• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地塔北地区深层走滑断裂分段性成因机制

    冯建伟 郭宏辉 汪如军 昌伦杰 王超 高翔

    冯建伟, 郭宏辉, 汪如军, 昌伦杰, 王超, 高翔, 2023. 塔里木盆地塔北地区深层走滑断裂分段性成因机制. 地球科学, 48(7): 2506-2519. doi: 10.3799/dqkx.2023.110
    引用本文: 冯建伟, 郭宏辉, 汪如军, 昌伦杰, 王超, 高翔, 2023. 塔里木盆地塔北地区深层走滑断裂分段性成因机制. 地球科学, 48(7): 2506-2519. doi: 10.3799/dqkx.2023.110
    Feng Jianwei, Guo Honghui, Wang Rujun, Chang Lunjie, Wang Chao, Gao Xiang, 2023. Segmentation Genesis Mechanism of Strike-Slip Fracture of Deep Carbonate Rocks in Tabei Area, Tarim Basin. Earth Science, 48(7): 2506-2519. doi: 10.3799/dqkx.2023.110
    Citation: Feng Jianwei, Guo Honghui, Wang Rujun, Chang Lunjie, Wang Chao, Gao Xiang, 2023. Segmentation Genesis Mechanism of Strike-Slip Fracture of Deep Carbonate Rocks in Tabei Area, Tarim Basin. Earth Science, 48(7): 2506-2519. doi: 10.3799/dqkx.2023.110

    塔里木盆地塔北地区深层走滑断裂分段性成因机制

    doi: 10.3799/dqkx.2023.110
    基金项目: 

    中石油重大科技项目 ZD2019⁃183⁃006

    详细信息
      作者简介:

      冯建伟(1979-),男,副教授,博士,研究方向为构造地质学、构造应力场等.ORCID:0009-0003-2039-8407. E-mail:linqu_fengjw@126.com

      通讯作者:

      郭宏辉, E-mail: guohonghui_0326@126.com

    • 中图分类号: P551

    Segmentation Genesis Mechanism of Strike-Slip Fracture of Deep Carbonate Rocks in Tabei Area, Tarim Basin

    • 摘要: 塔北地区深层走滑断裂带的分段性特征解析是研究断裂带控储控藏的关键问题,对推动深层油气勘探开发具有重要意义.从哈拉哈塘断裂带发育特征与地震资料解释成果相融合的角度出发,通过精细刻画哈15走滑断裂带结构及构造样式,讨论塔北哈拉哈塘地区哈15断裂带的分段性特征.在明确了塔北地区断裂带走滑运动特征和应力状态的基础上,以库伦-安德森纯剪模型和里德尔单剪模型为框架,根据断裂带局部应力状态,结合格里菲斯和库伦-莫尔等岩石破裂准则合理解释了深层走滑断裂次级R’剪破裂和T张破裂有序发育的成因机理.最终根据哈15断裂带的构造解析,建立了被动走滑构造环境下的汇聚型走滑断层及派生构造发育典型模型.区域挤压应力衰减以及三向应力状态的转变是走滑断裂分段性的主要原因,沿挤压应力方向可划分为压扭区、扭动区和张扭区,可细分为线性紧闭断层组合带、直线型辫状构造带、对称羽状断层带、伸展/挤压叠覆带或斜向拉分地块以及马尾状断层组合带等.

       

    • 图  1  哈拉哈塘与塔北地区区域地质概况

      a. 塔里木盆地构造单元划分;b.塔北‒塔中地区区域构造图;c.哈拉哈塘地区典型地层柱状图

      Fig.  1.  Geological survey of Harahatang area and Tabei area

      图  2  哈拉哈塘地区一间房组顶断裂平面图

      a. 广义希尔伯特变换边界检测结果;b. 哈15井断裂不同段的地震剖面图;c.哈15井断裂不同段的断层组合平面图

      Fig.  2.  Fault plan of Upper Yijianfang Formation in Harahatang area

      图  3  衰减应力环境下汇聚型走滑断层及派生构造形成机制解析图

      a. 哈拉哈塘地区奥陶系共轭走滑断裂初始成因机制;b. 压扭性走滑断裂带R断层形成机制

      Fig.  3.  Analysis of the formation mechanism of convergent strike-slip faults and derivative structures under attenuated stress environment

      图  4  汇聚型走滑断层及派生构造发育的力学机制

      a. 压扭性走滑断裂带R’和T断层形成机制;b. 压扭性走滑断裂带P断层形成机制;c. 压扭性走滑断裂带PDZ主走滑带形成机制

      Fig.  4.  Mechanical mechanism of convergent strike-slip faults and derived structural development

      图  5  汇聚型走滑断层及派生构造发育典型模型

      图中分层显示是为了构造样式的直观性,不具有深度概念

      Fig.  5.  Typical model of convergent strike-slip fault and derived structure development

      图  6  哈15走滑断裂带发育特征

      a.哈拉哈塘地区一间房组相干属性;b.哈15走滑断裂带分区特征

      Fig.  6.  Development characteristics of Ha-15 strike-slip fault zone

    • Ahlgren, S. G., 2001. The Nucleation and Evolution of Riedel Shear Zones as Deformation Bands in Porous Sandstone. Journal of Structural Geology, 23(8): 1203-1214. https://doi.org/10.1016/S0191-8141(00)00183-8
      Allen, P. A., Allen, J. R., 2005. Basin Analysis: Principles and Applications. Blackwell Scientific Publication, Oxford, 201-218.
      An, L. J., Sammis, C. G., 1996. Development of Strike-Slip Faults: Shear Experiments in Granular Materials and Clay Using a New Technique. Journal of Structural Geology, 18(8): 1061-1077. https://doi.org/10.1016/0191-8141(96)00012-0
      Anderson, E. M., 1905. The Dynamics of Faulting. Transactions of the Edinburgh Geological Society, 8(3): 387-402. https://doi.org/10.1144/transed.8.3.387
      Ding, W. L., Fan, T. L., Huang, X. B., et al., 2010. Paleo-Structural Stress Field Simulation for Middle-Lower Ordovician in Tazhong Area and Favorable Area Prediction of Fractured Reservoirs. Journal of China University of Petroleum (Edition of Natural Science), 34(5): 1-6 (in Chinese with English abstract).
      Ding, W. L., Qi, L. X., Yun, L., et al., 2012. The Tectonic Evolution and Its Controlling Effects on the Development of Ordovician Reservoir in Bachu-Markit Tarim Basin. Acta Petrologica Sinica, 28(8): 2542-2556 (in Chinese with English abstract).
      Ding, Y. C., Sun, B. S., Wang, X. H., et al., 1996. Paleostress in Northern Tarim Oil Field Estimated by AE. Journal of Geomechanics, 2(2): 18-25 (in Chinese with English abstract).
      Han, X. Y., Deng, S., Tang, L. J., et al., 2017. Geometry, Kinematics and Displacement Characteristics of Strike-Slip Faults in the Northern Slope of Tazhong Uplift in Tarim Basin: A Study Based on 3D Seismic Data. Marine and Petroleum Geology, 88: 410-427. https://doi.org/10.1016/j.marpetgeo.2017.08.033
      Hou, Q. L., Cheng, N. N., Shi, M. Y., et al., 2018. The Union of Various Rock Deformation Criteria at Different Structural Levels and Its Further Development. Acta Petrologica Sinica, 34(6): 1792-1800 (in Chinese with English abstract).
      Huang, S. Y., Song, X. G., Luo, C. M., et al., 2021. Formation Mechanism of the Conjugate Strike-Slip Faults in Tabei Uplift. Geoscience, 35(6): 1797-1808, 1829 (in Chinese with English abstract).
      Jia, C. Z., Ma, D. B., Yuan, J. Y., et al., 2021. Structural Characteristics, Formation & Evolution and Genetic Mechanisms of Strike-Slip Faults in the Tarim Basin. Natural Gas Industry, 41(8): 81-91 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.008
      Jia, C. Z., Wei, G. Q., 2002. Structural Characteristics and Petroliferous Features of Tarim Basin. Chinese Science Bulletin, 47(S1): 1-8 (in Chinese).
      Jiao, F. Z., 2017. Significance of Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin. Oil & Gas Geology, 38(5): 831-839 (in Chinese with English abstract).
      Lan, M. J., Wang, H. T., Ma, Q. Y., et al., 2017. Characteristics of Shunbei No. 8 Strike-Slip Fault in Shunbei Region of Tarim Basin and Their Controls on Reservoirs. Petroleum Geology & Experiment, 39(S1): 1-6 (in Chinese with English abstract).
      Li, B., Deng, S., Li, W. P., et al., 2019. Strike-Slip Fault System Activity and Hydrocarbon Geology Understanding in Tahe of Tarim Basin. Special Oil & Gas Reservoirs, 26(4): 45-51 (in Chinese with English abstract).
      Li, G. H., Li, S. Y., Li, H. Y., et al., 2021. Distribution Pattern and Formation Mechanism of the Strike-Slip Fault System in the Central Tarim Basin. Natural Gas Industry, 41(3): 30-37 (in Chinese with English abstract).
      Li, H. X., Rao, S., Tao, C. H., et al., 2015. Generalized Hilbert Transform Seismic Edge Detection. Oil Geophysical Prospecting, 50(3): 490-494, 5 (in Chinese with English abstract).
      Lu, X. B., Hu, W. G., Wang, Y., et al., 2015. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin. Oil & Gas Geology, 36(3): 347-355 (in Chinese with English abstract).
      Lü, H. T., Zhang, S. N., Ma, Q. Y., 2017. Classification and Formation Mechanism of Fault Systems in the Central and Northern Tarim Basin. Petroleum Geology & Experiment, 39(4): 444-452 (in Chinese with English abstract).
      Qiu, H. B., Yin, T., Cao, Z. C., et al., 2017. Strike-Slip Fault and Ordovician Petroleum Exploration in Northern Slope of Tazhong Uplift, Tarim Basin. Marine Origin Petroleum Geology, 22(4): 44-52 (in Chinese with English abstract).
      Riedel, W., 1929. Zur Mechanik Geologischer Brucherscheinungen. Zentral-blatt für Mineralogie, Geologie und Paleontologie B, 8: 345-368.
      Sibson, R. H., 1977. Fault Rocks and Fault Mechanisms. Journal of the Geological Society, 133(3): 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
      Tang, L. J., Jia, C. Z., 2007. Structural Analysis and Stress Field Analysis of Tarim Superimposed Basin. Science Press, Beijing, 113-130 (in Chinese).
      Tong, H. M., Wang, J. J., Zhao, H. T., et al., 2014. Molar Space and Its Application to the Activation Prediction of Pre-Existing Weakness. Scientia Sinica Terrae, 44(9): 1948-1957 (in Chinese). doi: 10.1360/zd-2014-44-9-1948
      Wang, R. J., Wang, X., Deng, X. L., et al., 2021. Control Effect of Strike-Slip Faults on Carbonate Reservoirs and Hydrocarbon Accumulation: A Case Study of the Northern Depression in the Tarim Basin. Natural Gas Industry, 41(3): 10-20 (in Chinese with English abstract).
      Wang, Z. C., Zhao, W. Z., Hu, S. Y., et al., 2013. Reservoir Types and Distribution Characteristics of Large Marine Carbonate Oil and Gas Fields in China. Oil & Gas Geology, 34(2): 153-160 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-9752.2013.02.033
      Wang, X. S., Li, J. C., Wang, S. M., et al., 1997. Oil and Gas Accumulation and Structural Stress Field in Tarim Basin. Acta Petrolei Sinica, 18(1): 23-28 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.1997.01.004
      Wu, G. H., Ma, B. S., Han, J. F., et al., 2021. Origin and Growth Mechanisms of Strike-Slip Faults in the Central Tarim Cratonic Basin, NW China. Petroleum Exploration and Development, 48(3): 510-520 (in Chinese with English abstract).
      Xie, H. P., Ju, Y., Li, L. Y., 2005. Criteria for Strength and Structural Failure of Rocks Based on Energy Dissipation and Energy Release Principles. Chinese Journal of Rock Mechanics and Engineering, 24(17): 3003-3010 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2005.17.001
      Xu, G. Q., Li, G. R., Liu, S. G., et al., 2005. Multiple Karst Cave Horizons in the Early Hercynian Weathering Crust in the Tarim Basin. Acta Geologica Sinica, 79(4): 557-568 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2005.04.013
      Xu, S. S., Peng, H., Nietosamaniego, A. F., et al., 2017. The Similarity between Riedel Shear Patterns and Strike-Slip Basin Patterns. Geological Review, 63(2): 287-301 (in Chinese with English abstract).
      Yang, S., Wu, G. H., Zhu, Y. F., et al., 2022. Key Oil Accumulation Periods of Ultra-Deep Fault-Controlled Oil Reservoir in Northern Tarim Basin, NW China. Petroleum Exploration and Development, 49(2): 249-261 (in Chinese with English abstract).
      Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract).
      Zhang, Y. P., Lü, X. X., Yu, H. F., et al., 2016. Controlling Mechanism of Two Strike-Slip Fault Groups on the Development of the Ordovician Karst Reservoirs in the Tazhong Uplift, Tarim Basin. Oil & Gas Geology, 37(5): 663-673 (in Chinese with English abstract).
      Zeng, L. B., Wang, G. W., 2005. Distribution of Earth Stress in Kuche Thrust Belt, Tarim Basin. Petroleum Exploration and Development, 32(3): 59-60 (in Chinese with English abstract).
      Zheng, X. L., An, H. T., Wang, Z. J., et al., 2018. The Segmentation Features of Strike-Slip Fault and Its Relation with the Fault and Reservoirs in Halahatang Area, North Tarim Basin. Journal of Zhejiang University (Science Edition), 45(2): 219-225 (in Chinese with English abstract).
      Zheng, X. L., An, H. T., Wang, Z. J., et al., 2019. Characteristics of Strike-Slip Faults and Fault-Karst Carbonate Reservoirs in Halahatang Area, Tarim Basin. Xinjiang Petroleum Geology, 40(4): 449-455 (in Chinese with English abstract).
      Zhou, B. W., Chen, H. H., Yun, L., et al., 2022. The Relationship between Fault Displacement and Damage Zone Width of the Paleozoic Strike-Slip Faults in Shunbei Area, Tarim Basin. Earth Science, 47(2): 437-451 (in Chinese with English abstract).
      Zhu, G. Y., Yang, H. J., Zhu, Y. F., et al., 2011. Study on Petroleum Geological Characteristics and Accumulation of Carbonate Reservoirs in Hanilcatam Area, Tarim Basin. Acta Petrologica Sinica, 27(3): 827-844 (in Chinese with English abstract).
      丁文龙, 樊太亮, 黄晓波, 等, 2010. 塔中地区中: 下奥陶统古构造应力场模拟与裂缝储层有利区预测. 中国石油大学学报(自然科学版), 34(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202103005.htm
      丁文龙, 漆立新, 云露, 等, 2012. 塔里木盆地巴楚‒麦盖提地区古构造演化及其对奥陶系储层发育的控制作用. 岩石学报, 28(8): 2542-2556. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208021.htm
      丁原辰, 孙宝珊, 汪西海, 等, 1996. 塔里木盆地北部油田古应力的AE法测量. 地质力学学报, 2(2): 18-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX602.003.htm
      侯泉林, 程南南, 石梦岩, 等, 2018. 不同构造层次岩石变形准则的融合与发展. 岩石学报, 34(6): 1792-1800. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201806015.htm
      黄少英, 宋兴国, 罗彩明, 等, 2021. 塔北隆起X型走滑断裂成因机制的新解释. 现代地质, 35(6): 1797-1808, 1829. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202106025.htm
      贾承造, 马德波, 袁敬一, 等, 2021. 塔里木盆地走滑断裂构造特征、形成演化与成因机制. 天然气工业, 41(8): 81-91. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108012.htm
      贾承造, 魏国齐, 2002. 塔里木盆地构造特征与含油气性. 科学通报, 47(S1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1000.htm
      焦方正, 2017. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义. 石油与天然气地质, 38(5): 831-839. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705001.htm
      兰明杰, 王洪涛, 马庆佑, 等, 2017. 塔里木盆地顺北地区顺北8号走滑断裂特征及控储作用. 石油实验地质, 39(S1): 1-6.
      李兵, 邓尚, 李王鹏, 等, 2019. 塔里木盆地塔河地区走滑断裂体系活动特征与油气地质意义. 特种油气藏, 26(4): 45-51. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904008.htm
      李国会, 李世银, 李会元, 等, 2021. 塔里木盆地中部走滑断裂系统分布格局及其成因. 天然气工业, 41(3): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103005.htm
      李红星, 饶溯, 陶春辉, 等, 2015. 广义希尔伯特变换地震边缘检测方法研究. 石油地球物理勘探, 50(3): 490-494, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202103012.htm
      鲁新便, 胡文革, 汪彦, 等, 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3): 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm
      吕海涛, 张哨楠, 马庆佑, 2017. 塔里木盆地中北部断裂体系划分及形成机制探讨. 石油实验地质, 39(4): 444-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201704003.htm
      邱华标, 印婷, 曹自成, 等, 2017. 塔里木盆地塔中北坡走滑断裂特征与奥陶系油气勘探. 海相油气地质, 22(4): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201704006.htm
      汤良杰, 贾承造, 2007. 塔里木叠合盆地构造解析和应力场分析. 北京: 科学出版社, 113-130.
      童亨茂, 王建君, 赵海涛, 等, 2014. "摩尔空间"及其在先存构造活动性预测中的应用. 中国科学: 地球科学, 44(9): 1948-1957. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201409007.htm
      汪如军, 王轩, 邓兴梁, 等, 2021. 走滑断裂对碳酸盐岩储层和油气藏的控制作用——以塔里木盆地北部坳陷为例. 天然气工业, 41(3): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202103003.htm
      汪泽成, 赵文智, 胡素云, 等, 2013. 我国海相碳酸盐岩大油气田油气藏类型及分布特征. 石油与天然气地质, 34(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201302004.htm
      王喜双, 李晋超, 王绍民, 等, 1997. 塔里木盆地构造应力场与油气聚集. 石油学报, 18(1): 23-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB701.003.htm
      邬光辉, 马兵山, 韩剑发, 等, 2021. 塔里木克拉通盆地中部走滑断裂形成与发育机制. 石油勘探与开发, 48(3): 510-520. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103008.htm
      谢和平, 鞠杨, 黎立云, 2005. 基于能量耗散与释放原理的岩石强度与整体破坏准则. 岩石力学与工程学报, 24(17): 3003-3010. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200517000.htm
      徐国强, 李国蓉, 刘树根, 等, 2005. 塔里木盆地早海西期多期次风化壳岩溶洞穴层. 地质学报, 79(4): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200504018.htm
      许顺山, 彭华, Nietosamaniego, A. F., 等, 2017. 里德尔剪切的组合型式与走滑盆地组合型式的相似性. 地质论评, 63(2): 287-301. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702003.htm
      杨率, 邬光辉, 朱永峰, 等, 2022. 塔里木盆地北部地区超深断控油藏关键成藏期. 石油勘探与开发, 49(2): 249-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202002.htm
      杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200
      张艳萍, 吕修祥, 于红枫, 等, 2016. 塔中隆起两组走滑断裂对岩溶储层发育的控制机制. 石油与天然气地质, 37(5): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201605007.htm
      曾联波, 王贵文, 2005. 塔里木盆地库车山前构造带地应力分布特征. 石油勘探与开发, 32(3): 59-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200503015.htm
      郑晓丽, 安海亭, 王祖君, 等, 2018. 塔北哈拉哈塘地区走滑断裂分段特征及其与油气成藏的关系. 浙江大学学报(理学版), 45(2): 219-225. https://www.cnki.com.cn/Article/CJFDTOTAL-HZDX201802013.htm
      郑晓丽, 安海亭, 王祖君, 等, 2019. 哈拉哈塘地区走滑断裂与断溶体油藏特征. 新疆石油地质, 40(4): 449-455. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201904008.htm
      周铂文, 陈红汉, 云露, 等, 2022. 塔里木盆地顺北地区下古生界走滑断裂带断距分段差异与断层宽度关系. 地球科学, 47(2): 437-451. doi: 10.3799/dqkx.2021.073
      朱光有, 杨海军, 朱永峰, 等, 2011. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究. 岩石学报, 27(3): 827-844. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201103021.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  446
    • HTML全文浏览量:  785
    • PDF下载量:  112
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-11-29
    • 刊出日期:  2023-07-25

    目录

      /

      返回文章
      返回