• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    煤矿开采区地下水微生物群落结构与功能及其对环境的响应

    郭林 毛佳玲 何凯 陈秀云 黄鑫平 蒋沙沙 马丽媛

    郭林, 毛佳玲, 何凯, 陈秀云, 黄鑫平, 蒋沙沙, 马丽媛, 2024. 煤矿开采区地下水微生物群落结构与功能及其对环境的响应. 地球科学, 49(9): 3252-3263. doi: 10.3799/dqkx.2023.109
    引用本文: 郭林, 毛佳玲, 何凯, 陈秀云, 黄鑫平, 蒋沙沙, 马丽媛, 2024. 煤矿开采区地下水微生物群落结构与功能及其对环境的响应. 地球科学, 49(9): 3252-3263. doi: 10.3799/dqkx.2023.109
    Guo Lin, Mao Jialing, He Kai, Chen Xiuyun, Huang Xinping, Jiang Shasha, Ma Liyuan, 2024. Microbial Community Structure and Function in Groundwater of Abandoned Coal Mine and Its Response to Environment. Earth Science, 49(9): 3252-3263. doi: 10.3799/dqkx.2023.109
    Citation: Guo Lin, Mao Jialing, He Kai, Chen Xiuyun, Huang Xinping, Jiang Shasha, Ma Liyuan, 2024. Microbial Community Structure and Function in Groundwater of Abandoned Coal Mine and Its Response to Environment. Earth Science, 49(9): 3252-3263. doi: 10.3799/dqkx.2023.109

    煤矿开采区地下水微生物群落结构与功能及其对环境的响应

    doi: 10.3799/dqkx.2023.109
    基金项目: 

    地下水污染防治试点项目 2020410183S1-40001

    国家自然科学基金项目 42007306

    详细信息
      作者简介:

      郭林(1987—),男,高级工程师,主要从事地下水污染修复等方面的研究工作.ORCID:0000-0003-0361-0552.E-mail:guolin_cug@126.com

      通讯作者:

      马丽媛,ORCID:0000-0001-7351-836X. E-mail: maly@cug.edu.cn

    • 中图分类号: P66

    Microbial Community Structure and Function in Groundwater of Abandoned Coal Mine and Its Response to Environment

    • 摘要: 为揭示微生物在煤矿开采区地下水环境中的空间分布特征及受控因素,为煤矿开采区地下水污染生态修复奠定基础,以河南新密某煤矿开采区地下水微生物为研究对象,利用16S rRNA高通量测序技术,分析了饮用水井和废弃矿井地下水微生物群落的结构与功能及其对环境的响应.研究表明在属水平上饮用水井主要以不动杆菌属(Acinetobacter)、草地土杆状菌属(Chthonobacter)和黄杆菌属(Flavobacterium)为主,而废弃矿井中则以短波单胞菌属(Brevundimonas)和甲基红色杆菌属(Methylorubrum)为主.两组微生物在多种合成酶、脱氢酶以及转运系统ATP结合蛋白等方面的潜在功能上存在显著差异.分子生态网络显示,矿井水微生物不仅联系更为紧密,且种间多为正相关关系,推测物种可能通过合作来应对极端寡营养环境.该区域地下水微生物群落结构主要受溶解性总固体和硝酸盐氮含量的影响,营养条件是制约当地地下水微生物群落结构与功能的先决因素.

       

    • 图  1  研究区地理位置与采样点分布

      Fig.  1.  Geographical location of study area and distribution of sampling points

      图  2  XMCHJ组和KJ组微生物多样性分析

      a. α多样性指数箱线图;b. 两组样本ASV水平韦恩图;c. 样本分组PCoA分析

      Fig.  2.  Microbial diversity analysis of XMCHJ group and KJ group

      图  3  XMCHJ组和KJ组在门水平和属水平上的物种组成

      Fig.  3.  Microbial community composition at the phylum and genus level of XMCHJ group and KJ group

      图  4  LEFSe指示物种分析

      柱状图颜色代表各自的组别,长短代表LDA score,即不同组间显著差异物种的影响程度

      Fig.  4.  LEFSe indicator species analysis

      图  5  XMCHJ组和KJ组微生物群落的潜在功能比较

      a. 功能分类的PLS-DA分析图;b. 差异功能基因分类柱形图,左侧为不同功能分类在两个样本中的丰度比例,中间图为95%置信区间内,功能丰度的差异比例,右侧为FDR值,FDR值小于0.05,表示差异显著;c. 差异基因聚类热图

      Fig.  5.  Comparison of potential functions of XMCHJ group and KJ group

      图  6  XMCHJ组和KJ组的生态网络分析

      Fig.  6.  Interaction network analysis of XMCHJ group and KJ group

      图  7  微生物群落与环境因子的冗余分析(RDA)

      Fig.  7.  Redundancy analysis (RDA) of microbial communities and environmental factors

      表  1  不同取样点地下水样本的理化参数

      Table  1.   Physicochemical parameters of groundwater from different sampling points

      ID 总硬度(mg/L) 浑浊度(NTU) 溶解性总固体(mg/L) 高锰酸盐指数(mg/L) 硝酸盐氮(mg/L) 硫酸盐(mg/L) 偏硅酸(mg/L) 碳酸氢根(mg/L) 砷(10-4 mg/L) 镁(mg/L) 钙(mg/L) 钠(mg/L) 钾(mg/L) 锌(mg/L)
      XMCHJ01 349 0 468 0.71 3.40 64.0 16.5 408 11 25.9 79 36.8 0.22 0.083
      XMCHJ04 415 0.001 490 0.56 8.23 116.0 16.0 297 4 25.6 99 32.5 0.86 0
      XMCHJ14 489 9.8 463 0.68 5.09 41.4 14.7 424 14 48.2 81.4 13.3 0.2 0
      XMCHJ85 350 0.6 448 0.64 3.47 59.1 16.2 326 0 27.6 73.8 49.7 1.02 0.221
      XMCHJ86 810 1.4 1 080 0.71 54.10 193.0 24.4 439 9 33.2 292 35 0.08 0
      KJ027 511 348 721 0.46 14.10 77.6 27.9 481 6 27.1 189 20.3 0 0
      KJ089 462 29 529 0.60 9.34 257.0 26.0 229 51 14.0 129 26.6 9.43 1
      KJ100 612 2.8 869 0.51 12.10 232.0 21.5 484 5 35.6 226 34.3 0.73 0.106
      KJ103 223 1.0 492 0.55 1.12 37.6 21.8 428 8 17.4 44.7 124 4.44 0.160
      下载: 导出CSV

      表  2  组间分子生态网络拓扑结构参数

      Table  2.   Parameters of the molecular ecological network topology between the two groups

      分组 节点数 边数 平均度 平均加权度 模块化系数 平均聚类系数 正相关系数 负相关系数
      XMCHJ 290 4 620 31.86 13.49 1.16 0.63 67.68% 32.32%
      KJ 170 3 494 41.11 50.75 0.52 0.77 100% 0
      下载: 导出CSV
    • Abriouel, H., Franz, C. M. A. P., Ben Omar, N., et al., 2011. Diversity and Applications of Bacillus Bacteriocins. FEMS Microbiology Reviews, 35(1): 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
      Adebusoye, S. A., Ilori, M. O., Amund, O. O., et al., 2007. Microbial Degradation of Petroleum Hydrocarbons in a Polluted Tropical Stream. World Journal of Microbiology and Biotechnology, 23(8): 1149-1159. https://doi.org/10.1007/s11274-007-9345-3
      Bomberg, M., Arnold, M., Kinnunen, P., 2015. Characterization of the Bacterial and Sulphate Reducing Community in the Alkaline and Constantly Cold Water of the Closed Kotalahti Mine. Minerals, 5(3): 452-472. https://doi.org/10.3390/min5030452
      Brzoska, R. M., Edelmann, R. E., Bollmann, A., 2022. Physiological and Genomic Characterization of Two Novel Bacteroidota Strains Asinibacterium SPP. OR43 and OR53. Bacteria, 1(1): 33-47. https://doi.org/10.3390/bacteria1010004
      Cabello, P., Roldán, M. D., Moreno-Vivián, C., 2004. Nitrate Reduction and the Nitrogen Cycle in Archaea. Microbiology, 150(11): 3527-3546. https://doi.org/10.1099/mic.0.27303-0
      Chang, F., He, S. S., Dang, C. Y., 2022. Assisted Selection of Biomarkers by Linear Discriminant Analysis Effect Size (LEfSe) in Microbiome Data. Journal of Visualized Experiments, (183): e61715. https://doi.org/10.3791/61715
      Chen, J. Y., Li, Q., He, Q. F., et al., 2023. Influence of CO2/HCO3- on Microbial Communities in Two Karst Caves with High CO2. Journal of Earth Science, 34(1): 145-155. https://doi.org/10.1007/s12583-020-1368-9
      Chen, W. M., You, Y. X., Young, C. C., et al., 2021. Flavobacterium Difficile Sp. Nov., Isolated from a Freshwater Waterfall. Archives of Microbiology, 203(7): 4449-4459. https://doi.org/10.1007/s00203-021-02440-1
      Chung, B. S., Ryu, S. H., Park, M., et al., 2007. Hydrogenophaga Caeni Sp. Nov., Isolated from Activated Sludge. International Journal of Systematic and Evolutionary Microbiology, 57(Pt 5): 1126-1130. https://doi.org/10.1099/ijs.0.64629-0
      Fillinger, L., Hug, K., Griebler, C., 2019. Selection Imposed by Local Environmental Conditions Drives Differences in Microbial Community Composition across Geographically Distinct Groundwater Aquifers. FEMS Microbiology Ecology, 95(11): fiz160. https://doi.org/10.1093/femsec/fiz160
      Hasheela, I., Schneider, G. I. C., Ellmies, R., et al., 2014. Risk Assessment Methodology for Shut-Down and Abandoned Mine Sites in Namibia. Journal of Geochemical Exploration, 144: 572-580. https://doi.org/10.1016/j.gexplo.2014.05.009
      Hua, C. Y., Zhou, G. Z., Yin, X., et al., 2018. Assessment of Heavy Metal in Coal Gangue: Distribution, Leaching Characteristic and Potential Ecological Risk. Environmental Science and Pollution Research, 25(32): 32321-32331. https://doi.org/10.1007/s11356-018-3118-4
      Huang, Y., Li, X. T., Jiang, Z., et al., 2021. Key Factors Governing Microbial Community in Extremely Acidic Mine Drainage (pH < 3). Frontiers in Microbiology, 12: 761579. https://doi.org/10.3389/fmicb.2021.761579
      John, D. E., Rose, J. B., 2005. Review of Factors Affecting Microbial Survival in Groundwater. Environmental Science & Technology, 39(19): 7345-7356. https://doi.org/10.1021/es047995w
      Jung, D. M., Kim, Y. S., Bang, J. H., et al., 2021. Flavobacterium Hydrocarbonoxydans Sp. Nov., Isolated from Polluted Soil. International Journal of Systematic and Evolutionary Microbiology, 71(10): 005053 https://doi.org/10.1099/ijsem.0.005053
      Juretschko, S., Loy, A., Lehner, A., et al., 2002. The Microbial Community Composition of a Nitrifying-Denitrifying Activated Sludge from an Industrial Sewage Treatment Plant Analyzed by the Full-Cycle rRNA Approach. Systematic and Applied Microbiology, 25(1): 84-99. https://doi.org/10.1078/0723-2020-00093
      Lebedeva, E., Chelnokov, G., Bragin, I., et al., 2019. Microorganisms of Various Ecological-Trophic Groups in the Saline Ground Waters of Primorsky Region (Distribution, Number, Participation in Accumulation of Microelements). E3S Web of Conferences, 98: 02006. https://doi.org/10.1051/e3sconf/20199802006
      Lentini, C. J., Wankel, S. D., Hansel, C. M., 2012. Enriched Iron(Ⅲ)-Reducing Bacterial Communities are Shaped by Carbon Substrate and Iron Oxide Mineralogy. Frontiers in Microbiology, 3: 404. https://doi.org/10.3389/fmicb.2012.00404
      Li, D., Zheng, X. X., Lin, L., et al., 2022. Remediation of Soils Co-Contaminated with Cadmium and Dichlorodiphenyltrichloroethanes by King Grass Associated with Piriformospora Indica: Insights into the Regulation of Root Excretion and Reshaping of Rhizosphere Microbial Community Structure. Journal of Hazardous Materials, 422: 126936. https://doi.org/10.1016/j.jhazmat.2021.126936
      Li, S., Zhang, Y. L., Yin, S. Q., et al., 2020. Analysis of Microbial Community Structure and Degradation of Ammonia Nitrogen in Groundwater in Cold Regions. Environmental Science and Pollution Research, 27(35): 44137-44147. https://doi.org/10.1007/s11356-020-10318-w
      Liu, Z. Q., Wei, H., Zhang, J. E., et al., 2021. Higher Sensitivity of Microbial Network than Community Structure under Acid Rain. Microorganisms, 9(1): 118. https://doi.org/10.3390/microorganisms9010118
      Ma, L. Y., Huang, S. S., Wu, P. Y., et al., 2021. The Interaction of Acidophiles Driving Community Functional Responses to the Re-Inoculated Chalcopyrite Bioleaching Process. The Science of the Total Environment, 798: 149186. https://doi.org/10.1016/j.scitotenv.2021.149186
      Merino, N., Jackson, T. R., Campbell, J. H., et al., 2022. Subsurface Microbial Communities as a Tool for Characterizing Regional-Scale Groundwater Flow. Science of the Total Environment, 842: 156768. https://doi.org/10.1016/j.scitotenv.2022.156768
      Parks, D. H., Tyson, G. W., Hugenholtz, P., et al., 2014. STAMP: Statistical Analysis of Taxonomic and Functional Profiles. Bioinformatics, 30(21): 3123-3124. https://doi.org/10.1093/bioinformatics/btu494
      Peixoto, R. J. M., Miranda, K. R., Lobo, L. A., et al., 2016. Antarctic Strict Anaerobic Microbiota from Deschampsia Antarctica Vascular Plants Rhizosphere Reveals High Ecology and Biotechnology Relevance. Extremophiles, 20(6): 875-884. https://doi.org/10.1007/s00792-016-0878-y
      Podar, M., Makarova, K. S., Graham, D. E., et al., 2013. Insights into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park. Biology Direct, 8: 9. https://doi.org/10.1186/1745-6150-8-9
      Prosser, J. I., Nicol, G. W., 2008. Relative Contributions of Archaea and Bacteria to Aerobic Ammonia Oxidation in the Environment. Environmental Microbiology, 10(11): 2931-2941. https://doi.org/10.1111/j.1462-2920.2008.01775.x
      Rathi, M., Yogalakshmi, K. N., 2021. Brevundimonas Diminuta MYS6 Associated Helianthus Annuus L. for Enhanced Copper Phytoremediation. Chemosphere, 263: 128195. https://doi.org/10.1016/j.chemosphere.2020.128195
      Reddy, A. G. S., Kumar, K. N., 2010. Identification of the Hydrogeochemical Processes in Groundwater Using Major Ion Chemistry: A Case Study of Penna-Chitravathi River Basins in Southern India. Environmental Monitoring and Assessment, 170(1): 365-382. https://doi.org/10.1007/s10661-009-1239-4
      Saw, J. H. W., Nunoura, T., Hirai, M., et al., 2020. Pangenomics Analysis Reveals Diversification of Enzyme Families and Niche Specialization in Globally Abundant SAR202 Bacteria. mBio, 11(1): e02975-e02919. https://doi.org/10.1128/mBio.02975-19
      Taubert, M., Grob, C., Crombie, A., et al., 2019. Communal Metabolism by Methylococcaceae and Methylophilaceae is Driving Rapid Aerobic Methane Oxidation in Sediments of a Shallow Seep near Elba, Italy. Environmental Microbiology, 21(10): 3780-3795. https://doi.org/10.1111/1462-2920.14728
      Tiryaki, D., Aydın, İ., Atıcı, Ö., 2019. Psychrotolerant Bacteria Isolated from the Leaf Apoplast of Cold-Adapted Wild Plants Improve the Cold Resistance of Bean (Phaseolus Vulgaris L. ) under Low Temperature. Cryobiology, 86: 111-119. https://doi.org/10.1016/j.cryobiol.2018.11.001
      Wang, C. R., Zhang, M. R., Cheng, F. L., et al., 2015. Biodegradation Characterization and Immobilized Strains' Potential for Quinoline Degradation by Brevundimonas Sp. K4 Isolated from Activated Sludge of Coking Wastewater. Bioscience, Biotechnology, and Biochemistry, 79(1): 164-170. https://doi.org/10.1080/09168451.2014.952615
      Wang, W. P., Li, Z. Y., Zeng, L. Y., et al., 2020. The Oxidation of Hydrocarbons by Diverse Heterotrophic and Mixotrophic Bacteria that Inhabit Deep-Sea Hydrothermal Ecosystems. The ISME Journal, 14: 1994-2006. https://doi.org/10.1038/s41396-020-0662-y
      Wasmund, K., Cooper, M., Schreiber, L., et al., 2016. Single-Cell Genome and Group-Specific dsrAB Sequencing Implicate Marine Members of the Class Dehalococcoidia (Phylum Chloroflexi) in Sulfur Cycling. mBio, 7(3): e00266-e00216. https://doi.org/10.1128/mBio.00266-16
      Yue, X., Yu, G. P., Lu, Y. Q., et al., 2018. Effect of Dissolved Oxygen on Nitrogen Removal and the Microbial Community of the Completely Autotrophic Nitrogen Removal over Nitrite Process in a Submerged Aerated Biological Filter. Bioresource Technology, 254: 67-74. https://doi.org/10.1016/j.biortech.2018.01.044
      Zhang, B. G., Zhang, J., Liu, Y., et al., 2018. Co-Occurrence Patterns of Soybean Rhizosphere Microbiome at a Continental Scale. Soil Biology and Biochemistry, 118: 178-186. https://doi.org/10.1016/j.soilbio.2017.12.011
      Zhang, H. S., Wang, M. Y., Cai, W. T., et al., 2023. Characteristics of Microbial Community Composition and Environmental Response in Deep Fluorinated Groundwater. Earth Science, 48(9): 3466-3479 (in Chinese with English abstract).
      Zhang, L., Xu, Z. M., Sun, Y. J., et al., 2022a. Coal Mining Activities Driving the Changes in Microbial Community and Hydrochemical Characteristics of Underground Mine Water. International Journal of Environmental Research and Public Health, 19(20): 13359. https://doi.org/10.3390/ijerph192013359
      Zhang, P., Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract).
      Zhang, Y. J., Feng, G. R., Zhang, M., et al., 2016. Residual Coal Exploitation and Its Impact on Sustainable Development of the Coal Industry in China. Energy Policy, 96: 534-541. https://doi.org/10.1016/j.enpol.2016.06.033
      张怀胜, 王梦园, 蔡五田, 等, 2023. 深层含氟地下水微生物群落组成及环境响应特征. 地球科学, 48(9): 3466-3479. doi: 10.3799/dqkx.2021.147
      张攀, 谢先军, 黎清华, 等, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  291
    • HTML全文浏览量:  155
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-03-09
    • 网络出版日期:  2024-10-16
    • 刊出日期:  2024-09-25

    目录

      /

      返回文章
      返回