• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响

    侯玉松 刘苏 辛虎 吴吉春 胡晓农 邢立亭

    侯玉松, 刘苏, 辛虎, 吴吉春, 胡晓农, 邢立亭, 2024. 多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响. 地球科学, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107
    引用本文: 侯玉松, 刘苏, 辛虎, 吴吉春, 胡晓农, 邢立亭, 2024. 多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响. 地球科学, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107
    Hou Yusong, Liu Su, Xin Hu, Wu Jichun, Hu Xiaonong, Xing Liting, 2024. Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater. Earth Science, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107
    Citation: Hou Yusong, Liu Su, Xin Hu, Wu Jichun, Hu Xiaonong, Xing Liting, 2024. Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater. Earth Science, 49(7): 2589-2599. doi: 10.3799/dqkx.2023.107

    多孔介质固体颗粒粒径特征及膨胀作用对地下水孔隙尺度流场特征的影响

    doi: 10.3799/dqkx.2023.107
    基金项目: 

    国家自然科学基金项目 42002257

    山东省自然科学基金项目 ZR2020QD123

    山东省高校院所创新团队项目 2018GXRC012

    国家自然科学基金项目 41772257

    济南大学博士基金项目 XBS1911

    济南大学科技计划基金项目 XKY1922

    详细信息
      作者简介:

      侯玉松(1987-),男,讲师,博士,主要从事地下水循环、地下水数值模拟及污染防治等研究.ORCID:0000-0002-1158-2822. E-mail:stu_houys@ujn.edu.cn

      通讯作者:

      侯玉松, E-mail: stu_houys@ujn.edu.cn

      吴吉春,E-mail: jcwu@nju.edu.cn

    • 中图分类号: P345

    Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater

    • 摘要: 地下水孔隙尺度流场特征的研究对于深入理解地下水渗流、溶质运移具有重要意义.目前固体颗粒粒径特征不同时介质微观结构对孔隙尺度流场的影响尚不清楚.基于迭代重排算法构建了固体颗粒粒径分布特征、膨胀程度不同的多孔介质,基于此研究了固体颗粒平均粒径、粒径方差及膨胀作用对地下水流场特征的影响.结果表明,在介质孔隙率相同的条件下,固体颗粒平均粒径、粒径方差对多孔介质中流速的非均质性、速度概率密度分布等流场特征影响较小.而在同一介质中,当固体颗粒膨胀引起孔隙率减小时,平均粒径较小幅度的变化就会对以上流场特征产生显著影响.例如当固体颗粒膨胀程度增强时,粒径小幅度的增大,就会导致流场中优势流区和不流动区比例同时大幅度增加,流场非均质性显著增强,流速概率密度分布更加发散.

       

    • 图  1  基于迭代重排算法构建的多孔介质模型(灰色为孔隙部分,白色为固体颗粒)

      孔隙率n=0.45,平均粒径$ \stackrel{-}{d} $=2 mm,粒径方差$ {\sigma }_{d} $=0.5 mm

      Fig.  1.  Porous media model constructed by iterative rearrangement algorithm (grey is the pore fraction, white is the solid particle)

      图  2  固体颗粒平均粒径不同的多孔介质中粒径概率密度分布

      Fig.  2.  Particle size probability density distribution of porous media with different solid particle mean sizes

      图  3  固体颗粒膨胀程度不同时多孔介质的孔隙率

      Fig.  3.  The porosity of porous media with varying solid particle expansion degrees

      图  4  不同分选度的多孔介质中固体颗粒粒径概率密度分布

      Fig.  4.  The probability density distribution of particle size in porous media with different solid particle sorting degrees

      图  5  固体颗粒平均粒径不同的多孔介质中流速概率密度分布

      Fig.  5.  Probability density distribution of flow velocity in porous media with different mean particle sizes

      图  6  不同膨胀程度的多孔介质中主流方向平均流速为1 m/d的流场分布

      Fig.  6.  Flow field distribution of porous media with different solid expansion degrees, the average fluid flow velocity in all porous media is 1 m/d

      图  7  固体颗粒膨胀程度不同的多孔介质中流速概率密度分布

      a.半对数坐标图;b.常数坐标图.图a、图b中的虚线分别为不流动区、优势流区的归一化速度标准值

      Fig.  7.  The probability density distribution of flow velocity in porous media with different swelling degrees of solid grains

      图  8  固体颗粒膨胀程度不同的多孔介质中不流动区($ {u}_{x}/{\stackrel{-}{u}}_{x} $ < 0.01)局部分布图

      Fig.  8.  The local distribution of stagnant regions ($ {u}_{x}/{\stackrel{-}{u}}_{x} $ < 0.01) in porous media with different solid particle expansion degrees

      图  9  固体颗粒粒径方差不同的多孔介质中流速概率密度分布

      Fig.  9.  Probability density distribution of flow velocity in porous media with different solid grain size variances

      表  1  固体颗粒平均粒径不同的多孔介质中流场属性参数

      Table  1.   The property parameters of flow field in porous media in which the mean particle sizes are different

      平均半径$ \stackrel{-}{R} $(mm) 孔隙率
      $ n $
      $ {\stackrel{-}{u}}_{x} $
      (m/d)
      $ {u}_{x.\mathrm{m}\mathrm{a}\mathrm{x}} $
      (m/d)
      边界层长度
      (mm)
      优势流区平均占比
      (%)
      不流动区平均占比(%) 变异系数
      CVu
      0.23 0.51 10 90.861 15 068.38 0.28 3.07 0.947
      1 9.086 4 0.28 3.07 0.947
      0.1 0.908 63 0.28 3.07 0.947
      0.46 0.49 10 94.377 10 205.31 0.39 3.28 0.973
      1 9.442 7 0.39 3.28 0.972
      0.1 0.943 6 0.39 3.28 0.973
      0.74 0.49 10 98.608 6 680.92 0.45 3.56 0.994
      1 9.866 4 0.45 3.56 0.994
      0.1 0.986 66 0.45 3.56 0.994
      下载: 导出CSV

      表  2  固体颗粒膨胀程度不同的多孔介质中的流场属性参数

      Table  2.   Flow field property parameters in porous media with different solid grain swelling degrees

      膨胀效果
      $ {T}_{i} $
      孔隙率
      $ n $
      平均半径$ \stackrel{-}{R} $(mm) $ {\stackrel{-}{u}}_{x} $
      (m/d)
      $ {u}_{\mathrm{m}\mathrm{a}\mathrm{x}}/{\stackrel{-}{u}}_{x} $ 优势流区占比
      (%)
      不流动区占比
      (%)
      变异系数
      CVu
      速度概率密度峰值(%)
      $ {T}_{1}=0 $ 0.508 0.740 10 9.91 0.48 3.48 1.01 7.21
      1 9.92 0.49 3.48 1.02
      0.1 9.90 0.48 3.48 1.01
      $ {T}_{2}= $0.138 0.489 0.755 10 11.13 0.78 4.89 1.07 6.97
      1 11.13 0.78 4.88 1.07
      0.1 11.13 0.78 4.88 1.07
      $ {T}_{3}= $0.197 0.469 0.770 10 13.40 1.24 5.88 1.15 6.69
      1 13.34 1.24 5.88 1.15
      0.1 13.33 1.24 5.89 1.15
      $ {T}_{4}= $0.243 0.449 0.785 10 16.90 1.85 6.77 1.25 6.32
      1 17.00 1.84 6.77 1.25
      0.1 17.00 1.84 6.77 1.25
      $ {T}_{5}= $0.285 0.427 0.800 10 20.00 2.60 8.10 1.38 5.84
      1 20.03 2.60 8.09 1.38
      0.1 20.03 2.60 8.09 1.38
      下载: 导出CSV

      表  3  固体颗粒粒径分选度不同的多孔介质流体流速变异函数

      Table  3.   Variation function of fluid flow velocity in porous media with different solid particle sorting degrees

      多孔介质 $ C{V}_{u} $ $ C{V}_{{u}_{x}} $ $ C{V}_{{u}_{y}} $
      $ {\sigma }_{d1}= $0.18 mm 1.069 0.978 0.610
      $ {\sigma }_{d2}= $0.24 mm 1.079 0.984 0.623
      $ {\sigma }_{d3}= $0.30 mm 1.043 0.957 0.591
      下载: 导出CSV
    • Aziz, R., Niasar, V., Erfani, H., et al., 2020. Impact of Pore Morphology on Two-Phase Flow Dynamics under Wettability Alteration. Fuel, 268: 117315. https://doi.org/10.1016/j.fuel.2020.117315
      Bijeljic, B., Mostaghimi, P., Blunt, M. J., 2013a. Insights into Non-Fickian Solute Transport in Carbonates. Water Resources Research, 49(5): 2714-2728. https://doi.org/10.1002/wrcr.20238
      Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013b. Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images. Physical Review E, 87: 013011. https://doi.org/10.1103/physreve.87.013011
      Chai, B., Shi, X. S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646 (in Chinese with English abstract).
      Chen, S. B., Gong, Z., Li, X. Y., et al., 2021. Pore Structure and Heterogeneity of Shale Gas Reservoirs and Its Effect on Gas Storage Capacity in the Qiongzhusi Formation. Geoscience Frontiers, 12(6): 101244. https://doi.org/10.1016/j.gsf.2021.101244
      Dentz, M., Cortis, A., Scher, H., et al., 2004. Time Behavior of Solute Transport in Heterogeneous Media: Transition from Anomalous to Normal Transport. Advances in Water Resources, 27(2): 155-173. https://doi.org/10.1016/j.advwatres.2003.11.002
      Di Palma, P. R., Parmigiani, A., Huber, C., et al., 2017. Pore-Scale Simulations of Concentration Tails in Heterogeneous Porous Media. Journal of Contaminant Hydrology, 205: 47-56. https://doi.org/10.1016/j.jconhyd.2017.08.003
      Dou, Z., Chen, Z., Zhou, Z. F., et al., 2018. Influence of Eddies on Conservative Solute Transport through a 2D Single Self-Affine Fracture. International Journal of Heat and Mass Transfer, 121: 597-606. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.037
      Edery, Y., Guadagnini, A., Scher, H., et al., 2014. Origins of Anomalous Transport in Heterogeneous Media: Structural and Dynamic Controls. Water Resources Research, 50(2): 1490-1505. https://doi.org/10.1002/2013wr015111
      Hochstetler, D. L., Rolle, M., Chiogna, G., et al., 2013. Effects of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes: Insights from Pore-Scale Simulations and Darcy-Scale Experiments. Advances in Water Resources, 54: 1-10. https://doi.org/10.1016/j.advwatres.2012.12.007
      Hou, Y. S., Jiang, J. G., Wu, J. C., 2018. Anomalous Solute Transport in Cemented Porous Media: Pore-Scale Simulations. Soil Science Society of America Journal, 82(1): 10-19. https://doi.org/10.2136/sssaj2017.04.0125
      Hou, Y. S., Wu, J. C., Jiang, J. G., 2019. Time Behavior of Anomalous Solute Transport in Three-Dimensional Cemented Porous Media. Soil Science Society of America Journal, 83(4): 1012-1023. https://doi.org/10.2136/sssaj2018.12.0476
      Hui, W., Xue, Y. Z., Bai, X. L., et al., 2020. Influence of Micro-Pore Structure on the Movable Fluid Occurrence in Tight Sandstone Reservoir. Special Oil & Gas Reservoirs, 27(2): 87-92 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2020.02.013
      Lee, J., Rolle, M., Kitanidis, P. K., 2018. Longitudinal Dispersion Coefficients for Numerical Modeling of Groundwater Solute Transport in Heterogeneous Formations. Journal of Contaminant Hydrology, 212: 41-54. https://doi.org/10.1016/j.jconhyd.2017.09.004
      Li, X., 2018. Study on the Expansion Characteristics of Neogene System in Xining Basin (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract).
      Li, Z. X., Wan, J. W., Huang, K., et al., 2017. Effects of Particle Diameter on Flow Characteristics in Sand Columns. International Journal of Heat and Mass Transfer, 104: 533-536. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.085
      Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2019. Particle Size Distribution on Forchheimer Flow and Transition of Flow Regimes in Porous Media. Journal of Hydrology, 574: 1-11. https://doi.org/10.1016/j.jhydrol.2019.04.026
      Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2020. An Energy Perspective of Pore Scale Simulation and Experimental Evidence of Fluid Flow in a Rough Conduit. Journal of Hydrology, 587: 125010. https://doi.org/10.1016/j.jhydrol.2020.125010
      Liu, Y., Zhang, Q., Qian, J. Z., et al., 2022. Simulation of Bimolecular Reactive Solute Transport in Porous Media via Image Analysis. Earth Science Frontiers, 29(3): 248-255 (in Chinese with English abstract).
      Molins, S., Trebotich, D., Steefel, C. I., et al., 2012. An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation. Water Resources Research, 48(3): W03527. https://doi.org/10.1029/2011wr011404
      Qiao, J. C., Zeng, J. H., Ma, Y., et al., 2020. Effects of Mineralogy on Pore Structure and Fluid Flow Capacity of Deeply Buried Sandstone Reservoirs with a Case Study in the Junggar Basin. Journal of Petroleum Science and Engineering, 189: 106986. https://doi.org/10.1016/j.petrol.2020.106986
      Rolle, M., Kitanidis, P. K., 2014. Effects of Compound- Specific Dilution on Transient Transport and Solute Breakthrough: A Pore-Scale Analysis. Advances in Water Resources, 71: 186-199. https://doi.org/10.1016/j.advwatres.2014.06.012
      Sánchez-Vila, X., Carrera, J., 2004. On the Striking Similarity between the Moments of Breakthrough Curves for a Heterogeneous Medium and a Homogeneous Medium with a Matrix Diffusion Term. Journal of Hydrology, 294(1-3): 164-175. https://doi.org/10.1016/j.jhydrol.2003.12.046
      Sharma, P. K., Agarwal, P., Mehdinejadiani, B., 2022. Study on Non-Fickian Behavior for Solute Transport through Porous Media. ISH Journal of Hydraulic Engineering, 28(sup1): 171-179. https://doi.org/10.1080/09715010.2020.1727783
      Srzic, V., Cvetkovic, V., Andricevic, R., et al., 2013. Impact of Aquifer Heterogeneity Structure and Local-Scale Dispersion on Solute Concentration Uncertainty. Water Resources Research, 49(6): 3712-3728. https://doi.org/10.1002/wrcr.20314
      Wang, L. G., Zhang, Y. Z., Zhang, N. Y., et al., 2020. Pore Structure Characterization and Permeability Estimation with a Modified Multimodal Thomeer Pore Size Distribution Function for Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 193: 107426. https://doi.org/10.1016/j.petrol.2020.107426
      Wang, L. L., Wang, Z. T., Ding, Z. P., et al., 2022. Factors Influencing Accuracy of Free Swelling Ratio of Expansive Soil. Journal of Central South University, 29(5): 1653-1662. https://doi.org/10.1007/s11771-022-4986-9
      Wei, H. X., Lai, F. P., Jiang, Z. Y., et al., 2020. Micropore Structure and Fluid Distribution Characteristics of Yanchang Tight Gas Reservoir. Fault-Block Oil & Gas Field, 27(2): 182-187 (in Chinese with English abstract).
      Werth, C. J., Cirpka, O. A., Grathwohl, P., 2006. Enhanced Mixing and Reaction through Flow Focusing in Heterogeneous Porous Media. Water Resources Research, 42(12): W12414. https://doi.org/10.1029/2005wr004511
      Willingham, T., Zhang, C. Y., Werth, C. J., et al., 2010. Using Dispersivity Values to Quantify the Effects of Pore-Scale Flow Focusing on Enhanced Reaction along a Transverse Mixing Zone. Advances in Water Resources, 33(4): 525-535. https://doi.org/10.1016/j.advwatres.2010.02.004
      Wirner, F., Scholz, C., Bechinger, C., 2014. Geometrical Interpretation of Long-Time Tails of First-Passage Time Distributions in Porous Media with Stagnant Parts. Physical Review E, 90(1): 013025. https://doi.org/10.1103/physreve.90.013025
      Xu, P., Li, C. H., Liu, H. C., et al., 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378 (in Chinese with English abstract).
      Xue, J. F., Qi, Z. W., Chen, J. L., et al., 2023. Dynamic of Soil Porosity and Water Content under Tillage during Summer Fallow in the Dryland Wheat Fields of the Loess Plateau in China. Land, 12(1): 230. https://doi.org/10.3390/land12010230
      Yang, A., Miller, C. T., Turcoliver, L. D., 1996. Simulation of Correlated and Uncorrelated Packing of Random Size Spheres. Physical Review E, 53(2): 1516-1524. https://doi.org/10.1103/physreve.53.1516
      Yao, L. L., 2021. Evaluation of Microscopic Pore Structure Characteristics and Flow Mechanism of Shale Oil Reservoirs (Dissertation). Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang (in Chinese with English abstract).
      Zhang, X. Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract).
      Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract).
      Zhou, K., Chen, X. P., Qu, X. B., 2022. Determining Methods of Micro-Pore and Liquids and Adsorption- Desorption Experiment for Shale Reservoir: Taking Member He-8 Reservoir in Ordos Yulin Area as an Example. Petroleum Geology & Oilfield Development in Daqing, 41(2): 139-146 (in Chinese with English abstract).
      Zhu, Y. H., Zhan, H. B., Jin, M. G., 2016. Analytical Solutions of Solute Transport in a Fracture-Matrix System with Different Reaction Rates for Fracture and Matrix. Journal of Hydrology, 539: 447-456. https://doi.org/10.1016/j.jhydrol.2016.05.056
      柴波, 史绪山, 杜娟, 等, 2022. 如何实现区域岩体结构精细化分析?综述与设想. 地球科学, 47(12): 4629-4646. doi: 10.3799/dqkx.2022.108
      惠威, 薛宇泽, 白晓路, 等, 2020. 致密砂岩储层微观孔隙结构对可动流体赋存特征的影响. 特种油气藏, 27(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002013.htm
      李先, 2018. 西宁盆地新近系泥岩膨胀特性研究(硕士学位论文). 成都: 西南交通大学
      刘咏, 张琪, 钱家忠, 等, 2022. 基于图像法的多孔介质双分子反应溶质运移模拟. 地学前缘, 29(3): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203022.htm
      魏赫鑫, 赖枫鹏, 蒋志宇, 等, 2020. 延长致密气储层微观孔隙结构及流体分布特征. 断块油气田, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm
      徐鹏, 李翠红, 柳海成, 等, 2017. 多尺度多孔介质有效气体输运参数的分形特征. 地球科学, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104
      姚兰兰, 2021. 页岩油储层微观孔隙结构特征评价及渗流机理研究(硕士学位论文). 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所).
      张学羿, 窦智, 2018. 黏土微观孔隙结构对可溶性污染物运移的影响. 水文地质工程地质, 45(4): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804023.htm
      赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212
      周凯, 陈西泮, 屈兴勃, 2022. 页岩储层微观孔隙、流体测定方法及吸附‒解吸实验——以鄂尔多斯榆林地区盒8段储层为例. 大庆石油地质与开发, 41(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202202019.htm
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  461
    • HTML全文浏览量:  149
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-21
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回