• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    均匀滑移模型在海啸预警中的应用——以2021年Mw 8.2 Alaska地震为例

    朱艺帆 安超

    朱艺帆, 安超, 2024. 均匀滑移模型在海啸预警中的应用——以2021年Mw 8.2 Alaska地震为例. 地球科学, 49(2): 500-510. doi: 10.3799/dqkx.2023.114
    引用本文: 朱艺帆, 安超, 2024. 均匀滑移模型在海啸预警中的应用——以2021年Mw 8.2 Alaska地震为例. 地球科学, 49(2): 500-510. doi: 10.3799/dqkx.2023.114
    Zhu Yifan, An Chao, 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510. doi: 10.3799/dqkx.2023.114
    Citation: Zhu Yifan, An Chao, 2024. Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake. Earth Science, 49(2): 500-510. doi: 10.3799/dqkx.2023.114

    均匀滑移模型在海啸预警中的应用——以2021年Mw 8.2 Alaska地震为例

    doi: 10.3799/dqkx.2023.114
    基金项目: 

    国家自然科学基金项目 T2122012

    国家自然科学基金项目 U1901602

    详细信息
      作者简介:

      朱艺帆(1995-),男,博士研究生,主要从事海啸模拟、海啸灾害评估和预警技术研究. ORCID:0000-0002-4946-2949. E-mail:zyftop@sjtu.edu.cn

      通讯作者:

      安超,ORCID:0000-0001-7503-5564.E-mail: anchao@sjtu.edu.cn

    • 中图分类号: P738

    Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 Mw 8.2 Alaska Peninsula Earthquake

    • 摘要: 为了保证海啸预警的时效性,复杂的地震震源经常被简化为均匀滑移模型来预测海啸波. 虽然均匀滑移模型已经被广泛使用,但其在实际事件中预测海啸波的准确性并未得到全面的评估和认可.对2021年Mw 8.2 Alaska地震构建了有限断层模型(finite⁃fault model)和多种均匀滑移模型,并对海啸波的预测误差进行对比分析.有限断层模型显示,2021年Alaska地震的同震滑移分布在15~40 km的深度范围内,震源周围的最大滑移约为6 m. 另外,通过全局搜索得到的最优均匀滑移模型对海啸波的预测与有限断层模型非常接近,都与观测波形符合良好;两种位于gCMT中心、但采用不同标度关系(scalingrelation)的均匀滑移模型给出了几乎一致的远场波形.对此次地震海啸的研究结果表明,均匀滑移模型对海啸波的最佳预测能力与有限断层模型相当,根据gCMT中心和标度关系构造的均匀滑移模型对远场海啸预警比较可靠,且不同标度关系对远场波形预测无显著影响.

       

    • 图  1  Alaska⁃Aleutian俯冲带周边大洋水深以及2021年Alaska地震的源区几何位置

      a. 震中周围水深及海啸观测分布,DART浮标和潮位站分别由品红色三角形和白色倒三角标出;b. 假定源区和子断层划分,白色小方块代表子断层,4个角上的子断层序号用黑色数字标出,红色和蓝色五角星分别为USGS震中和gCMT中心;c. 地形和板间界面沿垂直于走向的直线AB的截面,灰色和绿色曲线分别为Slab2.0模型和有限断层模型的深度剖面,灰色沙滩球为1976—2021年源区内逆冲地震gCMT中心的垂直投影

      Fig.  1.  Bathymetry around the Alaska⁃Aleutian subduction zone and the source geometry of 2021 Mw 8.2 earthquake

      图  2  2021年Alaska地震的4种滑移模型

      a. 海啸数据反演得到的有限断层模型;b. 全局搜索得到的最优均匀滑移模型;c. 基于gCMT中心和标度关系An2018的均匀滑移模型;d. 基于gCMT中心和标度关系Blaser2010的均匀滑移模型

      Fig.  2.  Four slip models for 2021 Mw 8.2 Alaska Peninsula earthquake

      图  3  有限断层模型和最优均匀滑移模型预测的海啸波与观测波形的对比

      Fig.  3.  Comparison of tsunami waveforms between observations and those predicted bythe finite⁃fault model and the optimum uniform slip model

      图  4  有限断层模型和最优均匀滑移模型预测的海啸首波振幅、到时和观测数据的对比

      Fig.  4.  Comparison of first tsunami wave amplitude and arrival time between observations and those predicted by the finite⁃fault model and the optimum uniform slip model

      图  5  基于gCMT中心和两种标度关系的均匀滑移模型造成的初始水面变形

      Fig.  5.  Initial sea surface displacement caused by uniform slip models based on the gCMT centroid and two scaling relations

      图  6  基于gCMT中心和两种标度关系的均匀滑移模型预测的海啸波与观测波形的对比

      Fig.  6.  Comparison of tsunami waveforms between observations and those predicted by uniform slip models based on the gCMT centroid and two scaling relations

      图  7  基于gCMT中心和两种标度关系的均匀滑移模型预测的首波振幅、到时和观测数据的对比

      Fig.  7.  Comparison of first tsunami wave amplitude and arrival time between observations and those predicted by uniform slip models based on the gCMT centroid and two scaling relations

      表  1  4种滑移模型对海啸波振幅和到时的预测误差

      Table  1.   Prediction errorsof four slip models for tsunami amplitude and arrival time

      有限断层模型 最优均匀滑移模型 位于gCMT中心(An 2018) 位于gCMT中心(Blaser 2010)
      振幅误差(cm, 相对误差) 0.83(17.8%) -0.3(-6.4%) 1.5(31.6%) 0.5(10.5%)
      到时误差(min, 相对误差) -4.4(-6.2%) -1.1(-1.6%) 3.5(5.0%) 2.0(2.9%)
      下载: 导出CSV
    • An, C., Liu, H., Ren, Z. Y., et al., 2018. Prediction of Tsunami Waves by Uniform Slip Models. Journal of Geophysical Research: Oceans, 123(11): 8366-8382. https://doi.org/10.1029/2018jc014363
      An, C., Sepúlveda, I., Liu, P. L. F., et al., 2014. Tsunami Source and its Validation of the 2014 Iquique, Chile, Earthquake. Geophysical Research Letters, 41(11): 3988-3994. https://doi.org/10.1002/2014gl060567
      Bernard, E., Titov, V., 2015. Evolution of Tsunami Warning Systems and Products. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053): 20140371. https://doi.org/10.1098/rsta.2014.0371
      Blaser, L., Kruger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6): 2914-2926. https://doi.org/10.1785/0120100111
      Elliott, J. L., Grapenthin, R., Parameswaran, R. M., et al., 2022. Cascading Rupture of a Megathrust. Science Advances, 8(18): eabm4131. https://doi.org/10.1126/sciadv.abm4131
      Fujii, Y., Satake, K., Sakai, S., et al., 2011. Tsunami Source of the 2011 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 815-820. https://doi.org/10.5047/eps.2011.06.010
      Geist, E. L., 2002. Complex Earthquake Rupture and Local Tsunamis. Journal of Geophysical Research: Solid Earth, 107(B5): ESE2⁃1-ESE2⁃15. https://doi.org/10.1029/2000JB000139
      Gonzalez, F. I., Milburn, H. M., Bernard, E. N., et al., 1998. Deep⁃Ocean Assessment and Reporting of Tsunamis (Dart): Brief Overview and Status Report. Proceedings of the international workshop on Tsunami Disaster Mitigation,
      Greenslade, D. J. M., Allen, S. C. R., Simanjuntak, M. A., 2011. An Evaluation of Tsunami Forecasts from the T2 Scenario Database. Pure and Applied Geophysics, 168(6/7): 1137-1151. https://doi.org/10.1007/s00024⁃010⁃0229⁃3
      Greenslade, D. J. M., Titov, V. V., 2008. A Comparison Study of Two Numerical Tsunami Forecasting Systems. Pure and Applied Geophysics, 165(11/12): 1991-2001. https://doi.org/10.1007/s00024⁃008⁃0413⁃x
      Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
      Kamigaichi, O., 2022. Tsunami Forecasting and Warning. Complexity in Tsunamis, Volcanoes, and Their Hazards, 335-371.
      Lawson, C. L., Hanson, R. J., 1995. Solving Least Squares Problems (Vol. 161). SIAM, Englewood Cliffs, N. J. https://doi.org/10.1137/1.9781611971217
      Li, L. L., Qiu, Q., Li, Z. G., et al., 2022. Tsunami Hazard Assessment in the South China Sea: A Review of Recent Progress and Research Gaps. Science China Earth Sciences, 65(5): 783-809. https://doi.org/10.1007/s11430⁃021⁃9893⁃8
      Li, L., Qiu, Q., Li, Z., et al., 2022. Tsunami Hazard Assessment in the South China Sea: A Review of Recent Progress and Research Gaps. Science China Earth Sciences, 52(5): 803-831(in Chinese with English abstract).
      Liu, C. L., Lay, T., Xiong, X., 2022. The 29 July 2021 MW 8.2 Chignik, Alaska Peninsula Earthquake Rupture Inferred from Seismic and Geodetic Observations: Re‐Rupture of the Western 2/3 of the 1938 Rupture Zone. Geophysical Research Letters, 49(4): e2021GL096004. https://doi.org/10.1029/2021gl096004
      Liu, P. L. F., Woo, S. B., Cho, Y. S., 1998. Computer Programs for Tsunami Propagation and Inundation (Technical Report). Cornell University, Ithaca, N. Y.
      Mai, P. M., Beroza, G. C., 2000. Source Scaling Properties from Finite⁃Fault⁃Rupture Models. Bulletin of the Seismological Society of America, 90(3): 604-615. https://doi.org/10.1785/0119990126
      Melgar, D., Williamson, A. L., Salazar⁃Monroy, E. F., 2019. Differences between Heterogenous and Homogenous Slip in Regional Tsunami Hazards Modelling. Geophysical Journal International, 219(1): 553-562. https://doi.org/10.1093/gji/ggz299
      Mueller, C., Power, W., Fraser, S., et al., 2015. Effects of Rupture Complexity on Local Tsunami Inundation: Implications for Probabilistic Tsunami Hazard Assessment by Example. Journal of Geophysical Research: Solid Earth, 120(1): 488-502. https://doi.org/10.1002/2014jb011301
      Mulia, I. E., Gusman, A. R., Heidarzadeh, M., et al., 2022. Sensitivity of Tsunami Data to the Up⁃Dip Extent of the July 2021 Mw 8.2 Alaska Earthquake. Seismological Research Letters, 93(4): 1992-2003. https://doi.org/10.1785/0220210359
      Murotani, S., Miyake, H., Koketsu, K., 2008. Scaling of Characterized Slip Models for Plate⁃Boundary Earthquakes. Earth, Planets and Space, 60(9): 987-991. https://doi.org/10.1186/bf03352855
      Okada, Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135-1154. https://doi.org/10.1785/bssa0750041135
      Ren, J., Sun, M., Bing, H., 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071 (in Chinese with English Abstract).
      Rudloff, A., Lauterjung, J., Münch, U., et al., 2009. Preface: The GITEWS Project (German⁃Indonesian Tsunami Early Warning System). Natural Hazards and Earth System Sciences, 9(4): 1381-1382. https://doi.org/10.5194/nhess⁃9⁃1381⁃2009
      Setiyono, U., Gusman, A. R., Satake, K., et al., 2017. Pre⁃Computed Tsunami Inundation Database and Forecast Simulation in Pelabuhan Ratu, Indonesia. Pure and Applied Geophysics, 174(8): 3219-3235. https://doi.org/10.1007/s00024⁃017⁃1633⁃8
      Tanioka, Y., Satake, K., 1996. Tsunami Generation by Horizontal Displacement of Ocean Bottom. Geophysical Research Letters, 23(8): 861-864. https://doi.org/10.1029/96gl00736
      Wang, X. M., Liu, P. L. F., 2006. An Analysis of 2004 Sumatra Earthquake Fault Plane Mechanisms and Indian Ocean Tsunami. Journal of Hydraulic Research, 44(2): 147-154. https://doi.org/10.1080/00221686. 2006. 9521671 doi: 10.1080/00221686.2006.9521671
      Wang, Y. C., Su, H. Y., Ren, Z. Y., et al., 2022. Source Properties and Resonance Characteristics of the Tsunami Generated by the 2021 M 8.2 Alaska Earthquake. Journal of Geophysical Research: Oceans, 127(3): e2021JC018308. https://doi.org/10.1029/2021jc018308
      Wei, Y., Cheung, K. F., Curtis, G. D., et al., 2003. Inverse Algorithm for Tsunami Forecasts. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2): 60-69. https://doi.org/10.1061/(asce)0733⁃950x(2003)129:2(60)
      Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
      Ye, L. L., Bai, Y. F., Si, D. J., et al., 2022. Rupture Model for the 29 July 2021 MW 8.2 Chignik, Alaska Earthquake Constrained by Seismic, Geodetic, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 127(7): e2021JB023676. https://doi.org/10.1029/2021jb023676
      Yue, H., Lay, T., Rivera, L., et al., et al., 2014. Localized Fault Slip to the Trench in the 2010 Maule, Chile Mw = 8.8 Earthquake from Joint Inversion of High⁃Rate Gps, Teleseismic Body Waves, Insar, Campaign Gps, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 119(10): 7786-7804. https://doi.org/10.1002/2014JB011340
      Zhu, Y., An, C., Wang, T., et al., 2021. Time⁃Dependent Tsunami Source Following the 2018 Anak Krakatau Volcano Eruption Inferred from Nearby Tsunami Recordings. China Ocean Engineering, 35(1): 145-152. https://doi.org/10.1007/s13344⁃021⁃0013⁃4
      任金锋, 孙鸣, 韩冰, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3): 1058-1071. doi: 10.3799/dqkx.2020.185
      李琳琳, 邱强, 李志刚, 等, 2022. 南海海啸灾害研究进展及展望. 中国科学: 地球科学, 52(5): 803-831. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202205002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  160
    • HTML全文浏览量:  244
    • PDF下载量:  23
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-31
    • 刊出日期:  2024-02-25

    目录

      /

      返回文章
      返回