Controlling Factors and Favorable Area Prediction of Cretaceous Qingshuihe Formation in Gaoquan Area of the Southern Junggar Basin
-
摘要: 准噶尔盆地深层油气资源丰富,成藏过程复杂,深入认识控藏要素与富集规律具有重要科学及实践意义.以准噶尔盆地南缘高泉构造下组合白垩系清水河组为例,综合利用岩心观察、薄片鉴定、单井相分析、油藏解剖、地层水分析等技术手段,明确了高泉构造清水河组砂体成因、关键控藏要素及有利区带,丰富了复杂构造带沉积-成储-成藏理论认识.分析认为:(1)高泉构造白垩系清水河组砂体为扇三角洲前缘多期水下分流河道砂体叠置而成,砂体储集性能横向变化快,非均质性强.(2)清水河组油气保存条件差异大,高泉构造自燕山期以来为继承性构造,受多期构造运动影响,背斜构造受断裂切割改造严重,在挤压变形强烈的背斜翼部,深浅断层纵向对接,造成背斜构造翼部油气沿断裂调整散失,仅在构造高点富集成藏.(3)清水河组底部砂体物性受沉积期古地貌控制,古地貌相对较高的低凸起,砂体泥质含量低,分选好,物性优;古地貌相对较低的古沟槽沉积区,砂砾岩分选磨圆差,泥质含量高,储集物性差.(4)高泉构造清水河组油气成藏受优质储层及保存条件两大关键要素控制,围绕两大控藏要素,基于三维地震资料,开展古地貌恢复及敏感属性分析,预测高泉构造清水河组优质储层发育区,主要分布于三维工区西南部,呈北西-南东向条带状分布,有利面积约110 km2,为该区深层油气勘探提供有效支撑和借鉴.Abstract: Petroleum resources are abundant in deep formation of the foreland thrust belt, the large-scale oil and gas reservoir exploration field. However, due to the large buried depth, low exploration degree and complex reservoir forming mechanism, it also faces great challenges. It is of great scientific and guiding significance to reveal the reservoir control factors and enrichment rules under complex reservoir forming conditions. Taking the southern margin of Junggar Basin as an example, basing on core observation, thin section identification, logging and single well facies analysis, the sand body sedimentary microfacies and reservoirs type and key factors of Qingshuihe Formation in Gaoquan area were clarified. The comprehensive analysis shows follows: (1) The Cretaceous Qingshuihe Formation sand bodies in Gaoquan structure were superposed by multi-stage underwater distributary channel sand bodies in the fan delta front, with fast lateral changes in sand body reservoir performance and strong heterogeneity. (2) The oil and gas reservoir preservation conditions of the Qingshuihe Formation vary greatly. The Gaoquan anticline structure had been an inherited structure since the Yanshanian Period. Affected by multiple tectonic movements, the anticline structure was severely cut and transformed by faults. In the anticline wing with strong compression deformation, deep and shallow faults were vertically connected, causing the oil and gas in the anticline wing to disperse along the fault adjustment, and only enriched and formed reservoirs at the structural highs. (3) The physical properties of the sand bodies at the bottom of the Qingshuihe Formation were controlled by the paleogeomorphology of the sedimentary period. The sand bodies deposited in areas with relatively high ancient landforms have low shale content, good sorting and excellent reservoir physical properties. The gravels deposited in areas with relatively low ancient landforms are poorly sorted and rounded, with high shale content and poor reservoir physical properties. (4) The oil and gas accumulation of Qingshuihe Formation in Gaoquan structure area are controlled by two key factors: high-quality reservoir and preservation conditions. Focusing on the two major reservoir control factors and based on 3D seismic data, ancient landform restoration and sensitive attribute analysis are carried out to predict the high-quality reservoir development area of Qingshuihe Formation in Gaoquan structure, which is mainly distributed in the southwest of the 3D work area, in NW-SE strip distribution, with a favorable area of about 110 square kilometers, it provides effective support and reference for deep oil and gas exploration in this area.
-
图 5 南缘高探1井天然气碳同位素交会图(a)与原油全烃色谱图(b)(图b据任江玲等,2020)
Fig. 5. Cross plot of stable carbon isotopes of natural gas (a) and chromatogram of total hydrocarbon of crude oil (b) (Ren et al., 2020) from Qingshuihe Formation of well Gaotan-1 in Junggar Basin
图 9 研究区清水河组岩心及铸体薄片图
a. 高101,6 020 m,K1q;b. 高101,6 021 m,K1q;c. 高101,6 017.55 m,K1q,铸体薄片;d. 高101,6 019.75 m,K1q,铸体薄片;e. 高探1,5 775 m,K1q,铸体薄片;f. 高泉5,6 052 m,K1q;g. 高泉5,6 057 m,K1q;h. 高泉5,6 052.96 m,K1q,铸体薄片;i. 高泉5,6 057.24 m,K1q,铸体薄片;j. 高泉5,6 059.29 m,K1q,铸体薄片;k. GHW001,5 829.36 m,K1q;l. GHW001,5 836.35 m,K1q;m. GHW001,5 825.19 m,K1q,铸体薄片;n. GHW001,5 829.04 m,K1q,铸体薄片;o. GHW001,5 829.67 m,K1q,铸体薄片
Fig. 9. Thin sections and core photos of the Qingshuihe Formation in study area
表 1 研究区清水河组地层水分析数据
Table 1. The Qingshuihe Formation water analysis data in study area
井名 层位 顶界深度(m) 底界深度(m) 水型 总矿化度(mg/L) 钾加钠(mg/L) 氯根(mg/L) 重碳酸根(mg/L) 硫酸根(mg/L) 脱硫系数(%) 钠氯系数(%) 取样地点 高102 K1q 5 855 5 861 NaHCO3 25 861.9 9 185.97 11 363.70 1 375.02 3 511.52 23.61 0.81 井口 5 855 5 861 NaHCO3 22 155.0 7 792.17 8 923.64 1 375.02 3 723.06 29.44 0.87 井口 5 855 5 861 NaHCO3 16 169.7 5 640.29 5 228.70 1 519.76 3 613.58 40.87 1.08 井口 高探1 K1q 5 768 5 775 NaHCO3 10 362.1 3 682.94 4 327.42 1 970.46 209.74 4.62 0.85 井口 5 768 5 775 NaHCO3 10 492.3 3 701.11 4 400.76 2 042.95 160.70 3.52 0.84 井口 GHW001 K1q 5 832 5 838 NaHCO3 24 111.0 7 859.00 6 224.00 5 712.00 3 941.00 38.77 1.26 井口 -
Cao, J. J., Luo, J. L., Madina Mawutihan, et al., 2021. Influence Mechanism of Micro-Heterogeneity on Conglomerate Reservoir Densification: A Case Study of Upper Permian Wutonggou Formation in DN8 Area of Dongdaohaizi Sag, Junggar Basin. Earth Science, 46(10): 3435-3452(in Chinese with English abstract). Chen, G. H., Shen, H. L., Ma, C. X., et al., 2000. Technique for Identifying Shallow Gas Layer with Domestic Logging Suite. Well Logging Technology, 24(4): 279-282, 319(in Chinese with English abstract). doi: 10.3969/j.issn.1004-1338.2000.04.005 Chen, J. P., Wang, X. L., Deng, C. P., et al., 2015. Geochemcial Features of Source Rocks in the Southern Margin, Junggar Basin, Northwestern China. Acta Petrolei Sinica, 36(7): 767-780(in Chinese with English abstract). Chen, J. P., Wang, X. L., Ni, Y. Y., et al., 2019. The Accumulation of Natural Gas and Potential Exploration Regions in the Southern Margin of the Junggar Basin. Acta Geologica Sinica, 93(5): 1002-1019, 1189(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.05.002 Darby, D., Stuart Haszeldine, R., Couples, G. D., 1996. Pressure Cells and Pressure Seals in the UK Central Graben. Marine and Petroleum Geology, 13(8): 865-878. https://doi.org/10.1016/s0264-8172(96)00023-2 Du, J. H., Yang, T., Li, X., 2016. Oil and Gas Exploration and Discovery of PetroChina Company Limited during the 12th Five-Year Plan and the Prospect during the 13th Five-Year Plan. China Petroleum Exploration, 21(2): 1-15(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.02.001 Du, J. H., Zhi, D. M., Li, J. Z., et al., 2019. Major Breakthrough of Well Gaotan 1 and Exploration Prospects of Lower Assemblage in Southern Margin of Junggar Basin, NW China. Petroleum Exploration and Development, 46(2): 205-215(in Chinese with English abstract). doi: 10.1016/S1876-3804(19)60002-9 Fang, S. H., Zhao, M. J., Zhang, S. C., et al., 2013. Structural Control on Hydrocarbon Accumulation and Its Implication for Petroleum Exploration in Northern Qaidam Basin. Earth Science Frontiers, 20(5): 132-138(in Chinese with English abstract). Feng, J. W., Sun, J. F., Zhang, Y. J., et al., 2020. Control of Fault-Related Folds on Fracture Development in Kuqa Depression, Tarim Basin. Oil & Gas Geology, 41(3): 543-557(in Chinese with English abstract). Fu, S. T., Ma, D. D., Chen, Y., et al., 2016. New Progress in Oil and Gas Exploration in Qaidam Basin. Acta Petrolei Sinica, 37(S1): 1-10(in Chinese with English abstract). doi: 10.7623/syxb2016S1001 Gao, C. L., Ji, Y. L., Ren, Y., et al., 2016. Sedimentary Sequence Evolution Analysis of Qingshuihe Formation in Shinan Area of Junggar Basin. Journal of China University of Mining & Technology, 45(5): 958-971(in Chinese with English abstract). Gao, Z. Y., Feng, J. R., Cui, J. G., et al., 2020. Comparative Analysis on Sedimentary and Reservoir Characteristics of Jurassic to Cretaceous between Foreland Basins in Southern and Northern Tianshan Mountains. Xinjiang Petroleum Geology, 41(1): 80-92(in Chinese with English abstract). Guan, X. T., Wu, C. D., Wu, J., et al., 2020. Sedimentary Sequence and Depositional Environment Evolution of Upper Jurassic-Lower Cretaceous Strata in the Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 67-79(in Chinese with English abstract). Guo, R., 2004. Supplement to Determinging Method of Cut-off Value of Net Pay. Petroleum Exploration and Development, 31(5): 140-144(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2004.05.039 He, D. F., Zhang, L., Wu, S. T., et al., 2018. Tectonic Evolution Stages and Features of the Junggar Basin. Oil & Gas Geology, 39(5): 845-861(in Chinese with English abstract). He, H. Q., Fan, T. Z., Guo, X. J., et al., 2021. Major Achievements in Oil and Gas Exploration of PetroChina during the 13th Five-Year Plan Period and Its Development Strategy for the 14th Five-Year Plan. China Petroleum Exploration, 26(1): 17-30(in Chinese with English abstract). He, H. Q., Zhi, D. M., Lei, D. W., et al., 2019. Strategic Breakthrough in Gaoquan Anticline and Exploration Assessment on Lower Assemblage in the Southern Margin of Junggar Basin. China Petroleum Exploration, 24(2): 137-146(in Chinese with English abstract). He, Z. L., Gao, S. L., 2008. The Yanshanian Movement and Its Control over Hydrocarbon Accumulation in Western China. Oil & Gas Geology, 29(4): 419-427(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2008.04.001 Hu, S. Y., Li, J. Z., Wang, T. S., et al., 2020. CNPC Oil and Gas Resource Potential and Exploration Target Selection. Petroleum Geology & Experiment, 42(5): 813-823(in Chinese with English abstract). Lei, D. W., Chen, G. Q., Liu, H. L., et al., 2017. Study on the Forming Conditions and Exploration Fields of the Mahu Giant Oil (Gas) Province, Junggar Basin. Acta Geologica Sinica, 91(7): 1604-1619(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.07.012 Lei, D. W., Chen, N. G., Li, X. Y., et al., 2012. The Major Reservoirs and Distribution of Lower Combination in Southern Margin of Jungar Basin. Xinjiang Petroleum Geology, 33(6): 648-650(in Chinese with English abstract). Li, W., Chen, Z. X., Huang, P. H., et al., 2021. Formation of Overpressure System and Its Relationship with the Distribution of Large Gas Fields in Typical Foreland Basins in Central and Western China. Petroleum Exploration and Development, 48(3): 536-548(in Chinese with English abstract). Li, X. Y., Shao, Y., Li, T. M., 2003. Three Oil-Reservoir Combinations in South Marginal of Jungar Basin, Northwest China. Petroleum Exploration and Development, 30(6): 32-34(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2003.06.009 Liu, C., Chen, S. J., Zhao, J. L., et al., 2021. Accumulation Conditions and Main Controlling Factors of Far-Source Oil and Gas Reservoirs: A Case Study of Meso-Cenozoic Reservoirs in the Southern Slope of Kuqa Depression. Acta Petrolei Sinica, 42(3): 307-318(in Chinese with English abstract). Liu, J. M., 1982. The Characteristics of Underground Water Chemistry and Its Application in Oilfield Hydrology Exploration. Petroleum Expoloration and Development, 9(6): 49-55(in Chinese with English abstract). Lu, X. S., Zhao, M. J., Liu, K. Y., et al., 2018. Forming Condition and Mechanism of Highly Effective Deep Tight Sandstone Gas Reservoir in Kuqa Foreland Basin. Acta Petrolei Sinica, 39(4): 365-378(in Chinese with English abstract). Luo, X. R., Zhang, L. Q., Zhang, L. K., et al., 2020. Heterogeneity of Clastic Carrier Bed and Hydrocarbon Migration and Accumulation. Acta Petrolei Sinica, 41(3): 253-272(in Chinese with English abstract). Magara, K., 1993. Pressure Sealing: An Important Agent for Hydrocarbon Entrapment. Journal of Petroleum Science and Engineering, 9(1): 67-80. https://doi.org/10.1016/0920-4105(93)90029-e Pang, X. Q., 2010. Key Challenges and Research Methods of Petroleum Exploration in the Deep of Superimposed Basins in Western China. Oil & Gas Geology, 31(5): 517-534, 541(in Chinese with English abstract). Ren, J. L., Wang, F. Y., Zhao, Z. Y., et al., 2020. Genesis of Oil and Gas in Sikeshu Sag in the Southern Margin of Junggar Basin. Xinjiang Petroleum Geology, 41(1): 25-30(in Chinese with English abstract). Shen, W. B., Pang, X. Q., Chen, J. F., et al., 2017. Types and Distribution of Deep Oil and Gas Pools in the Tarim Basin, NW China. Geological Journal of China Universities, 23(2): 324-336(in Chinese with English abstract). Song, Y., Fang, S. H., Zhao, M. J., et al., 2005. The Structural Segmentation of Foreland Thrust Belts and Its Implications for Hydrocarbon Accumulation in Foreland Basins in Central and Western China. Earth Science Frontiers, 12(3): 31-38(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2005.03.005 Sun, D. S., Jin, Z. J., Lü, X. X., et al., 2007. Controlling Effects of Palaeouplifts and Dual Overpressure Systems on Gas Accumulation in the Kuqa Foreland Basin. Oil & Gas Geology, 28(6): 821-827, 855(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2007.06.018 Tigert, V., Al-Shaieb, Z., 1990. Pressure Seals: Their Diagenetic Banding Patterns. Earth-Science Reviews, 29(1-4): 227-240. https://doi.org/10.1016/0012-8252(90)90039-X Wan, L. G., Liu, D. M., Hou, L. G., 2005. Study on Structural Characteristics of Foreland Thrust Belt in the Southern Margin of Junggar Basin. Oil Geophysical Prospecting, 40(S1): 40-45, 138(in Chinese with English abstract). Wang, G. W., Guo, R. K., 2000. Logging Geology. Petroleum Industry Press, Beijing (in Chinese). Wang, X. L., Zhi, D. M., Wang, Y. T., et al., 2013. Source Rocks and Oil-Gas Geochemistry in Junggar Basin. Petroleum Industry Press, Beijing (in Chinese). Wang, Y. Z., Cao, Y. C., Song, G. Q., et al., 2008. Application of Production Test Data to Evaluation of the Effective Reservoir in Deep Clastic of Bonan Sag. Acta Petrolei Sinica, 29(5): 701-706, 710(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2008.05.012 Wang, Z. M., Xie, H. W., Li, Y., et al., 2013. Exploration and Discovery of Large and Deep Subsalt Gas Fields in Kuqa Foreland Thrust Belt. China Petroleum Exploration, 18(3): 1-11(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.001 Wu, X. Z., Wang, L. H., Guo, J. G., et al., 2006. Difficulties and Solution of Oil and Gas Exploration in South Margin of Junggar Basin. China Petroleum Exploration, 11(5): 1-7(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2006.05.001 Yang, B. L., Qiu, L. W., Yang, Y. Q., et al., 2021. Sedimentary Characteristics and Transport Mechanism of Subaqueous Coarse Clastic Rocks in the Lower Cretaceous Xiguayuan Formation in the Steep Slope Zone of Luanping Basin. Earth Science, 46(9): 3258-3277(in Chinese with English abstract). Yang, T. T., Wang, X., He, W. C., 2017. Analysis of Genesis of Low Resistivity Oil Gas Layer and Its Logging Identification Evaluation. Petroleum Geophysics, 15(4): 1-6(in Chinese with English abstract). Yu, Y. J., Yang, T., Guo, B. C., et al., 2019. Major Advances and Outlook for Oil and Gas Exploration, Theory and Technology of Foreland Thrust Belts in China. Acta Geologica Sinica, 93(3): 545-564(in Chinese with English abstract). Zeng, Q. L., Mo, T., Zhao, J. L., et al., 2020. Characteristics, Genetic Mechanism and Oil & Gas Exploration Significance of High-Quality Sandstone Reservoirs Deeper than 7 000 m: A Case Study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression. Natural Gas Industry, 40(1): 38-47(in Chinese with English abstract). Zha, M., Chen, Z. H., 2008. Formation Water Chemical and Hydrodynamic Fields and Their Relations to the Hydrocarbon Accumulation in the Pre-Tertiary of Dongying Depression, Shandong. Geoscience, 22(4): 567-575(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2008.04.011 Zhang, Y. J., Cao, J., Hu, W. X., 2010. Timing of Petroleum Accumulation and the Division of Reservoir-Forming Assemblages, Junggar Basin, NW China. Petroleum Exploration and Development, 37(3): 257-262(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60031-6 Zhao, M. J., Song, Y., Qin, S. F., et al., 2007. Hydrocarbon Accumulation of Four Assemblage Foreland Basins in Central-Western China: Part Ⅱ. Filling Stages. Natural Gas Geoscience, 18(3): 321-327(in Chinese with English abstract). Zhao, W. Z., Hu, S. Y., Li, J. Z., et al., 2013. Changes and Enlightenment of Onshore Oil/Gas Exploration Domain in China—Experience and Perception in the Past Decade. China Petroleum Exploration, 18(4): 1-10(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.04.001 Zhao, X., Yu, X. H., Huang, X. W., et al., 2007. Sequence Stratigraphic Characteristics of the First Member of Qingshuihe Formation in Shinan Area, Junggar Basin. Acta Sedimentologica Sinica, 25(5): 716-721(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.05.009 Zheng, M., Li, J. Z., Wu, X. Z., et al., 2019. Potential of Oil and Natural Gas Resources of Main Hydrocarbon-Bearing Basins and Key Exploration Fields in China. Earth Science, 44(3): 833-847(in Chinese with English abstract). Zhu, M., Liang, Z. L., Ma, J., et al., 2020. Patterns of Hydrocarbon Generation and Reservoir Distribution in the Jurassic Strata, Sikeshu Sag, Junggar Basin. Natural Gas Geoscience, 31(4): 488-497(in Chinese with English abstract). 曹江骏, 罗静兰, 马迪娜·马吾提汗, 等, 2021. 微观非均质性对砂砾岩储层致密化的影响机理: 以准噶尔盆地东道海子凹陷DN8井区上二叠统梧桐沟组为例. 地球科学, 46(10): 3435-3452. doi: 10.3799/dqkx.2020.388 陈钢花, 申辉林, 马昌旭, 等, 2000. 国产测井系列浅气层识别技术. 测井技术, 24(4): 279-282, 319. doi: 10.3969/j.issn.1004-1338.2000.04.005 陈建平, 王绪龙, 邓春萍, 等, 2015. 准噶尔盆地南缘油气生成与分布规律: 烃源岩地球化学特征与生烃史. 石油学报, 36(7): 767-780. 陈建平, 王绪龙, 倪云燕, 等, 2019. 准噶尔盆地南缘天然气成藏及勘探方向. 地质学报, 93(5): 1002-1019, 1189. doi: 10.3969/j.issn.0001-5717.2019.05.002 杜金虎, 杨涛, 李欣, 2016. 中国石油天然气股份有限公司"十二五" 油气勘探发现与"十三五" 展望. 中国石油勘探, 21(2): 1-15. doi: 10.3969/j.issn.1672-7703.2016.02.001 杜金虎, 支东明, 李建忠, 等, 2019. 准噶尔盆地南缘高探1井重大发现及下组合勘探前景展望. 石油勘探与开发, 46(2): 205-215. 方世虎, 赵孟军, 张水昌, 等, 2013. 柴达木盆地北缘构造控藏特征与油气勘探方向. 地学前缘, 20(5): 132-138. 冯建伟, 孙建芳, 张亚军, 等, 2020. 塔里木盆地库车坳陷断层相关褶皱对裂缝发育的控制. 石油与天然气地质, 41(3): 543-557. 付锁堂, 马达德, 陈琰, 等, 2016. 柴达木盆地油气勘探新进展. 石油学报, 37(增刊1): 1-10. 高崇龙, 纪友亮, 任影, 等, 2016. 准噶尔盆地石南地区清水河组沉积层序演化分析. 中国矿业大学学报, 45(5): 958-971. 高志勇, 冯佳睿, 崔京钢, 等, 2020. 天山南北前陆盆地侏罗系-白垩系沉积及储集层特征对比. 新疆石油地质, 41(1): 80-92. 关旭同, 吴朝东, 吴鉴, 等, 2020. 准噶尔盆地南缘上侏罗统-下白垩统沉积序列及沉积环境演化. 新疆石油地质, 41(1): 67-79. 郭睿, 2004. 储层物性下限值确定方法及其补充, 石油勘探与开发, 31(5): 140-144. doi: 10.3321/j.issn:1000-0747.2004.05.039 何登发, 张磊, 吴松涛, 等, 2018. 准噶尔盆地构造演化阶段及其特征. 石油与天然气地质, 39(5): 845-861. 何海清, 范土芝, 郭绪杰, 等, 2021. 中国石油"十三五" 油气勘探重大成果与"十四五" 发展战略. 中国石油勘探, 26(1): 17-30. 何海清, 支东明, 雷德文, 等, 2019. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价. 中国石油勘探, 24(2): 137-146. 何治亮, 高山林, 2008. 中国西部燕山运动及其对油气成藏的控制. 石油与天然气地质, 29(4): 419-427. doi: 10.3321/j.issn:0253-9985.2008.04.001 胡素云, 李建忠, 王铜山, 等, 2020. 中国石油油气资源潜力分析与勘探选区思考. 石油实验地质, 42(5): 813-823. 雷德文, 陈刚强, 刘海磊, 等, 2017. 准噶尔盆地玛湖凹陷大油(气)区形成条件与勘探方向研究. 地质学报, 91(7): 1604-1619. doi: 10.3969/j.issn.0001-5717.2017.07.012 雷德文, 陈能贵, 李学义, 等, 2012. 准噶尔盆地南缘下部成藏组合储集层及分布特征. 新疆石油地质, 33(6): 648-650. 李伟, 陈竹新, 黄平辉, 等, 2021. 中国中西部典型前陆盆地超压体系形成机制与大气田关系. 石油勘探与开发, 48(3): 536-548. 李学义, 邵雨, 李天明, 2003. 准噶尔盆地南缘三个油气成藏组合研究. 石油勘探与开发, 30(6): 32-34. doi: 10.3321/j.issn:1000-0747.2003.06.009 刘春, 陈世加, 赵继龙, 等, 2021. 远源油气成藏条件与富集主控因素: 以库车坳陷南部斜坡带中生界-新生界油气藏为例. 石油学报, 42(3): 307-318. 刘济民, 1982. 油田水文地质勘探中水化学及其特性指标的综合应用. 石油勘探与开发, 9(6): 49-55. 鲁雪松, 赵孟军, 刘可禹, 等, 2018. 库车前陆盆地深层高效致密砂岩气藏形成条件与机理. 石油学报, 39(4): 365-378. 罗晓容, 张立强, 张立宽, 等, 2020. 碎屑岩输导层非均质性与油气运聚成藏. 石油学报, 41(3): 253-272. 庞雄奇, 2010. 中国西部叠合盆地深部油气勘探面临的重大挑战及其研究方法与意义. 石油与天然气地质, 31(5): 517-534, 541. 任江玲, 王飞宇, 赵增义, 等, 2020. 准噶尔盆地南缘四棵树凹陷油气成因. 新疆石油地质, 41(1): 25-30. 沈卫兵, 庞雄奇, 陈践发, 等, 2017. 塔里木盆地深部油气藏类型与分布特征. 高校地质学报, 23(2): 324-336. 宋岩, 方世虎, 赵孟军, 等, 2005. 前陆盆地冲断带构造分段特征及其对油气成藏的控制作用. 地学前缘, 12(3): 31-38. doi: 10.3321/j.issn:1005-2321.2005.03.005 孙冬胜, 金之钧, 吕修祥, 等, 2007. 库车前陆盆地古隆起及双超压体系对天然气成藏的控制作用. 石油与天然气地质, 28(6): 821-827, 855. doi: 10.3321/j.issn:0253-9985.2007.06.018 万里皋, 刘登明, 侯六根, 2005. 准噶尔盆地南缘前陆冲断带构造特征研究. 石油地球物理勘探, 40(增刊1): 40-45, 138. 王贵文, 郭荣坤, 2000. 测井地质学. 北京: 石油工业出版社. 王绪龙, 支东明, 王屿涛, 等, 2013. 准噶尔盆地烃源岩与油气地球化学. 北京: 石油工业出版社. 王艳忠, 操应长, 宋国奇, 等, 2008. 试油资料在渤南洼陷深部碎屑岩有效储层评价中的应用. 石油学报, 29(5): 701-706, 710. doi: 10.3321/j.issn:0253-2697.2008.05.012 王招明, 谢会文, 李勇, 等, 2013. 库车前陆冲断带深层盐下大气田的勘探和发现. 中国石油勘探, 18(3): 1-11. doi: 10.3969/j.issn.1672-7703.2013.03.001 吴晓智, 王立宏, 郭建刚, 等, 2006. 准噶尔盆地南缘油气勘探难点与对策. 中国石油勘探, 11(5): 1-7. doi: 10.3969/j.issn.1672-7703.2006.05.001 杨保良, 邱隆伟, 杨勇强, 等, 2021. 滦平盆地陡坡带下白垩统西瓜园组水下粗碎屑岩沉积特征及搬运机制. 地球科学, 46(9): 3258-3277. doi: 10.3799/dqkx.2020.355 杨涛涛, 王霞, 何文昌, 2017. 低阻油气层成因及测井识别评价方法分析. 油气地球物理, 15(4): 1-6. 蔚远江, 杨涛, 郭彬程, 等, 2019. 中国前陆冲断带油气勘探、理论与技术主要进展和展望. 地质学报, 93(3): 545-564. 曾庆鲁, 莫涛, 赵继龙, 等, 2020.7 000 m以深优质砂岩储层的特征、成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例. 天然气工业, 40(1): 38-47. 查明, 陈中红, 2008. 山东东营凹陷前古近系水化学场、水动力场与油气成藏. 现代地质, 22(4): 567-575. doi: 10.3969/j.issn.1000-8527.2008.04.011 张义杰, 曹剑, 胡文瑄, 2010. 准噶尔盆地油气成藏期次确定与成藏组合划分. 石油勘探与开发, 37(3): 257-262. 赵孟军, 宋岩, 秦胜飞, 等, 2007. 中国中西部4种组合类型前陆盆地油气成藏研究: Ⅱ. 油气成藏过程分析. 天然气地球科学, 18(3): 321-327. 赵文智, 胡素云, 李建忠, 等, 2013. 我国陆上油气勘探领域变化与启示: 过去十余年的亲历与感悟. 中国石油勘探, 18(4): 1-10. doi: 10.3969/j.issn.1672-7703.2013.04.001 赵霞, 于兴河, 黄兴文, 等, 2007. 准噶尔盆地石南地区清水河组一段层序地层特征. 沉积学报, 25(5): 716-721. doi: 10.3969/j.issn.1000-0550.2007.05.009 郑民, 李建忠, 吴晓智, 等, 2019. 我国主要含油气盆地油气资源潜力及未来重点勘探领域. 地球科学, 44(3): 833-847. doi: 10.3799/dqkx.2019.957 朱明, 梁则亮, 马健, 等, 2020. 准噶尔盆地四棵树凹陷侏罗系有机质生烃差异及油气藏分布规律. 天然气地球科学, 31(4): 488-497. -