quaternary Geology, 41(4): 170-178(in Chinese with English abstract). Hou, M. C., Cao, H. Y., Li, H. Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried⁃Hill Reservoirs in the BZ19⁃6 Structural Belt, Bohai Sea Area. Natural Gas Industry, 39(1): 33-44(in Chinese with English abstract). Jiang, Y. L., Ye, T., Zhang, S. W., et al., 2015. Enrichment Characteristics and Main Controlling Factors of Hydrocarbon in Buried Hill of Bohai Bay Basin. Journal of China University of Petroleum (Edition of Natural Science), 39(3): 20-29(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2015.03.003 Kong, L. Y., Wang, Y. B., Yang, H. Z., 2012. Fracture Parameters Analyses in Fracture⁃Induced HTI Double⁃Porosity Medium. Chinese Journal of Geophysics, 55(1): 189-196(in Chinese with English abstract). Li, L., Gai, Y. H., Ouyang, M., et al., 2019. Technologies with Two Azimuths in West Area of South China Sea: a Case Study of Zhusan Sag. Earth Science, 44(8): 2590-2596(in Chinese with English abstract). Li, Q., Wang, W., Wang, H. L., 2021. Anisotropic AVO Inversion of Seismic Wave in HTI Media. Journal of China Coal Society, 46(6): 1925-1935(in Chinese with English abstract). Li, X., Yan, W. P., Cui, Z. Q., et al., 2012. Prospecting Potential and Targets of Buried⁃Hill Oil and Gas Reservoirs in Bohai Bay Basin. Petroleum Geology & Experiment, 34(2): 140-144, 152(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2012.02.007 Liu, E. R., Yue, J. H., Pan, D. M., 2006. Frequency⁃Dependent Anisotropy: Effects of Multiple Fracture Sets on Shear⁃Wave Polarisations. Chinese Journal of Geophysics, 49(5): 1401-1409(in Chinese with English abstract). doi: 10.1002/cjg2.965 Ren, S. B., Han, T. C., Fu, L. Y., et al., 2021. Pressure Effects on the Anisotropic Velocities of Rocks with Aligned Fractures. Chinese Journal of Geophysics, 64(7): 2504-2514(in Chinese with English abstract). Sheng, D., Yu, Y., Qi, X., 2021. Application of Quadrupole Array Sonic Tool in Oilfield Exploration and Development. Well Logging Technology, 45(6): 573-579(in Chinese with English abstract). Song, G. M., Zhang, Y., Li, H. Y., et al., 2020. Types and Identification Characteristics of Archean Metamorphic Rocks of Buried Hill in 19: 6 Area of Bozhong Sag. Global Geology, 39(2): 344-352(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5589.2020.02.009 Wu, Q. X., Wei, A. J., Wang, Y. C., et al., 2018. Tectonic Difference and Genetic Mechanism of Buried Hill in Southern Bohai Area. Earth Science, 43(10): 3698-3708(in Chinese with English abstract). Xue, Y., Yang, H. F., Huang, J. B., et al., 2020. Technological and Theoretical Innovations in the Shallow Hydrocarbon Migrationand Accumulation of the Bohai Sea and the Exploration Breakthroughs. China Offshore Oil Gas, 32(2): 14-23(in Chinese with English abstract). Xue, Y. A., Li, H. Y., 2018. Discovery of a Large⁃Scale Condensate Gas Field in Deep Archean Metamorphic Buried Hills in the Bohai Sea and its Geological Significance. China Offshore Oil and Gas, 30(3): 1-9(in Chinese with English abstract). Xue, Y. A., Wang, Q., Niu, C. M., et al., 2020. Hydrocarbon Charging and Accumulation of BZ19⁃6 Gas Condensate Field in Deep Buried Hills of Bozhong Depression Bohai Sea. Oil & Gas Geology, 41(5): 891-903(in Chinese with English abstract). Zhang, A. J., Wang, Y., Sun, P. Y., et al., 2019. Equivalent HTI Approximation and Characteristics of Anisotropy Induced by Multiple Sets of Vertical Fractures. Chinese Journal of Geophysics, 62(5): 1835-1848(in Chinese with English abstract). Zhao, P. F., Liu, P., Ming, J., et al., 2021. Distribution Characteristics of Volcanic Rock in CFD Oilfield and Its Controlling Effect on Reservoir. Earth Science, 46(7): 2466-2480(in Chinese with English abstract). Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548(in Chinese with English abstract). Zhou, X. H., Zhang, R. C., Li, H. Y., et al., 2017. Major Controls on Natural Gas Accumulations in Deep⁃Buried Hills in Bozhong Depression, Bohai Bay Basin. Journal of China University of Petroleum (Edition of Natural Science), 41(1): 42-50(in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2017.01.005 Zhou, D. H., 2021. Research on Key Technologies of Deep Buried Hill Reservoir Prediction in Bohai oilfield: A Case Study of BZ 19⁃6 Buried Hill. China Offshore Oil and Gas, 2021, 33(3): 69-76(in Chinese with English abstract). Zhuang, C. X., Li, Y. H., Kong, F. T., et al., 2019. Formation Permeability Estimation Using Stoneley Waves from Logging while Drilling: Theory, Method, and Application. Chinese Journal of Geophysics, 62(11): 4482-4492(in Chinese with English abstract). doi: 10.6038/cjg2019N0122 陈怀震, 印兴耀, 张金强, 等, 2014. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究. 地球物理学报, 57(10): 3431-3441. doi: 10.6038/cjg20141029 邓运华. 2015. 渤海大中型潜山油气田形成机理与勘探实践. 石油学报, 36(3): 253-262. 范廷恩, 牛涛, 范洪军, 等. 2020. 渤中19⁃6凝析气田太古宇潜山储层发育主控因素及地质模式, 41(4): 170-178. 侯明才, 曹海洋, 李慧勇, 等. 2019. 渤海海域渤中19⁃6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. 蒋有录, 叶涛, 张善文, 等, 2015. 渤海湾盆地潜山油气富集特征与主控因素. 中国石油大学学报(自然科学版), 39(3): 20-30. doi: 10.3969/j.issn.1673-5005.2015.03.003 孔丽云, 王一博, 杨慧珠. 2012. 裂缝诱导HTI双孔隙介质中的裂缝参数分析. 地球物理学报, 55(1): 189-196. 李列, 盖永浩, 欧阳敏, 等, 2019. 南海西部双方位地震资料处理关键技术实践: 以珠三凹陷为例. 地球科学, 44(8): 2590-2596. doi: 10.3799/dqkx.2019.140 李勤, 王玮, 王瀚林. 2021. HTI介质地震波各向异性AVO反演. 煤炭学报, 46(6): 1925-1935. 李欣, 闫伟鹏, 崔周旗, 等, 2012. 渤海湾盆地潜山油气藏勘探潜力与方向. 石油实验地质, 34(2): 140-144. 刘恩儒, 岳建华, 潘冬明. 2006. 地震各向异性——多组裂隙对横波偏振的影响. 地球物理学报, 49(5): 1401-1409. doi: 10.3321/j.issn:0001-5733.2006.05.020 任舒波, 韩同城, 符力耘, 等, 2021. 压力对含裂缝岩石各向异性速度的影响. 地球物理学报, 64(7): 2504-2514. 盛达, 于洋, 祁晓. 2021. 随钻四极子声波测井仪在油田勘探开发中的应用. 测井技术, 45(6): 574-579. 宋国民, 张艳, 李慧勇, 等, 2020. 渤中凹陷19⁃6区太古界潜山变质岩岩石类型及鉴别特征. 世界地质, 39(2): 344-352. doi: 10.3969/j.issn.1004-5589.2020.02.009 吴庆勋, 韦阿娟, 王粤川, 等, 2018. 渤海南部地区潜山构造差异与成因机制. 地球科学, 43(10): 3698-3708. doi: 10.3799/dqkx.2018.578 薛永安, 李慧勇. 2018. 渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义. 中国海上油气, 30(3): 1-9. 薛永安, 王奇, 牛成民, 等, 2020. 渤海海域渤中凹陷渤中19-6深层潜山凝析气藏的充注成藏过程. 石油与天然气地质, 41(5): 891-903. 薛永安, 杨海风, 黄江波, 等, 2020. 渤海海域浅层油气运移成藏理论技术创新与勘探突破. 中国海上油气, 32(2): 14-23. 张安家, 王赟, 孙鹏远, 等, 2019. 多组垂直裂缝诱导各向异性的HTI近似及其特征分析. 地球物理学报, 62(5): 1835-1848. 赵鹏飞, 刘朋, 明君, 等, 2021. CFD油田火山岩展布特征及其对油藏的控制作用. 地球科学, 46(7): 2466-2480. doi: 10.3799/dqkx.2020.238 周东红. 2021. 渤海油田深埋潜山储层预测关键技术研究———以渤中19⁃6潜山为例. 中国海上油气, 33(3): 69-76. 周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. 周心怀, 张如才, 李慧勇, 等, 2017. 渤海湾盆地渤中凹陷深埋古潜山天然气成藏主控因素探讨. 中国石油大学学报(自然科学版), 41(1): 42-50. 庄春喜, 李杨虎, 孔凡童, 等, 2019. 随钻斯通利波测井反演地层渗透率的理论、方法及应用. 地球物理学报, 62(11): 4482-4492. -