Influence of Particle Size Characteristics and Swelling of Solid Particles in Porous Media on Pore-Scale Flow Field Characteristics of Groundwater
-
摘要: 地下水孔隙尺度流场特征的研究对于深入理解地下水渗流、溶质运移具有重要意义.目前固体颗粒粒径特征不同时介质微观结构对孔隙尺度流场的影响尚不清楚.基于迭代重排算法构建了固体颗粒粒径分布特征、膨胀程度不同的多孔介质,基于此研究了固体颗粒平均粒径、粒径方差及膨胀作用对地下水流场特征的影响.结果表明,在介质孔隙率相同的条件下,固体颗粒平均粒径、粒径方差对多孔介质中流速的非均质性、速度概率密度分布等流场特征影响较小.而在同一介质中,当固体颗粒膨胀引起孔隙率减小时,平均粒径较小幅度的变化就会对以上流场特征产生显著影响.例如当固体颗粒膨胀程度增强时,粒径小幅度的增大,就会导致流场中优势流区和不流动区比例同时大幅度增加,流场非均质性显著增强,流速概率密度分布更加发散.Abstract: The study of groundwater pore-scale flow field characteristics is of great significance for the in-depth understanding of groundwater seepage and solute transport. However, the effect of the microstructure of porous media with different particle size characteristics on the pore-scale flow field is yet unclear. This paper constructs porous media with different particle size distribution characteristics and swelling degrees of solid particles using an iterative rearrangement algorithm. On this basis, the effects of the average particle size, particle size variance and solid particle swelling degrees on the characteristics of groundwater flow field are investigated. The results show that under the condition of the same porosity of the porous media, the mean particle size and particle size variance of solid grains have less influence on the flow field characteristics such as the heterogeneity and probability density distribution of flow velocity in porous media. However, in the same medium, when the expansion of solid particles causes a reduction in porosity, a smaller change in average particle size can have a significant effect on the above flow field characteristics. For example, when the expansion degree of solid particles increases, a slight increase in particle size will lead to a large rise in the proportion of the dominant flow area and the stagnant region at the same time, a significant enhancement in the heterogeneity of flow field, and a significant growth in the divergence degree of the flow velocity probability density distribution.
-
表 1 固体颗粒平均粒径不同的多孔介质中流场属性参数
Table 1. The property parameters of flow field in porous media in which the mean particle sizes are different
平均半径$ \stackrel{-}{R} $(mm) 孔隙率
$ n $$ {\stackrel{-}{u}}_{x} $
(m/d)$ {u}_{x.\mathrm{m}\mathrm{a}\mathrm{x}} $
(m/d)边界层长度
(mm)优势流区平均占比
(%)不流动区平均占比(%) 变异系数
CVu0.23 0.51 10 90.861 15 068.38 0.28 3.07 0.947 1 9.086 4 0.28 3.07 0.947 0.1 0.908 63 0.28 3.07 0.947 0.46 0.49 10 94.377 10 205.31 0.39 3.28 0.973 1 9.442 7 0.39 3.28 0.972 0.1 0.943 6 0.39 3.28 0.973 0.74 0.49 10 98.608 6 680.92 0.45 3.56 0.994 1 9.866 4 0.45 3.56 0.994 0.1 0.986 66 0.45 3.56 0.994 表 2 固体颗粒膨胀程度不同的多孔介质中的流场属性参数
Table 2. Flow field property parameters in porous media with different solid grain swelling degrees
膨胀效果
$ {T}_{i} $孔隙率
$ n $平均半径$ \stackrel{-}{R} $(mm) $ {\stackrel{-}{u}}_{x} $
(m/d)$ {u}_{\mathrm{m}\mathrm{a}\mathrm{x}}/{\stackrel{-}{u}}_{x} $ 优势流区占比
(%)不流动区占比
(%)变异系数
CVu速度概率密度峰值(%) $ {T}_{1}=0 $ 0.508 0.740 10 9.91 0.48 3.48 1.01 7.21 1 9.92 0.49 3.48 1.02 0.1 9.90 0.48 3.48 1.01 $ {T}_{2}= $0.138 0.489 0.755 10 11.13 0.78 4.89 1.07 6.97 1 11.13 0.78 4.88 1.07 0.1 11.13 0.78 4.88 1.07 $ {T}_{3}= $0.197 0.469 0.770 10 13.40 1.24 5.88 1.15 6.69 1 13.34 1.24 5.88 1.15 0.1 13.33 1.24 5.89 1.15 $ {T}_{4}= $0.243 0.449 0.785 10 16.90 1.85 6.77 1.25 6.32 1 17.00 1.84 6.77 1.25 0.1 17.00 1.84 6.77 1.25 $ {T}_{5}= $0.285 0.427 0.800 10 20.00 2.60 8.10 1.38 5.84 1 20.03 2.60 8.09 1.38 0.1 20.03 2.60 8.09 1.38 表 3 固体颗粒粒径分选度不同的多孔介质流体流速变异函数
Table 3. Variation function of fluid flow velocity in porous media with different solid particle sorting degrees
多孔介质 $ C{V}_{u} $ $ C{V}_{{u}_{x}} $ $ C{V}_{{u}_{y}} $ $ {\sigma }_{d1}= $0.18 mm 1.069 0.978 0.610 $ {\sigma }_{d2}= $0.24 mm 1.079 0.984 0.623 $ {\sigma }_{d3}= $0.30 mm 1.043 0.957 0.591 -
Aziz, R., Niasar, V., Erfani, H., et al., 2020. Impact of Pore Morphology on Two-Phase Flow Dynamics under Wettability Alteration. Fuel, 268: 117315. https://doi.org/10.1016/j.fuel.2020.117315 Bijeljic, B., Mostaghimi, P., Blunt, M. J., 2013a. Insights into Non-Fickian Solute Transport in Carbonates. Water Resources Research, 49(5): 2714-2728. https://doi.org/10.1002/wrcr.20238 Bijeljic, B., Raeini, A., Mostaghimi, P., et al., 2013b. Predictions of Non-Fickian Solute Transport in Different Classes of Porous Media Using Direct Simulation on Pore-Scale Images. Physical Review E, 87: 013011. https://doi.org/10.1103/physreve.87.013011 Chai, B., Shi, X. S., Du, J., et al., 2022. How to Realize Elaborated Analysis of Regional Rock Mass Structure? A Review and Idea. Earth Science, 47(12): 4629-4646 (in Chinese with English abstract). Chen, S. B., Gong, Z., Li, X. Y., et al., 2021. Pore Structure and Heterogeneity of Shale Gas Reservoirs and Its Effect on Gas Storage Capacity in the Qiongzhusi Formation. Geoscience Frontiers, 12(6): 101244. https://doi.org/10.1016/j.gsf.2021.101244 Dentz, M., Cortis, A., Scher, H., et al., 2004. Time Behavior of Solute Transport in Heterogeneous Media: Transition from Anomalous to Normal Transport. Advances in Water Resources, 27(2): 155-173. https://doi.org/10.1016/j.advwatres.2003.11.002 Di Palma, P. R., Parmigiani, A., Huber, C., et al., 2017. Pore-Scale Simulations of Concentration Tails in Heterogeneous Porous Media. Journal of Contaminant Hydrology, 205: 47-56. https://doi.org/10.1016/j.jconhyd.2017.08.003 Dou, Z., Chen, Z., Zhou, Z. F., et al., 2018. Influence of Eddies on Conservative Solute Transport through a 2D Single Self-Affine Fracture. International Journal of Heat and Mass Transfer, 121: 597-606. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.037 Edery, Y., Guadagnini, A., Scher, H., et al., 2014. Origins of Anomalous Transport in Heterogeneous Media: Structural and Dynamic Controls. Water Resources Research, 50(2): 1490-1505. https://doi.org/10.1002/2013wr015111 Hochstetler, D. L., Rolle, M., Chiogna, G., et al., 2013. Effects of Compound-Specific Transverse Mixing on Steady-State Reactive Plumes: Insights from Pore-Scale Simulations and Darcy-Scale Experiments. Advances in Water Resources, 54: 1-10. https://doi.org/10.1016/j.advwatres.2012.12.007 Hou, Y. S., Jiang, J. G., Wu, J. C., 2018. Anomalous Solute Transport in Cemented Porous Media: Pore-Scale Simulations. Soil Science Society of America Journal, 82(1): 10-19. https://doi.org/10.2136/sssaj2017.04.0125 Hou, Y. S., Wu, J. C., Jiang, J. G., 2019. Time Behavior of Anomalous Solute Transport in Three-Dimensional Cemented Porous Media. Soil Science Society of America Journal, 83(4): 1012-1023. https://doi.org/10.2136/sssaj2018.12.0476 Hui, W., Xue, Y. Z., Bai, X. L., et al., 2020. Influence of Micro-Pore Structure on the Movable Fluid Occurrence in Tight Sandstone Reservoir. Special Oil & Gas Reservoirs, 27(2): 87-92 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2020.02.013 Lee, J., Rolle, M., Kitanidis, P. K., 2018. Longitudinal Dispersion Coefficients for Numerical Modeling of Groundwater Solute Transport in Heterogeneous Formations. Journal of Contaminant Hydrology, 212: 41-54. https://doi.org/10.1016/j.jconhyd.2017.09.004 Li, X., 2018. Study on the Expansion Characteristics of Neogene System in Xining Basin (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract). Li, Z. X., Wan, J. W., Huang, K., et al., 2017. Effects of Particle Diameter on Flow Characteristics in Sand Columns. International Journal of Heat and Mass Transfer, 104: 533-536. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.085 Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2019. Particle Size Distribution on Forchheimer Flow and Transition of Flow Regimes in Porous Media. Journal of Hydrology, 574: 1-11. https://doi.org/10.1016/j.jhydrol.2019.04.026 Li, Z. X., Wan, J. W., Zhan, H. B., et al., 2020. An Energy Perspective of Pore Scale Simulation and Experimental Evidence of Fluid Flow in a Rough Conduit. Journal of Hydrology, 587: 125010. https://doi.org/10.1016/j.jhydrol.2020.125010 Liu, Y., Zhang, Q., Qian, J. Z., et al., 2022. Simulation of Bimolecular Reactive Solute Transport in Porous Media via Image Analysis. Earth Science Frontiers, 29(3): 248-255 (in Chinese with English abstract). Molins, S., Trebotich, D., Steefel, C. I., et al., 2012. An Investigation of the Effect of Pore Scale Flow on Average Geochemical Reaction Rates Using Direct Numerical Simulation. Water Resources Research, 48(3): W03527. https://doi.org/10.1029/2011wr011404 Qiao, J. C., Zeng, J. H., Ma, Y., et al., 2020. Effects of Mineralogy on Pore Structure and Fluid Flow Capacity of Deeply Buried Sandstone Reservoirs with a Case Study in the Junggar Basin. Journal of Petroleum Science and Engineering, 189: 106986. https://doi.org/10.1016/j.petrol.2020.106986 Rolle, M., Kitanidis, P. K., 2014. Effects of Compound- Specific Dilution on Transient Transport and Solute Breakthrough: A Pore-Scale Analysis. Advances in Water Resources, 71: 186-199. https://doi.org/10.1016/j.advwatres.2014.06.012 Sánchez-Vila, X., Carrera, J., 2004. On the Striking Similarity between the Moments of Breakthrough Curves for a Heterogeneous Medium and a Homogeneous Medium with a Matrix Diffusion Term. Journal of Hydrology, 294(1-3): 164-175. https://doi.org/10.1016/j.jhydrol.2003.12.046 Sharma, P. K., Agarwal, P., Mehdinejadiani, B., 2022. Study on Non-Fickian Behavior for Solute Transport through Porous Media. ISH Journal of Hydraulic Engineering, 28(sup1): 171-179. https://doi.org/10.1080/09715010.2020.1727783 Srzic, V., Cvetkovic, V., Andricevic, R., et al., 2013. Impact of Aquifer Heterogeneity Structure and Local-Scale Dispersion on Solute Concentration Uncertainty. Water Resources Research, 49(6): 3712-3728. https://doi.org/10.1002/wrcr.20314 Wang, L. G., Zhang, Y. Z., Zhang, N. Y., et al., 2020. Pore Structure Characterization and Permeability Estimation with a Modified Multimodal Thomeer Pore Size Distribution Function for Carbonate Reservoirs. Journal of Petroleum Science and Engineering, 193: 107426. https://doi.org/10.1016/j.petrol.2020.107426 Wang, L. L., Wang, Z. T., Ding, Z. P., et al., 2022. Factors Influencing Accuracy of Free Swelling Ratio of Expansive Soil. Journal of Central South University, 29(5): 1653-1662. https://doi.org/10.1007/s11771-022-4986-9 Wei, H. X., Lai, F. P., Jiang, Z. Y., et al., 2020. Micropore Structure and Fluid Distribution Characteristics of Yanchang Tight Gas Reservoir. Fault-Block Oil & Gas Field, 27(2): 182-187 (in Chinese with English abstract). Werth, C. J., Cirpka, O. A., Grathwohl, P., 2006. Enhanced Mixing and Reaction through Flow Focusing in Heterogeneous Porous Media. Water Resources Research, 42(12): W12414. https://doi.org/10.1029/2005wr004511 Willingham, T., Zhang, C. Y., Werth, C. J., et al., 2010. Using Dispersivity Values to Quantify the Effects of Pore-Scale Flow Focusing on Enhanced Reaction along a Transverse Mixing Zone. Advances in Water Resources, 33(4): 525-535. https://doi.org/10.1016/j.advwatres.2010.02.004 Wirner, F., Scholz, C., Bechinger, C., 2014. Geometrical Interpretation of Long-Time Tails of First-Passage Time Distributions in Porous Media with Stagnant Parts. Physical Review E, 90(1): 013025. https://doi.org/10.1103/physreve.90.013025 Xu, P., Li, C. H., Liu, H. C., et al., 2017. Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media. Earth Science, 42(8): 1373-1378 (in Chinese with English abstract). Xue, J. F., Qi, Z. W., Chen, J. L., et al., 2023. Dynamic of Soil Porosity and Water Content under Tillage during Summer Fallow in the Dryland Wheat Fields of the Loess Plateau in China. Land, 12(1): 230. https://doi.org/10.3390/land12010230 Yang, A., Miller, C. T., Turcoliver, L. D., 1996. Simulation of Correlated and Uncorrelated Packing of Random Size Spheres. Physical Review E, 53(2): 1516-1524. https://doi.org/10.1103/physreve.53.1516 Yao, L. L., 2021. Evaluation of Microscopic Pore Structure Characteristics and Flow Mechanism of Shale Oil Reservoirs (Dissertation). Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang (in Chinese with English abstract). Zhang, X. Y., Dou, Z., 2018. Influence of Microscopic Pore Structure of Clay on Soluble Contaminant Transport. Hydrogeology & Engineering Geology, 45(4): 157-164 (in Chinese with English abstract). Zhao, X. Z., Chen, C. W., Song, S. Y., et al., 2023. Shale Oil Reservoir Structure Characteristics of the Second Member of Kongdian Formation in Cangdong Sag, Bohai Bay Basin. Earth Science, 48(1): 63-76 (in Chinese with English abstract). Zhou, K., Chen, X. P., Qu, X. B., 2022. Determining Methods of Micro-Pore and Liquids and Adsorption- Desorption Experiment for Shale Reservoir: Taking Member He-8 Reservoir in Ordos Yulin Area as an Example. Petroleum Geology & Oilfield Development in Daqing, 41(2): 139-146 (in Chinese with English abstract). Zhu, Y. H., Zhan, H. B., Jin, M. G., 2016. Analytical Solutions of Solute Transport in a Fracture-Matrix System with Different Reaction Rates for Fracture and Matrix. Journal of Hydrology, 539: 447-456. https://doi.org/10.1016/j.jhydrol.2016.05.056 柴波, 史绪山, 杜娟, 等, 2022. 如何实现区域岩体结构精细化分析?综述与设想. 地球科学, 47(12): 4629-4646. doi: 10.3799/dqkx.2022.108 惠威, 薛宇泽, 白晓路, 等, 2020. 致密砂岩储层微观孔隙结构对可动流体赋存特征的影响. 特种油气藏, 27(2): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202002013.htm 李先, 2018. 西宁盆地新近系泥岩膨胀特性研究(硕士学位论文). 成都: 西南交通大学 刘咏, 张琪, 钱家忠, 等, 2022. 基于图像法的多孔介质双分子反应溶质运移模拟. 地学前缘, 29(3): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203022.htm 魏赫鑫, 赖枫鹏, 蒋志宇, 等, 2020. 延长致密气储层微观孔隙结构及流体分布特征. 断块油气田, 27(2): 182-187. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002010.htm 徐鹏, 李翠红, 柳海成, 等, 2017. 多尺度多孔介质有效气体输运参数的分形特征. 地球科学, 42(8): 1373-1378. doi: 10.3799/dqkx.2017.104 姚兰兰, 2021. 页岩油储层微观孔隙结构特征评价及渗流机理研究(硕士学位论文). 廊坊: 中国科学院大学(中国科学院渗流流体力学研究所). 张学羿, 窦智, 2018. 黏土微观孔隙结构对可溶性污染物运移的影响. 水文地质工程地质, 45(4): 157-164. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201804023.htm 赵贤正, 陈长伟, 宋舜尧, 等, 2023. 渤海湾盆地沧东凹陷孔二段页岩层系不同岩性储层结构特征. 地球科学, 48(1): 63-76. doi: 10.3799/dqkx.2022.212 周凯, 陈西泮, 屈兴勃, 2022. 页岩储层微观孔隙、流体测定方法及吸附‒解吸实验——以鄂尔多斯榆林地区盒8段储层为例. 大庆石油地质与开发, 41(2): 139-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202202019.htm -