• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    晚更新世北极楚克奇陆架边缘有机碳的差异埋藏

    宋赛 叶黎明 于晓果 吴自银 张永战 章伟艳 李中乔 季仲强 金海燕 张泳聪 杨映

    宋赛, 叶黎明, 于晓果, 吴自银, 张永战, 章伟艳, 李中乔, 季仲强, 金海燕, 张泳聪, 杨映, 2024. 晚更新世北极楚克奇陆架边缘有机碳的差异埋藏. 地球科学, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105
    引用本文: 宋赛, 叶黎明, 于晓果, 吴自银, 张永战, 章伟艳, 李中乔, 季仲强, 金海燕, 张泳聪, 杨映, 2024. 晚更新世北极楚克奇陆架边缘有机碳的差异埋藏. 地球科学, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105
    Song Sai, Ye Liming, Yu Xiaoguo, Wu Ziyin, Zhang Yongzhan, Zhang Weiyan, Li Zhongqiao, Ji Zhongqiang, Jin Haiyan, Zhang Yongcong, Yang Ying, 2024. Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene. Earth Science, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105
    Citation: Song Sai, Ye Liming, Yu Xiaoguo, Wu Ziyin, Zhang Yongzhan, Zhang Weiyan, Li Zhongqiao, Ji Zhongqiang, Jin Haiyan, Zhang Yongcong, Yang Ying, 2024. Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene. Earth Science, 49(9): 3387-3398. doi: 10.3799/dqkx.2023.105

    晚更新世北极楚克奇陆架边缘有机碳的差异埋藏

    doi: 10.3799/dqkx.2023.105
    基金项目: 

    国家重点研发计划项目 2022YFC2806600

    国家重点研发计划项目 2019YFE0120900

    自然资源部第二海洋研究所中央级公益性科研院所基本科研业务费专项 JG1512

    详细信息
      作者简介:

      宋赛(1996-),女,硕士研究生,自然地理学专业.ORCID:0009-0007-7090-1444. E-mail:3247504896@qq.com

      通讯作者:

      叶黎明,ORCID:0000-0002-2786-8550. E-mail:lmye@sio.org.cn

    • 中图分类号: P59

    Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene

    • 摘要: 有机碳埋藏是评价北冰洋碳封存能力的关键因素,但其在轨道时间尺度上的埋藏特征目前还存在很大的争论.通过分析楚克奇陆架边缘M04孔和周边表层沉积物中总有机碳、稳定碳同位素和生物标记物等指标,进一步探讨了晚更新世楚克奇陆架边缘有机碳的组成、来源、埋藏速率及其与周边冰盖的协同演化.结果表明,陆源有机碳是楚克奇陆架边缘有机碳埋藏的主体,且在冰期‒间冰期旋回中表现出了显著的差异性,间冰期(MIS1和MIS3)埋藏速率低,冰期(MIS4和MIS2)埋藏速率急骤升高.结合楚克奇陆架边缘的地貌特征和沉积环境,东西伯利亚冰盖(ESIS)的扩张和冰下排水系统的输运可能是陆架有机碳二次搬运、并在陆架边缘高速埋藏的主要控制因素.M04孔的沉积记录为梳理北冰洋有机碳的埋藏特征提供了新的视角,进一步揭示了高速沉积区有机碳埋藏的驱动机制,有助于客观评价北冰洋碳埋藏对全球碳封存的推动作用,但仍需要更多、特别是来自北极加拿大一侧的数据才能有效刻画北冰洋碳埋藏与气候转型之间的耦合关系.

       

    • 图  1  研究站位及区域概况

      红色五角星指示M04孔站位,黄色圆点指示表层样站位;TPD和BG及橙色虚线箭头分别代表穿极流和波弗特环流,据Talley et al2011);SCC、AC和ACC及绿色虚线箭头分别指示西伯利亚沿岸流、阿纳德流和阿拉斯加沿岸流,据Corlett and Pickart(2017);白色虚线指示1981年至2010年夏季平均海冰前缘,据Arguez et al.2012);MR、CP、NW、ESS、CS、BfS和BS分别代表门捷列夫洋脊、楚克奇海台、北风洋脊、楚克奇陆架、东西伯利亚陆架、波弗特陆架和白令海陆架;右上角小图中PS2741和96/12-1PC及橙色圆点指示参考柱样站位,据Löwemark et al.2014)、Stein et al.2001);ESIS、LIS、IIS、GIS和EAIS分别代表东西伯利亚、劳伦泰、因纽特、格陵兰和欧亚冰盖

      Fig.  1.  Core sites and geographic settings

      图  2  M04孔沉积地层和有机碳埋藏特征

      B1和B2指示富锰褐色层;W3指示富钙白色层;带数字的黑色和橙色箭头分别指示AMS14C和古地磁年龄(a B.P.),引自Ye et al.2022);深海氧同位素阶段(MIS)用白色框(间冰期)和黑色框(冰期)表示,灰色条带指示间冰期

      Fig.  2.  Sedimentary stratigraphy and organic carbon burial characters in Core M04

      图  3  稳定碳同位素与总有机碳含量和生物标志物的相关性

      Fig.  3.  Correlations of stable carbon isotope with its content and biomarkers

      图  4  晚更新世北冰洋有机碳的差异埋藏

      东西伯利亚冰盖的扩张期次引自Ye et al.2022);96/12-1PC孔有机碳数据引自Löwemark et al.2014);PS2741孔有机碳数据引自Stein et al.2001);全球大洋平均有机碳埋藏速率引自Cartapanis et al.2016);海平面变化数据引自Spratt and Lisiecki(2016

      Fig.  4.  Differential burial of organic carbon in the Arctic Ocean during the Late Pleistocene

      表  1  生物标志化合物分子组合指标

      Table  1.   Proxies of molecular combination of biomarkers

      年代 层位(cm) Σn-Alk
      (μg/(cm2·ka))
      ∑T/
      ∑M
      BIT OEP CPI
      MIS1 5 6.71 2.19 0.69 3.05 2.51
      11 7.69 2.68 0.74 2.89 2.27
      27 6.95 2.72 0.93 3.39 2.52
      MIS2 66 15.83 1.83 0.62 3.67 2.86
      106 14.68 2.06 0.73 3.83 2.93
      146 11.86 2.21 0.74 2.84 2.39
      下载: 导出CSV
    • Aller, R. C., Blair, N. E., Brunskill, G. J., 2008. Early Diagenetic Cycling, Incineration, and Burial of Sedimentary Organic Carbon in the Central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research: Earth Surface, 113(F1): F01S09. https://doi.org/10.1029/2006jf000689
      Anthony, K. W., Zimov, S. A., Grosse, G., et al., 2014. A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511(7510): 452-456. https://doi.org/10.1038/nature13560
      Arguez, A., Durre, I., Applequist, S., et al., 2012. NOAA's 1981-2010 U. S. Climate Normals: An Overview. Bulletin of the American Meteorological Society, 93(11): 1687-1697. https://doi.org/10.1175/bams-d-11-00197.1
      Astakhov, A. S., Gusev, E. A., Kolesnik, A. N., et al., 2013. Conditions of the Accumulation of Organic Matter and Metals in the Bottom Sediments of the Chukchi Sea. Russian Geology and Geophysics, 54(9): 1056-1070. https://doi.org/10.1016/j.rgg.2013.07.019
      Astakhov, A. S., Sattarova, V. V., Shi, X., et al., 2019. Distribution and Sources of Rare Earth Elements in Sediments of the Chukchi and East Siberian Seas, Polar Science, 20(Part2): 148-159. https://doi.org/10.1016/j.polar.2019.05.005
      Bates, N. R., 2006. Air-Sea CO2 Fluxes and the Continental Shelf Pump of Carbon in the Chukchi Sea Adjacent to the Arctic Ocean. Journal of Geophysical Research: Oceans, 111(C10): C10013. https://doi.org/10.1029/2005jc003083
      Belicka, L. L., Harvey, H. R., 2009. The Sequestration of Terrestrial Organic Carbon in Arctic Ocean Sediments: A Comparison of Methods and Implications for Regional Carbon Budgets. Geochimica et Cosmochimica Acta, 73(20): 6231-6248. https://doi.org/10.1016/j.gca.2009.07.020
      Bröder, L., Tesi, T., Andersson, A., et al., 2018. Bounding Cross-Shelf Transport Time and Degradation in Siberian-Arctic Land-Ocean Carbon Transfer. Nature Communications, 9: 806. https://doi.org/10.1038/s41467-018-03192-1
      Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep-Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796
      Coffin, R., Smith, J., Yoza, B., et al., 2017. Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf. Energies, 10(9): 1265. https://doi.org/10.3390/en10091265
      Corlett, W. B., Pickart, R. S., 2017. The Chukchi Slope Current. Progress in Oceanography, 153: 50-65. https://doi.org/10.1016/j.pocean.2017.04.005
      Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments-Ⅱ. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6
      Danielson, S. L., Eisner, L., Ladd, C., et al., 2017. A Comparison between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 135: 7-26. https://doi.org/10.1016/j.dsr2.2016.05.024
      Darby, D. A., Ortiz, J., Polyak, L., et al., 2009. The Role of Currents and Sea Ice in both Slowly Deposited Central Arctic and Rapidly Deposited Chukchi-Alaskan Margin Sediments. Global and Planetary Change, 68(1-2): 58-72. https://doi.org/10.1016/j.gloplacha.2009.02.007
      Ding, J. H., Sun, J. S., Zhang, J. C., et al., 2023. Characteristics and Geological Significance of Biomarker for the Upper Permian Dalong Formation Shale in Southern Anhui Province. Earth Science, 48(1): 235-251 (in Chinese with English abstract).
      Gao, C., Yu, X. G., Yang, Y., et al., 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017 (in Chinese with English abstract).
      Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., et al., 2013. Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin. Journal of Geophysical Research: Oceans, 118(9): 4017-4035. https://doi.org/10.1002/jgrc.20286
      Goñi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrigenous Organic Carbon to Surface Sediments in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477
      Harada, N., 2016. Review: Potential Catastrophic Reduction of Sea Ice in the Western Arctic Ocean: Its Impact on Biogeochemical Cycles and Marine Ecosystems. Global and Planetary Change, 136: 1-17. https://doi.org/10.1016/j.gloplacha.2015.11.005
      Hill, J. C., Driscoll, N. W., Brigham-Grette, J., et al., 2007. New Evidence for High Discharge to the Chukchi Shelf since the Last Glacial Maximum. Quaternary Research, 68(2): 271-279. https://doi.org/10.1016/j.yqres.2007.04.004
      Hill, V., Ardyna, M., Lee, S. H., et al., 2018. Decadal Trends in Phytoplankton Production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 152: 82-94. https://doi.org/10.1016/j.dsr2.2016.12.015
      Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-201410.5194/bgd-11-4771-2014
      Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033
      Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7: 10365. https://doi.org/10.1038/ncomms10365
      Ji, Z. Q., Jin, H. Y., Stein, R., et al., 2019. Distribution and Sources of Organic Matter in Surface Sediments of the Northern Bering and Chukchi Seas by Using Bulk and Tetraether Proxies. Journal of Ocean University of China, 18(3): 563-572. https://doi.org/10.1007/s11802-019-3869-7
      Kim, S., Polyak, L., Joe, Y. J., et al., 2021. Seismostratigraphic and Geomorphic Evidence for the Glacial History of the Northwestern Chukchi Margin, Arctic Ocean. Journal of Geophysical Research (Earth Surface), 126(4): e2020JF006030. https://doi.org/10.1029/2020JF00603010.1002/essoar.10505223.1
      Kremer, A., Stein, R., Fahl, K., et al., 2018. Changes in Sea Ice Cover and Ice Sheet Extent at the Yermak Plateau during the Last 160 ka: Reconstructions from Biomarker Records. Quaternary Science Reviews, 182: 93-108. https://doi.org/10.1016/j.quascirev.2017.12.016
      Li, Z. Y., Zhang, Y. G., Torres, M., et al., 2023. Neogene Burial of Organic Carbon in the Global Ocean. Nature, 613(7942): 90-95. https://doi.org/10.1038/s41586-022-05413-6
      Löwemark, L., März, C., O'Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92: 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018
      Martens, J., Wild, B., Muschitiello, F., et al., 2020. Remobilization of Dormant Carbon from Siberian-Arctic Permafrost during Three Past Warming Events. Science Advances, 6(42): eabb6546. https://doi.org/10.1126/sciadv.abb6546
      Martens, J., Wild, B., Pearce, C., et al., 2019. Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments during the End of the last Deglaciation. Global Biogeochemical Cycles, 33(1): 2-14. https://doi.org/10.1029/2018GB005969
      Naidu, A. S., Cooper, L. W., Finney, B. P., et al., 2000. Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments. International Journal of Earth Sciences, 89(3): 522-532. https://doi.org/10.1007/s005310000121
      Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6: 842-846. https://doi.org/10.1038/ngeo1904
      Nürnberg, D., Wollenburg, I., Dethleff, D., et al., 1994. Sediments in Arctic Sea Ice: Implications for Entrainment, Transport and Release. Marine Geology, 119(3-4): 185-214. https://doi.org/10.1016/0025-3227(94)90181-3
      O'Daly, S. H., Danielson, S. L., Hardy, S. M., et al., 2020. Extraordinary Carbon Fluxes on the Shallow Pacific Arctic Shelf during a Remarkably Warm and Low Sea Ice Period. Frontiers in Marine Science, 7: 548931. https://doi.org/10.3389/fmars.2020.548931
      Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043
      Peng, G., Matthews, J. L., Wang, M. Y., et al., 2020. What do Global Climate Models Tell us about Future Arctic Sea Ice Coverage Changes? Climate, 8(1): 15. https://doi.org/10.3390/cli8010015
      Pirtle-Levy, R., Grebmeier, J. M., Cooper, L. W., et al., 2009. Chlorophyll a in Arctic Sediments Implies Long Persistence of Algal Pigments. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(17): 1326-1338. https://doi.org/10.1016/j.dsr2.2008.10.022
      Polyak, L., Bischof, J., Ortiz, J. D., et al., 2009. Late Quaternary Stratigraphy and Sedimentation Patterns in the Western Arctic Ocean. Global and Planetary Change, 68(1-2): 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014
      Schreck, M., Nam, S. I., Polyak, L., et al., 2018. Improved Pleistocene Sediment Stratigraphy and Paleoenvironmental Implications for the Western Arctic Ocean off the East Siberian and Chukchi Margins. arktos, 4(1): 1-20. https://doi.org/10.1007/s41063-018-0057-8
      Schwab, M. S., Rickli, J. D., MacDonald, R. W., et al., 2021. Detrital Neodymium and (Radio) Carbon as Complementary Sedimentary Bedfellows? The Western Arctic Ocean as a Testbed. Geochimica et Cosmochimica Acta, 315: 101-126. https://doi.org/10.1016/j.gca.2021.08.019
      Semiletov, I., Pipko, I., Gustafsson, Ö., et al., 2016. Acidification of East Siberian Arctic Shelf Waters through Addition of Freshwater and Terrestrial Carbon. Nature Geoscience, 9: 361-365. https://doi.org/10.1038/ngeo2695
      Sparkes, R. B., Doğrul Selver, A., Bischoff, J., et al., 2015. GDGT Distributions on the East Siberian Arctic Shelf: Implications for Organic Carbon Export, Burial and Degradation. Biogeosciences, 12(12): 3753-3768. https://doi.org/10.5194/bg-12-3753-2015
      Spratt, R. M., Lisiecki, L. E., 2016. A Late Pleistocene Sea Level Stack. Climate of the Past, 12(4): 1079-1092. https://doi.org/10.5194/cp-12-1079-2016
      Stein, R., Boucsein, B., Fahl, K., et al., 2001. Accumulation of Particulate Organic Carbon at the Eurasian Continental Margin during Late Quaternary Times: Controlling Mechanisms and Paleoenvironmental Significance. Global and Planetary Change, 31(1-4): 87-104. https://doi.org/10.1016/s0921-8181(01)00114-x
      Stein, R., Fahl, K., Gierz, P., et al., 2017. Arctic Ocean Sea Ice Cover during the Penultimate Glacial and the last Interglacial. Nature Communications, 8: 373. https://doi.org/10.1038/s41467-017-00552-1
      Stein, R., Macdonald, R. W., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer Verlag, Berlin.
      Talley, L. D., Pickard, G. L., Emery, W. J., et al., 2011. Descriptive Physical Oceanography: An introduction. Academic Press, New York.
      Viscosi-Shirley, C., Mammone, K., Pisias, N., et al., 2003. Clay Mineralogy and Multi-Element Chemistry of Surface Sediments on the Siberian-Arctic Shelf: Implications for Sediment Provenance and Grain Size Sorting. Continental Shelf Research, 23(11-13): 1175-1200. https://doi.org/10.1016/s0278-4343(03)00091-8
      Vonk, J. E., Sánchez-García, L., Semiletov, I., et al., 2010. Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7(10): 3153-3166. https://doi.org/10.5194/bg-7-3153-2010
      Xiang, Y., Lam, P. J., 2020. Size-Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 125(8): e2020JC016144. https://doi.org/10.1029/2020jc016144
      Yamamoto, M., Okino, T., Sugisaki, S., et al., 2008. Late Pleistocene Changes in Terrestrial Biomarkers in Sediments from the Central Arctic Ocean. Organic Geochemistry, 39(6): 754-763. https://doi.org/10.1016/j.orggeochem.2008.04.009
      Ye, L. M., Yu, X. G., Xu, D., et al., 2022. Late Pleistocene Laurentide-Source Iceberg Outbursts in the Western Arctic Ocean. Quaternary Science Reviews, 297: 107836. https://doi.org/10.1016/j.quascirev.2022.107836
      Ye, L. M., Yu, X. G., Zhang, W. Y., et al., 2020. Ice Sheet Controls on Fine-Grained Deposition at the Southern Mendeleev Ridge since the Penultimate Interglacial. Acta Oceanologica Sinica, 39(9): 86-95. https://doi.org/10.1007/s13131-020-1649-2
      Yu, X. G., Bian, Y. P., Ruan, X. Y., et al., 2015. Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea. Marine Geology & Quaternary Geology, 35(3): 11-22 (in Chinese with English abstract).
      Zhang, J. H., Pei, H. Y., Zhao, S. J., et al., 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329 (in Chinese with English abstract).
      丁江辉, 孙金声, 张金川, 等, 2023. 皖南地区大隆组页岩生物标志化合物特征及其地质意义. 地球科学, 48(1): 235-251. doi: 10.3799/dqkx.2022.140
      高超, 于晓果, 杨义, 等, 2018. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726
      于晓果, 边叶萍, 阮小燕, 等, 2015. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究. 海洋地质与第四纪地质, 35(3): 11-22.
      张佳皓, 裴宏业, 赵世锦, 等, 2020. 样品保存过程中降解对GDGTs环境代用指标的影响. 地球科学, 45(1): 317-329. doi: 10.3799/dqkx.2018.319
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  254
    • HTML全文浏览量:  91
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-02
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回