Differential Burial of Particulate Organic Carbon at the Chukchi Continental Margin, Arctic Ocean since Late-Pleistocene
-
摘要: 有机碳埋藏是评价北冰洋碳封存能力的关键因素,但其在轨道时间尺度上的埋藏特征目前还存在很大的争论.通过分析楚克奇陆架边缘M04孔和周边表层沉积物中总有机碳、稳定碳同位素和生物标记物等指标,进一步探讨了晚更新世楚克奇陆架边缘有机碳的组成、来源、埋藏速率及其与周边冰盖的协同演化.结果表明,陆源有机碳是楚克奇陆架边缘有机碳埋藏的主体,且在冰期‒间冰期旋回中表现出了显著的差异性,间冰期(MIS1和MIS3)埋藏速率低,冰期(MIS4和MIS2)埋藏速率急骤升高.结合楚克奇陆架边缘的地貌特征和沉积环境,东西伯利亚冰盖(ESIS)的扩张和冰下排水系统的输运可能是陆架有机碳二次搬运、并在陆架边缘高速埋藏的主要控制因素.M04孔的沉积记录为梳理北冰洋有机碳的埋藏特征提供了新的视角,进一步揭示了高速沉积区有机碳埋藏的驱动机制,有助于客观评价北冰洋碳埋藏对全球碳封存的推动作用,但仍需要更多、特别是来自北极加拿大一侧的数据才能有效刻画北冰洋碳埋藏与气候转型之间的耦合关系.Abstract: The burial of particulate organic carbon is a critical factor in assessing the Arctic Ocean's carbon sequestration capacity, but its burial characteristics on orbital timescales remain highly debated. This study further explores the composition, source, and burial rate of organic matter in the Late Pleistocene and its co-evolution with the surrounding ice sheet by analyzing indicators such as total organic carbon, stable isotopes, and biomarkers in Core M04 at the Chukchi continental margin and the surrounding surface sediments. Results show that terrestrial organic carbon is the primary component of organic carbon burial at the Chukchi continental margin, with significant differences observed over glacial-interglacial cycles, with a low burial rate during the interglacial periods (MIS1 and MIS3) and a sharp increase in burial rate during the glacial periods (MIS4 and MIS2). Combined with the geomorphic features and depositional environment, the expansion of the East Siberian ice sheet (ESIS) and the transport of subglacial drainage systems may be the main controlling factors for the secondary transport of shelf organic carbon and its rapid burial at the continental margin. M04's records provide a new perspective to unravel the characteristics of organic carbon burial, further revealing the mechanisms in the high-sedimentation-rate area of the Arctic Ocean, and help to objectively evaluate the role of Arctic Ocean carbon burial in promoting global carbon sequestration. However, further research, especially records from Arctic Canada, is needed to fully describe the coupling relationship between Arctic Ocean carbon burial and climate transition.
-
Key words:
- Arctic Ocean /
- Chukchi continental margin /
- organic carbon /
- carbon burial /
- carbon sequestration /
- glacial period /
- Late Pleistocene
-
图 1 研究站位及区域概况
红色五角星指示M04孔站位,黄色圆点指示表层样站位;TPD和BG及橙色虚线箭头分别代表穿极流和波弗特环流,据Talley et al(2011);SCC、AC和ACC及绿色虚线箭头分别指示西伯利亚沿岸流、阿纳德流和阿拉斯加沿岸流,据Corlett and Pickart(2017);白色虚线指示1981年至2010年夏季平均海冰前缘,据Arguez et al.(2012);MR、CP、NW、ESS、CS、BfS和BS分别代表门捷列夫洋脊、楚克奇海台、北风洋脊、楚克奇陆架、东西伯利亚陆架、波弗特陆架和白令海陆架;右上角小图中PS2741和96/12-1PC及橙色圆点指示参考柱样站位,据Löwemark et al.(2014)、Stein et al.(2001);ESIS、LIS、IIS、GIS和EAIS分别代表东西伯利亚、劳伦泰、因纽特、格陵兰和欧亚冰盖
Fig. 1. Core sites and geographic settings
图 2 M04孔沉积地层和有机碳埋藏特征
B1和B2指示富锰褐色层;W3指示富钙白色层;带数字的黑色和橙色箭头分别指示AMS14C和古地磁年龄(a B.P.),引自Ye et al.(2022);深海氧同位素阶段(MIS)用白色框(间冰期)和黑色框(冰期)表示,灰色条带指示间冰期
Fig. 2. Sedimentary stratigraphy and organic carbon burial characters in Core M04
表 1 生物标志化合物分子组合指标
Table 1. Proxies of molecular combination of biomarkers
年代 层位(cm) Σn-Alk
(μg/(cm2·ka))∑T/
∑MBIT OEP CPI MIS1 5 6.71 2.19 0.69 3.05 2.51 11 7.69 2.68 0.74 2.89 2.27 27 6.95 2.72 0.93 3.39 2.52 MIS2 66 15.83 1.83 0.62 3.67 2.86 106 14.68 2.06 0.73 3.83 2.93 146 11.86 2.21 0.74 2.84 2.39 -
Aller, R. C., Blair, N. E., Brunskill, G. J., 2008. Early Diagenetic Cycling, Incineration, and Burial of Sedimentary Organic Carbon in the Central Gulf of Papua (Papua New Guinea). Journal of Geophysical Research: Earth Surface, 113(F1): F01S09. https://doi.org/10.1029/2006jf000689 Anthony, K. W., Zimov, S. A., Grosse, G., et al., 2014. A Shift of Thermokarst Lakes from Carbon Sources to Sinks during the Holocene Epoch. Nature, 511(7510): 452-456. https://doi.org/10.1038/nature13560 Arguez, A., Durre, I., Applequist, S., et al., 2012. NOAA's 1981-2010 U. S. Climate Normals: An Overview. Bulletin of the American Meteorological Society, 93(11): 1687-1697. https://doi.org/10.1175/bams-d-11-00197.1 Astakhov, A. S., Gusev, E. A., Kolesnik, A. N., et al., 2013. Conditions of the Accumulation of Organic Matter and Metals in the Bottom Sediments of the Chukchi Sea. Russian Geology and Geophysics, 54(9): 1056-1070. https://doi.org/10.1016/j.rgg.2013.07.019 Astakhov, A. S., Sattarova, V. V., Shi, X., et al., 2019. Distribution and Sources of Rare Earth Elements in Sediments of the Chukchi and East Siberian Seas, Polar Science, 20(Part2): 148-159. https://doi.org/10.1016/j.polar.2019.05.005 Bates, N. R., 2006. Air-Sea CO2 Fluxes and the Continental Shelf Pump of Carbon in the Chukchi Sea Adjacent to the Arctic Ocean. Journal of Geophysical Research: Oceans, 111(C10): C10013. https://doi.org/10.1029/2005jc003083 Belicka, L. L., Harvey, H. R., 2009. The Sequestration of Terrestrial Organic Carbon in Arctic Ocean Sediments: A Comparison of Methods and Implications for Regional Carbon Budgets. Geochimica et Cosmochimica Acta, 73(20): 6231-6248. https://doi.org/10.1016/j.gca.2009.07.020 Bröder, L., Tesi, T., Andersson, A., et al., 2018. Bounding Cross-Shelf Transport Time and Degradation in Siberian-Arctic Land-Ocean Carbon Transfer. Nature Communications, 9: 806. https://doi.org/10.1038/s41467-018-03192-1 Cartapanis, O., Bianchi, D., Jaccard, S. L., et al., 2016. Global Pulses of Organic Carbon Burial in Deep-Sea Sediments during Glacial Maxima. Nature Communications, 7: 10796. https://doi.org/10.1038/ncomms10796 Coffin, R., Smith, J., Yoza, B., et al., 2017. Spatial Variation in Sediment Organic Carbon Distribution across the Alaskan Beaufort Sea Shelf. Energies, 10(9): 1265. https://doi.org/10.3390/en10091265 Corlett, W. B., Pickart, R. S., 2017. The Chukchi Slope Current. Progress in Oceanography, 153: 50-65. https://doi.org/10.1016/j.pocean.2017.04.005 Cranwell, P. A., Eglinton, G., Robinson, N., 1987. Lipids of Aquatic Organisms as Potential Contributors to Lacustrine Sediments-Ⅱ. Organic Geochemistry, 11(6): 513-527. https://doi.org/10.1016/0146-6380(87)90007-6 Danielson, S. L., Eisner, L., Ladd, C., et al., 2017. A Comparison between Late Summer 2012 and 2013 Water Masses, Macronutrients, and Phytoplankton Standing Crops in the Northern Bering and Chukchi Seas. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 135: 7-26. https://doi.org/10.1016/j.dsr2.2016.05.024 Darby, D. A., Ortiz, J., Polyak, L., et al., 2009. The Role of Currents and Sea Ice in both Slowly Deposited Central Arctic and Rapidly Deposited Chukchi-Alaskan Margin Sediments. Global and Planetary Change, 68(1-2): 58-72. https://doi.org/10.1016/j.gloplacha.2009.02.007 Ding, J. H., Sun, J. S., Zhang, J. C., et al., 2023. Characteristics and Geological Significance of Biomarker for the Upper Permian Dalong Formation Shale in Southern Anhui Province. Earth Science, 48(1): 235-251 (in Chinese with English abstract). Gao, C., Yu, X. G., Yang, Y., et al., 2018. Characteristics of Lipid Biomakers and Their Response to Climate Change in Column Sediments from Bering Sea Shelf. Earth Science, 43(11): 4008-4017 (in Chinese with English abstract). Goñi, M. A., O'Connor, A. E., Kuzyk, Z. Z., et al., 2013. Distribution and Sources of Organic Matter in Surface Marine Sediments across the North American Arctic Margin. Journal of Geophysical Research: Oceans, 118(9): 4017-4035. https://doi.org/10.1002/jgrc.20286 Goñi, M. A., Ruttenberg, K. C., Eglinton, T. I., 1997. Sources and Contribution of Terrigenous Organic Carbon to Surface Sediments in the Gulf of Mexico. Nature, 389(6648): 275-278. https://doi.org/10.1038/38477 Harada, N., 2016. Review: Potential Catastrophic Reduction of Sea Ice in the Western Arctic Ocean: Its Impact on Biogeochemical Cycles and Marine Ecosystems. Global and Planetary Change, 136: 1-17. https://doi.org/10.1016/j.gloplacha.2015.11.005 Hill, J. C., Driscoll, N. W., Brigham-Grette, J., et al., 2007. New Evidence for High Discharge to the Chukchi Shelf since the Last Glacial Maximum. Quaternary Research, 68(2): 271-279. https://doi.org/10.1016/j.yqres.2007.04.004 Hill, V., Ardyna, M., Lee, S. H., et al., 2018. Decadal Trends in Phytoplankton Production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 152: 82-94. https://doi.org/10.1016/j.dsr2.2016.12.015 Hugelius, G., Strauss, J., Zubrzycki, S., et al., 2014. Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11(23): 6573-6593. https://doi.org/10.5194/bg-11-6573-201410.5194/bgd-11-4771-2014 Jakobsson, M., Andreassen, K., Bjarnadóttir, L. R., et al., 2014. Arctic Ocean Glacial History. Quaternary Science Reviews, 92: 40-67. https://doi.org/10.1016/j.quascirev.2013.07.033 Jakobsson, M., Nilsson, J., Anderson, L., et al., 2016. Evidence for an Ice Shelf Covering the Central Arctic Ocean during the Penultimate Glaciation. Nature Communications, 7: 10365. https://doi.org/10.1038/ncomms10365 Ji, Z. Q., Jin, H. Y., Stein, R., et al., 2019. Distribution and Sources of Organic Matter in Surface Sediments of the Northern Bering and Chukchi Seas by Using Bulk and Tetraether Proxies. Journal of Ocean University of China, 18(3): 563-572. https://doi.org/10.1007/s11802-019-3869-7 Kim, S., Polyak, L., Joe, Y. J., et al., 2021. Seismostratigraphic and Geomorphic Evidence for the Glacial History of the Northwestern Chukchi Margin, Arctic Ocean. Journal of Geophysical Research (Earth Surface), 126(4): e2020JF006030. https://doi.org/10.1029/2020JF00603010.1002/essoar.10505223.1 Kremer, A., Stein, R., Fahl, K., et al., 2018. Changes in Sea Ice Cover and Ice Sheet Extent at the Yermak Plateau during the Last 160 ka: Reconstructions from Biomarker Records. Quaternary Science Reviews, 182: 93-108. https://doi.org/10.1016/j.quascirev.2017.12.016 Li, Z. Y., Zhang, Y. G., Torres, M., et al., 2023. Neogene Burial of Organic Carbon in the Global Ocean. Nature, 613(7942): 90-95. https://doi.org/10.1038/s41586-022-05413-6 Löwemark, L., März, C., O'Regan, M., et al., 2014. Arctic Ocean Mn-Stratigraphy: Genesis, Synthesis and Inter-Basin Correlation. Quaternary Science Reviews, 92: 97-111. https://doi.org/10.1016/j.quascirev.2013.11.018 Martens, J., Wild, B., Muschitiello, F., et al., 2020. Remobilization of Dormant Carbon from Siberian-Arctic Permafrost during Three Past Warming Events. Science Advances, 6(42): eabb6546. https://doi.org/10.1126/sciadv.abb6546 Martens, J., Wild, B., Pearce, C., et al., 2019. Remobilization of Old Permafrost Carbon to Chukchi Sea Sediments during the End of the last Deglaciation. Global Biogeochemical Cycles, 33(1): 2-14. https://doi.org/10.1029/2018GB005969 Naidu, A. S., Cooper, L. W., Finney, B. P., et al., 2000. Organic Carbon Isotope Ratios (δ13C) of Arctic Amerasian Continental Shelf Sediments. International Journal of Earth Sciences, 89(3): 522-532. https://doi.org/10.1007/s005310000121 Niessen, F., Hong, J. K., Hegewald, A., et al., 2013. Repeated Pleistocene Glaciation of the East Siberian Continental Margin. Nature Geoscience, 6: 842-846. https://doi.org/10.1038/ngeo1904 Nürnberg, D., Wollenburg, I., Dethleff, D., et al., 1994. Sediments in Arctic Sea Ice: Implications for Entrainment, Transport and Release. Marine Geology, 119(3-4): 185-214. https://doi.org/10.1016/0025-3227(94)90181-3 O'Daly, S. H., Danielson, S. L., Hardy, S. M., et al., 2020. Extraordinary Carbon Fluxes on the Shallow Pacific Arctic Shelf during a Remarkably Warm and Low Sea Ice Period. Frontiers in Marine Science, 7: 548931. https://doi.org/10.3389/fmars.2020.548931 Olefeldt, D., Goswami, S., Grosse, G., et al., 2016. Circumpolar Distribution and Carbon Storage of Thermokarst Landscapes. Nature Communications, 7: 13043. https://doi.org/10.1038/ncomms13043 Peng, G., Matthews, J. L., Wang, M. Y., et al., 2020. What do Global Climate Models Tell us about Future Arctic Sea Ice Coverage Changes? Climate, 8(1): 15. https://doi.org/10.3390/cli8010015 Pirtle-Levy, R., Grebmeier, J. M., Cooper, L. W., et al., 2009. Chlorophyll a in Arctic Sediments Implies Long Persistence of Algal Pigments. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 56(17): 1326-1338. https://doi.org/10.1016/j.dsr2.2008.10.022 Polyak, L., Bischof, J., Ortiz, J. D., et al., 2009. Late Quaternary Stratigraphy and Sedimentation Patterns in the Western Arctic Ocean. Global and Planetary Change, 68(1-2): 5-17. https://doi.org/10.1016/j.gloplacha.2009.03.014 Schreck, M., Nam, S. I., Polyak, L., et al., 2018. Improved Pleistocene Sediment Stratigraphy and Paleoenvironmental Implications for the Western Arctic Ocean off the East Siberian and Chukchi Margins. arktos, 4(1): 1-20. https://doi.org/10.1007/s41063-018-0057-8 Schwab, M. S., Rickli, J. D., MacDonald, R. W., et al., 2021. Detrital Neodymium and (Radio) Carbon as Complementary Sedimentary Bedfellows? The Western Arctic Ocean as a Testbed. Geochimica et Cosmochimica Acta, 315: 101-126. https://doi.org/10.1016/j.gca.2021.08.019 Semiletov, I., Pipko, I., Gustafsson, Ö., et al., 2016. Acidification of East Siberian Arctic Shelf Waters through Addition of Freshwater and Terrestrial Carbon. Nature Geoscience, 9: 361-365. https://doi.org/10.1038/ngeo2695 Sparkes, R. B., Doğrul Selver, A., Bischoff, J., et al., 2015. GDGT Distributions on the East Siberian Arctic Shelf: Implications for Organic Carbon Export, Burial and Degradation. Biogeosciences, 12(12): 3753-3768. https://doi.org/10.5194/bg-12-3753-2015 Spratt, R. M., Lisiecki, L. E., 2016. A Late Pleistocene Sea Level Stack. Climate of the Past, 12(4): 1079-1092. https://doi.org/10.5194/cp-12-1079-2016 Stein, R., Boucsein, B., Fahl, K., et al., 2001. Accumulation of Particulate Organic Carbon at the Eurasian Continental Margin during Late Quaternary Times: Controlling Mechanisms and Paleoenvironmental Significance. Global and Planetary Change, 31(1-4): 87-104. https://doi.org/10.1016/s0921-8181(01)00114-x Stein, R., Fahl, K., Gierz, P., et al., 2017. Arctic Ocean Sea Ice Cover during the Penultimate Glacial and the last Interglacial. Nature Communications, 8: 373. https://doi.org/10.1038/s41467-017-00552-1 Stein, R., Macdonald, R. W., 2004. The Organic Carbon Cycle in the Arctic Ocean. Springer Verlag, Berlin. Talley, L. D., Pickard, G. L., Emery, W. J., et al., 2011. Descriptive Physical Oceanography: An introduction. Academic Press, New York. Viscosi-Shirley, C., Mammone, K., Pisias, N., et al., 2003. Clay Mineralogy and Multi-Element Chemistry of Surface Sediments on the Siberian-Arctic Shelf: Implications for Sediment Provenance and Grain Size Sorting. Continental Shelf Research, 23(11-13): 1175-1200. https://doi.org/10.1016/s0278-4343(03)00091-8 Vonk, J. E., Sánchez-García, L., Semiletov, I., et al., 2010. Molecular and Radiocarbon Constraints on Sources and Degradation of Terrestrial Organic Carbon along the Kolyma Paleoriver Transect, East Siberian Sea. Biogeosciences, 7(10): 3153-3166. https://doi.org/10.5194/bg-7-3153-2010 Xiang, Y., Lam, P. J., 2020. Size-Fractionated Compositions of Marine Suspended Particles in the Western Arctic Ocean: Lateral and Vertical Sources. Journal of Geophysical Research: Oceans, 125(8): e2020JC016144. https://doi.org/10.1029/2020jc016144 Yamamoto, M., Okino, T., Sugisaki, S., et al., 2008. Late Pleistocene Changes in Terrestrial Biomarkers in Sediments from the Central Arctic Ocean. Organic Geochemistry, 39(6): 754-763. https://doi.org/10.1016/j.orggeochem.2008.04.009 Ye, L. M., Yu, X. G., Xu, D., et al., 2022. Late Pleistocene Laurentide-Source Iceberg Outbursts in the Western Arctic Ocean. Quaternary Science Reviews, 297: 107836. https://doi.org/10.1016/j.quascirev.2022.107836 Ye, L. M., Yu, X. G., Zhang, W. Y., et al., 2020. Ice Sheet Controls on Fine-Grained Deposition at the Southern Mendeleev Ridge since the Penultimate Interglacial. Acta Oceanologica Sinica, 39(9): 86-95. https://doi.org/10.1007/s13131-020-1649-2 Yu, X. G., Bian, Y. P., Ruan, X. Y., et al., 2015. Glycerol Dialkyl Glyceroltetraethers and TEX86 Index in Surface Sediments of the Arctic Ocean and the Bering Sea. Marine Geology & Quaternary Geology, 35(3): 11-22 (in Chinese with English abstract). Zhang, J. H., Pei, H. Y., Zhao, S. J., et al., 2020. The Impact of Degradation on the Tetraether-Based Proxies during the Sample Storage. Earth Science, 45(1): 317-329 (in Chinese with English abstract). 丁江辉, 孙金声, 张金川, 等, 2023. 皖南地区大隆组页岩生物标志化合物特征及其地质意义. 地球科学, 48(1): 235-251. doi: 10.3799/dqkx.2022.140 高超, 于晓果, 杨义, 等, 2018. 白令海陆架区柱样沉积物脂类分子特征及其气候变化响应. 地球科学, 43(11): 4008-4017. doi: 10.3799/dqkx.2018.726 于晓果, 边叶萍, 阮小燕, 等, 2015. 北冰洋沉积物中四醚脂类来源与TEX86指数初步研究. 海洋地质与第四纪地质, 35(3): 11-22. 张佳皓, 裴宏业, 赵世锦, 等, 2020. 样品保存过程中降解对GDGTs环境代用指标的影响. 地球科学, 45(1): 317-329. doi: 10.3799/dqkx.2018.319 -