• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例

    郑德凤 高敏 闫成林 李媛媛 年廷凯

    郑德凤, 高敏, 闫成林, 李媛媛, 年廷凯, 2024. 基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例. 地球科学, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113
    引用本文: 郑德凤, 高敏, 闫成林, 李媛媛, 年廷凯, 2024. 基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例. 地球科学, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113
    Zheng Defeng, Gao Min, Yan Chenglin, Li Yuanyuan, Nian Tingkai, 2024. Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province. Earth Science, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113
    Citation: Zheng Defeng, Gao Min, Yan Chenglin, Li Yuanyuan, Nian Tingkai, 2024. Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province. Earth Science, 49(5): 1654-1664. doi: 10.3799/dqkx.2023.113

    基于卷积神经网络的滑坡易发性评价: 以辽南仙人洞国家级自然保护区为例

    doi: 10.3799/dqkx.2023.113
    基金项目: 

    国家自然科学基金项目 42077272

    国家自然科学基金项目 42377185

    辽宁师范大学高端科研成果培育资助计划项目 23GDL007

    详细信息
      作者简介:

      郑德凤(1970-),女,教授,博士生导师,主要从事自然地理、资源环境与地质灾害研究. ORCID:0000-0002-0383-3855. E-mail:defengzheng@lnnu.edu.cn

      通讯作者:

      年廷凯,ORCID: 0000-0002-1458-5500. E-mail:tknian@dlut.edu.cn

    • 中图分类号: P642

    Susceptibility Assessment of Landslides Based on Convolutional Neural Network Model: A Case Study from Xianrendong National Nature Reserve in Southern Liaoning Province

    • 摘要: 为了解决滑坡易发性评价过程中存在的滑坡编录数据不足,主观或者随机地选取非滑坡栅格单元而导致模型准确率较低等问题,以辽南仙人洞国家级自然保护区为研究区,首先,从地形地貌、地质条件、水文气象条件和人类工程活动等方面选取了12个评价因子构建滑坡评价体系;其次,利用SMOTETomek综合采样方法解决滑坡与非滑坡样本类别的比例失衡问题,进而建立滑坡易发性评价模型的数据集;最后,针对研究区东西两侧(A区和B区)的非线性滑坡数据,通过构建卷积神经网络(Convolutional Neural Networks,CNN)模型进行滑坡易发性评价,并精准绘制了研究区滑坡易发性分布图.结果表明:CNN模型具有良好的适应性,绘制的滑坡易发性分区图显示出合理的空间分布,A区和B区的测试集AUC面积分别为91.2%和94.3%;70%的滑坡数据分布在较高及以上等级的易发区,68.7%的非滑坡数据分布在较低及以下等级的易发区;滑坡高易发区主要位于研究区东北部猫岭北沟山一带、冰峪沟风景区的北部山区和碧流河水库沿岸区.研究成果为辽南仙人洞国家级自然保护区的地质灾害防治规划、应急预案制定等提供了重要的科学依据.

       

    • 图  1  CNN结构示意

      Fig.  1.  CNN architecture map

      图  2  研究区概况

      Fig.  2.  Overview of the study area

      图  3  研究区滑坡易发性评价因子分布

      Fig.  3.  The distribution map of landslide susceptibility assessment factors in the study area

      图  4  CNN算法流程

      Fig.  4.  Flow chart of CNN

      图  5  滑坡易发性评价分区

      Fig.  5.  The zoning map of landslide susceptibility in the study area

      图  6  卷积神经网络的ROC曲线

      Fig.  6.  The ROC curve of CNN

      表  1  滑坡易发性评价因子多重共线性检验

      Table  1.   Multicollinearity test of landslide susceptibility assessment factors

      滑坡因子 高程 坡向 坡度 地形起伏度 TWI 岩性 距断层距离 汛期降雨量 距河流距离 距道路距离 土地利用类型 NDVI
      VIF 2.59 1.02 1.66 2.35 1.38 1.21 1.41 1.42 1.14 1.27 1.29 1.54
      TOL 0.39 0.98 0.60 0.43 0.72 0.83 0.71 0.70 0.88 0.79 0.78 0.65
      下载: 导出CSV

      表  2  CNN参数设置

      Table  2.   The parameter setting of CNN

      CNN模型参数 卷积核大小 最大池化 激活函数 优化器 学习率 训练次数
      A区 3×1 2×1 修正线性单元函数 自适应梯度下降算法 0.003 80
      B区 3×1 2×1 双曲正切函数 自适应梯度下降算法 0.003 50
      下载: 导出CSV
    • Althuwaynee, O. F., Pradhan, B., Lee, S., 2016. A Novel Integrated Model for Assessing Landslide Susceptibility Mapping Using CHAID and AHP Pair-Wise Comparison. International Journal of Remote Sensing, 37(5): 1190-1209. https://doi.org/10.1080/01431161.2016.1148282
      Aslam, B., Zafar, A., Khalil, U., 2021. Development of Integrated Deep Learning and Machine Learning Algorithm for the Assessment of Landslide Hazard Potential. Soft Computing, 25(21): 13493-13512. https://doi.org/10.1007/s00500-021-06105-5
      Blahut, J., van Westen, C. J., Sterlacchini, S., 2010. Analysis of Landslide Inventories for Accurate Prediction of Debris-Flow Source Areas. Geomorphology, 119(1-2): 36-51. https://doi.org/10.1016/j.geomorph.2010.02.017
      Chauhan, S., Sharma, M., Arora, M. K., et al., 2010. Landslide Susceptibility Zonation through Ratings Derived from Artificial Neural Network. International Journal of Applied Earth Observation and Geoinformation, 12(5): 340-350. https://doi.org/10.1016/j.jag.2010.04.006
      Chen, W., Li, W. P., Hou, E. K., et al., 2014. Landslide Susceptibility Mapping Based on GIS and Information Value Model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7(11): 4499-4511. https://doi.org/10.1007/s12517-014-1369-z
      Fang, Z. C., Wang, Y., Peng, L., et al., 2020. Integration of Convolutional Neural Network and Conventional Machine Learning Classifiers for Landslide Susceptibility Mapping. Computers & Geosciences, 139: 104470. https://doi.org/10.1016/j.cageo.2020.104470
      Geertsema, M., Pojar, J. J., 2007. Influence of Landslides on Biophysical Diversity—A Perspective from British Columbia. Geomorphology, 89(1-2): 55-69. https://doi.org/10.1016/j.geomorph.2006.07.019
      Girshick, R., 2015. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 1440-1448. https://doi.org/10.1109/ICCV.2015.169
      Habumugisha, J. M., Chen, N. S., Rahman, M., et al., 2022. Landslide Susceptibility Mapping with Deep Learning Algorithms. Sustainability, 14(3): 1734. https://doi.org/10.3390/su14031734
      Hansen, A., Franks, C. A. M., Kirk, P. A., et al., 1995. Application of GIS to Hazard Assessment, with Particular Reference to Landslides in Hong Kong. Geographical Information Systems in Assessing Natural Hazards. Springer, Dordrecht, 273-298. https://doi.org/10.1007/978-94-015-8404-3_14
      Huang, F. M., Chen, B., Mao, D. X., et al., 2023. Landslide Susceptibility Prediction Modeling and Interpretability Based on Self-Screening Deep Learning Model. Earth Science, 48(5): 1696-1710 (in Chinese with English abstract).
      Huang, F. M., Chen, J. W., Tang, Z. P., et al., 2021. Uncertainties of Landslide Susceptibility Prediction due to Different Spatial Resolutions and Different Proportions of Training and Testing Datasets. Journal of Rock Mechanics and Engineering, 40(6): 1155-1169 (in Chinese with English abstract).
      Huang, F. M., Yin, K. L., Jiang, S. H., et al., 2018. Landslide Susceptibility Assessment Based on Clustering Analysis and Support Vector Machine. Journal of Rock Mechanics and Engineering, 37(1): 156-167 (in Chinese with English abstract).
      Huang, W. B., Ding, M. T., Wang, D., et al., 2022. Evaluation of Landslide Susceptibility Based on Layer Adaptive Weighted Convolutional Neural Network Model along Sichuan-Tibet Traffic Corridor. Earth Science, 47(6): 2015-2030 (in Chinese with English abstract).
      Ilmy, H. F., Darminto, M. R., Widodo, A., 2021. Application of Machine Learning on Google Earth Engine to Produce Landslide Susceptibility Mapping (Case Study: Pacitan). IOP Conference Series: Earth and Environmental Science, 731(1): 012028. https://doi.org/10.1088/1755-1315/731/1/012028
      Li, W. B., Fan, X. M., Huang, F. M., 2021. Uncertainties of Landslide Susceptibility Modeling under Different Environmental Factor Connections and Prediction Models. Earth Science, 46(10): 3777-3795 (in Chinese with English abstract).
      Li, W. J., Fang, Z. C., Wang, Y., 2022. Stacking Ensemble of Deep Learning Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoirarea, China. Stochastic Environmental Research and Risk Assessment, 36(8): 2207-2228. https://doi.org/10.1007/s00477-021-02032-x
      Liu, Y., 2022. Research on Pre Loan Risk Control Based on Stacking Integration Method under Unbalanced Samples (Dissertation). Central China Normal University, Wuhan (in Chinese with English abstract).
      Meten, M., Bhandary, N. P., Yatabe, R., 2015. GIS-Based Frequency Ratio and Logistic Regression Modelling for Landslide Susceptibility Mapping of Debre Sina Area in Central Ethiopia. Journal of Mountain Science, 12(6): 1355-1372. https://doi.org/10.1007/s11629-015-3464-3
      Moni, M., Sethi, I. P. S., Sethi, S. P. S., 1991. Natural Calamities Relief Management Software. IETE Technical Review, 8(2): 64-71. https://doi.org/10.1080/02564602.1991.11438716
      Nian, T. K., Feng, Z. K., Yu, P. C., et al., 2013. Strength Behavior of Slip-Zone Soils of Landslide Subject to the Change of Water Content. Natural Hazards, 68(2): 711-721. https://doi.org/10.1007/s11069-013-0647-5
      Pardeshi, S. D., Autade, S. E., Pardeshi, S. S., 2013. Landslide Hazard Assessment: Recent Trends and Techniques. Springer Plus, 2(1): 523. https://doi.org/10.1186/2193-1801-2-523
      Pei, Z. W., Nian, T. K., Wu, H., et al., 2021. Research Progress on Emergency Treatment Techniques for Landslide Geological Hazards. Journal of Disaster Prevention and Mitigation Engineering, 41(6): 1382-1394 (in Chinese with English abstract).
      Pham, V. D., Nguyen, Q. H., Nguyen, H. D., et al., 2020. Convolutional Neural Network-Optimized Moth Flame Algorithm for Shallow Landslide Susceptible Analysis. IEEE Access, 8: 32727-32736. https://doi.org/10.1109/ACCESS.2020.2973415
      Wang, C. Y., 2008. Study on the Relationship between Aspect and Slope Stability (Dissertation). Kunming University of Science and Technology, Kunming (in Chinese with English abstract).
      Wang, W. D., He, Z. L., Han, Z., et al., 2020. Mapping the Susceptibility to Landslides Based on the Deep Belief Network: A Case Study in Sichuan Province, China. Natural Hazards, 103(3): 3239-3261. https://doi.org/10.1007/s11069-020-04128-z
      Wang, Y., Fang, Z. C., Niu, R. Q., et al., 2021. Landslide Susceptibility Analysis Based on Deep Learning. Journal of Geo-Information Science, 23(12): 2244-2260 (in Chinese with English abstract).
      Wu, C., 2019. Landslide Susceptibility Based on Extreme Rainfall-Induced Landslide Inventories and the Following Landslide Evolution. Water, 11(12): 2609. https://doi.org/10.3390/w11122609
      Wu, X. L., Yang, J. Y., Niu, R. Q., 2020. A Landslide Susceptibility Assessment Method Using SMOTE and Convolutional Neural Network. Geomatics and Information Science of Wuhan University, 45(8): 1223-1232 (in Chinese with English abstract).
      Yan, C. L., Zheng, D. F., Nian, T. K., et al., 2021. Fuzzy Bayesian Network Model Based on ANP and Its Application to Coastal Zone Geohazard Risk Assessment. Journal of Engineering Geology, 29(6): 1862-1868 (in Chinese with English abstract).
      Zhang, C. X., Yang, Q. K., Li, R., 2005. Advancement in Topographic Wetness Index and Its Application. Progress In Geography, 24(6): 116-123 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-6301.2005.06.014
      Zhang, K. X., Wu, X. L., Niu, R. Q., et al., 2017. The Assessment of Landslide Susceptibility Mapping Using Random Forest and Decision Tree Methods in the Three Gorges Reservoir Area, China. Environmental Earth Sciences, 76(11): 405. https://doi.org/10.1007/s12665-017-6731-5
      Zhao, P. X., Masoumi, Z., Kalantari, M., et al., 2022. A GIS-Based Landslide Susceptibility Mapping and Variable Importance Analysis Using Artificial Intelligent Training-Based Methods. Remote Sensing, 14(1): 211. https://doi.org/10.3390/rs14010211
      Zhou, X. T., Huang, F. M., Wu, W. C., et al., 2022. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Advanced Engineering Sciences, 54(3): 25-35 (in Chinese with English abstract).
      黄发明, 陈彬, 毛达雄, 等, 2023. 基于自筛选深度学习的滑坡易发性预测建模及其可解释性. 地球科学, 48(5): 1696-1710. doi: 10.3799/dqkx.2022.247
      黄发明, 陈佳武, 唐志鹏, 等, 2021. 不同空间分辨率和训练测试集比例下的滑坡易发性预测不确定性. 岩石力学与工程学报, 40(6): 1155-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106008.htm
      黄发明, 殷坤龙, 蒋水华, 等, 2018. 基于聚类分析和支持向量机的滑坡易发性评价. 岩石力学与工程学报, 37(1): 156-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801016.htm
      黄武彪, 丁明涛, 王栋, 等, 2022. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价. 地球科学, 47(6): 2015-2030.
      李文彬, 范宣梅, 黄发明, 等, 2021. 不同环境因子联接和预测模型的滑坡易发性建模不确定性. 地球科学, 46(10): 3777-3795. doi: 10.3799/dqkx.2021.042
      刘允, 2022. 基于不平衡样本下Stacking集成方法的贷前风控研究(硕士学位论文). 武汉: 华中师范大学.
      裴振伟, 年廷凯, 吴昊, 等, 2021. 滑坡地质灾害应急处置技术研究进展. 防灾减灾工程学报, 41(6): 1382-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202106028.htm
      王朝阳, 2008. 坡向与斜坡稳定性的关系研究(硕士学位论文). 昆明: 昆明理工大学.
      王毅, 方志策, 牛瑞卿, 等, 2021. 基于深度学习的滑坡灾害易发性分析. 地球信息科学学报, 23(12): 2244-2260. doi: 10.12082/dqxxkx.2021.210057
      武雪玲, 杨经宇, 牛瑞卿, 2020. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法. 武汉大学学报(信息科学版), 45(8): 1223-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202008013.htm
      闫成林, 郑德凤, 年廷凯, 等, 2021. 基于ANP的模糊贝叶斯网络模型及其在海岸带地质灾害风险评价中的应用. 工程地质学报, 29(6): 1862-1868. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202106021.htm
      张彩霞, 杨勤科, 李锐, 2005. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展, 24(6): 116-123. doi: 10.3969/j.issn.1007-6301.2005.06.014
      周晓亭, 黄发明, 吴伟成, 等, 2022. 基于耦合信息量法选择负样本的区域滑坡易发性预测. 工程科学与技术, 54(3): 25-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202203003.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  480
    • HTML全文浏览量:  160
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-24
    • 网络出版日期:  2024-06-04
    • 刊出日期:  2024-05-25

    目录

      /

      返回文章
      返回