Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen
-
摘要: 河流潜流带最显著的特征是河水和地下水周期性交替导致的水化学成分的动态变化,且周期间的间隔长短不一;潜流带是脱氮热区,其硝化和反硝化微生物对这种周期性变化的响应规律决定着潜流带脱氮效率.据此,时间间隔不同多次供给不同氮素、DO等,研究多周期内硝化、反硝化动力学规律.第1周期的硝化、反硝化速率较慢,有明显迟滞期;后续的第2和第3周期,无论底物投加间隔时间长短,硝化和反硝化未观察到明显迟滞期,反应速率均加快,且功能菌数量增加,但是功能菌数量和间隔时间成反比.硝态氮起始浓度会明显影响亚硝态氮动力学过程.硝化和反硝化菌数量增加及长时间维持高反应活性,是潜流带高效脱氮机制之一.Abstract: The most significant feature of the river hyporheic zone is the dynamic change of water chemical composition caused by the periodical alternation of river water and groundwater, and the interval between periods is different. The hyporheic zone is a denitrification hot zone, and the response law of nitrification and denitrifying microorganisms to this periodical change determines the nitrogen removal efficiency of the hyporheic zone. According to this, different nitrogen, DO, etc. were supplied multiple times at different intervals to study the kinetics of nitrification and denitrification in multiple cycles. The nitrification and denitrification rates in the first cycle were slow, and there was an obvious hysteresis period. In the subsequent second and third cycles, regardless of the length of substrate dosing interval, no significant hysteresis period was observed for nitrification and denitrification, the reaction rate was accelerated, and the number of functional bacteria increased, but the number of functional bacteria was inversely proportional to the interval time. The initial concentration of nitrate nitrogen significantly affects the nitrous nitrogen kinetic process. The increase in the number of nitrifying and denitrifying bacteria and the maintenance of high reactivity for a long time are one of the efficient nitrogen removal mechanisms in the hyporheic zone.
-
Key words:
- periodical supply of nitrogen /
- hyporheic zone sediment /
- nitrification /
- denitrification /
- kinetics /
- geochemistry
-
表 1 实验设计
Table 1. Experimental design
实验名称 用水类型 氮素
类型氮浓度
(mg/L)C/N 供氧 周期间隔(d) 周期数 硝态氮周期供给反硝化实验 GW 硝态氮 23.1 2.09 厌氧 0、2、4、8、16 2 GW 硝态氮 100.0 2.09 厌氧 0、8、16 3 氨氮周期供给硝化实验 RW 氨氮 10.0 - 开口 0、2、8、16 3 RW 氨氮 10.0 - 密封 0、2、8、16 3 注:GW为地下水模拟液,RW为河水模拟液. 表 2 GW配方
Table 2. GW formulation
药品 Mg(NO3)2•6H2O MgCl2•6H2O KNO3 MgSO4•7H2O Ca(HCO3)2 NaHCO3 浓度(mg/L) 9.00 162.83 0.21 87.74 716.31 79.39 表 3 RW配方
Table 3. RW formulation
药品 Mg(NO3)2•6H2O Na2SO4 NaCl KNO3 MgSO4•7H2O Ca(HCO3)2 NaHCO3 浓度(mg/L) 8.68 6.46 7.64 2.21 64.32 155.03 15.21 表 4 反硝化反应结束后各组沉积物中三氮含量
Table 4. Trinitrogen content in sediments after the completion of denitrification reaction
反硝化实验 沉积物组别 三氮含量(mg/kg) NO3--N NO2--N NH4+-N 低硝态氮供给 原沉积物 0.157 - 1.021 间隔0 d 0.054 - 0.290 间隔2 d 0.129 - 0.965 间隔4 d 0.043 - 1.047 间隔8 d 0.215 0.022 1.473 间隔16 d 0.248 0.026 1.308 高硝态氮供给 间隔0 d 0.411 - 1.171 间隔8 d 0.405 - 1.212 间隔16 d 0.301 - 1.776 注:表中三氮含量为3个平行样的平均值,“-”表示低于亚硝酸盐方法检出限. 表 5 硝化反应结束后各组沉积物中三氮含量
Table 5. Trinitrogen content in sediments after the nitrification reaction is completed
溶解氧 组别 三氮含量(mg/kg) NO3--N NO2--N NH4+-N 与空气联通DO饱和 原沉积物 0.16 - 1.02 间隔0 d 0.35 0.03 0.17 间隔2 d 0.37 - 0.55 间隔8 d 0.68 0.03 1.07 间隔16 d 0.9 - 1.13 与空气隔绝DO下降 间隔0 d 1 0.02 0.46 间隔2 d 0.92 - 0.35 间隔16 d 1.02 - 0.48 注:表中三氮含量为3个平行样的平均值,“-”表示低于亚硝酸盐方法检出限. -
Butturini, A., Battin, T. J., Sabater, F., 2000. Nitrification in Stream Sediment Biofilms: The Role of Ammonium Concentration and DOC Quality. Water Research, 34(2): 629-639. https://doi.org/10.1016/s0043-1354(99)00171-2 Cao, Y. R., Li, M. J., Mao, S. J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471(in Chinese with English abstract). Du, Y., Ma, T., Deng, Y. M., et al., 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673(in Chinese with English abstract). Dwivedi, D., Arora, B., Steefel, C. I., et al., 2018. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resources Research, 54(1): 205-222. https://doi.org/10.1002/2017WR022346 Erisman, J. W., Galloway, J. N., Seitzinger, S., et al., 2013. Consequences of Human Modification of the Global Nitrogen Cycle. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 368(1621): 20130116. https://doi.org/10.1098/rstb.2013.0116 Gu, B. J., Ge, Y., Chang, S. X., et al., 2013. Nitrate in Groundwater of China: Sources and Driving Forces. Global Environmental Change, 23(5): 1112-1121. https://doi.org/10.1016/j.gloenvcha.2013.05.004 Kihumba, A. M., Longo, J. N., Vanclooster, M., 2016. Modelling Nitrate Pollution Pressure Using a Multivariate Statistical Approach: The Case of Kinshasa Groundwater Body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425-437. https://doi.org/10.1007/s10040-015-1337-z Kolbe, T., de Dreuzy, J. R., Abbott, B. W., et al., 2019. Stratification of Reactivity Determines Nitrate Removal in Groundwater. Proceedings of the National Academy of Sciences of the United States of America, 116(7): 2494-2499. https://doi.org/10.1073/pnas.1816892116 Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract). Li, M. J., Li, R., Gao, Y. Q., et al., 2020. Nitrate Bioreduction Dynamics in Hyporheic Zone Sediments under Cyclic Changes of Chemical Compositions. Journal of Hydrology, 585: 124836. https://doi.org/10.1016/j.jhydrol.2020.124836 Liu, Y., Tay, J. H., 2001. Factors Affecting Nitrite Build-up in Nitrifying Biofilm Reactor. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(6): 1027-1040. https://doi.org/10.1081/ese-100104129 Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract). Packman, A. I., Salehin, M., Zaramella, M., 2004. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7): 647-656. https://doi.org/10.1061/(asce)0733-9429(2004)130: 7(647) doi: 10.1061/(asce)0733-9429(2004)130:7(647 Peng, K., Ouyang, Z. P., Wu, X. Y., et al., 2023. Cultivation of Hydrogenotrophic Microorganisms and the Denitrification Characteristics. Acta Microbiologica Sinica, 63(2): 821-833(in Chinese with English abstract). Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661(in Chinese with English abstract). Serio, F., Miglietta, P. P., Lamastra, L., et al., 2018. Groundwater Nitrate Contamination and Agricultural Land Use: A Grey Water Footprint Perspective in Southern Apulia Region (Italy). The Science of the Total Environment, 645: 1425-1431. https://doi.org/10.1016/j.scitotenv.2018.07.241 Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684(in Chinese with English abstract). Shen, S., Ma, T., Du, Y., et al., 2018. The Spatial Distribution Characteristic and Genesis of Nitrogen of Shallow Groundwater in the East of Jianghan Plain. Environmental Science & Technology, 41(2): 47-56(in Chinese with English abstract). Spalding, R. F., Exner, M. E., 1993. Occurrence of Nitrate in Groundwater: A Review. Journal of Environmental Quality, 22(3): 392-402. https://doi.org/10.2134/jeq1993.00472425002200030002x Teng, Y. G., Zuo, R., Wang, J. S., 2007. Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function. Earth and Environment, 35(1): 1-8(in Chinese with English abstract). Wang, J. Q., Ma, R., Guo, Z. L., et al., 2020. Experiment and Multicomponent Model Based Analysis on the Effect of Flow Rate and Nitrate Concentration on Denitrification in Low-Permeability Media. Journal of Contaminant Hydrology, 235: 103727. https://doi.org/10.1016/j.jconhyd.2020.103727 Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246 Wang, L. K., Zeng, G. M., Yang, Z. H., et al., 2014. Operation of Partial Nitrification to Nitrite of Landfill Leachate and Its Performance with Respect to Different Oxygen Conditions. Biochemical Engineering Journal, 87: 62-68. https://doi.org/10.1016/j.bej.2014.03.013 Wang, Y. X., Du, Y., Deng, Y. M., et al., 2022. Lacustrine Groundwater Discharge and Lake Water Quality Evolution. Bulletin of Geological Science and Technology, 41(1): 1-10(in Chinese with English abstract). Ward, M. H., DeKok, T. M., Levallois, P., et al., 2005. Workgroup Report: Drinking-Water Nitrate and Health: Recent Findings and Research Needs. Environmental Health Perspectives, 113(11): 1607-1614. https://doi.org/10.1289/ehp.8043 Wu, G. D., Zhang, X., Lu, C. P., 2019. Spatial-Temporal Variability in Hyporheic Zone and Hyporheic Exchange. Yangtze River, 50(10): 100-107(in Chinese with English abstract). Yang, J., Xiao, T. Y., Li, H. B., et al., 2018. Spatial Distribution and Influencing Factors of the NO3-N Concentration in Groundwater in Jianghan Plain. China Environmental Science, 38(2): 710-718(in Chinese with English abstract). Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract). 曹意茹, 李民敬, 毛胜军, 等, 2021. 汉江下游河水-地下水交互带中地下水水化学和氮分布特征. 地球与环境, 49(5): 463-471. 杜尧, 马腾, 邓娅敏, 等, 2017. 潜流带水文-生物地球化学: 原理、方法及其生态意义. 地球科学, 42(5): 661-673. doi: 10.3799/dqkx.2017.054 蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16. 马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038 彭科, 欧阳泽坪, 吴晓燕, 等, 2023. 氢自养微生物的驯化及其反硝化特性研究. 微生物学报, 63(2): 821-833. 屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095 沈帅, 马腾, 杜尧, 等, 2017. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律. 地球科学, 42(5): 674-684. doi: 10.3799/dqkx.2017.055 沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56. 滕彦国, 左锐, 王金生, 2007. 地表水-地下水的交错带及其生态功能. 地球与环境, 35(1): 1-8. 王焰新, 杜尧, 邓娅敏, 等, 2022. 湖底地下水排泄与湖泊水质演化. 地质科技通报, 41(1): 1-10. 吴光东, 张潇, 鲁程鹏, 2019. 河流潜流带和潜流交换时空变异特征研究综述. 人民长江, 50(10): 100-107. 杨静, 肖天昀, 李海波, 等, 2018. 江汉平原地下水中硝酸盐的分布及影响因素. 中国环境科学, 38(2): 710-718. 朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217 -