• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    氮周期供给时潜流带沉积物硝化、反硝化动力学

    丁吾举 陆菲雨 赵博 李民敬

    丁吾举, 陆菲雨, 赵博, 李民敬, 2024. 氮周期供给时潜流带沉积物硝化、反硝化动力学. 地球科学, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121
    引用本文: 丁吾举, 陆菲雨, 赵博, 李民敬, 2024. 氮周期供给时潜流带沉积物硝化、反硝化动力学. 地球科学, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121
    Ding Wuju, Lu Feiyu, Zhao Bo, Li Minjing, 2024. Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen. Earth Science, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121
    Citation: Ding Wuju, Lu Feiyu, Zhao Bo, Li Minjing, 2024. Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen. Earth Science, 49(10): 3712-3722. doi: 10.3799/dqkx.2023.121

    氮周期供给时潜流带沉积物硝化、反硝化动力学

    doi: 10.3799/dqkx.2023.121
    基金项目: 

    国家自然科学基金项目 42177064

    国家自然科学基金重点项目 41830862

    详细信息
      作者简介:

      丁吾举(1997-),男,硕士研究生,主要从事氮素生物地球化学过程的研究. ORCID:0000-0002-8893-6211. E-mail:18839197553@163.com

      通讯作者:

      李民敬,ORCID: 0000-0001-7703-8718. E-mail: limj@cug.edu.cn

    • 中图分类号: P593

    Kinetics of Nitrification and Denitrification in Hyporheic Zone Sediment with Periodical Supply of Nitrogen

    • 摘要: 河流潜流带最显著的特征是河水和地下水周期性交替导致的水化学成分的动态变化,且周期间的间隔长短不一;潜流带是脱氮热区,其硝化和反硝化微生物对这种周期性变化的响应规律决定着潜流带脱氮效率.据此,时间间隔不同多次供给不同氮素、DO等,研究多周期内硝化、反硝化动力学规律.第1周期的硝化、反硝化速率较慢,有明显迟滞期;后续的第2和第3周期,无论底物投加间隔时间长短,硝化和反硝化未观察到明显迟滞期,反应速率均加快,且功能菌数量增加,但是功能菌数量和间隔时间成反比.硝态氮起始浓度会明显影响亚硝态氮动力学过程.硝化和反硝化菌数量增加及长时间维持高反应活性,是潜流带高效脱氮机制之一.

       

    • 图  1  采样点位置

      Fig.  1.  Location of sampling points

      图  2  低硝态氮供给条件下沉积物反硝化动力学特征

      Fig.  2.  Kinetic characteristics of sediment denitrification under low nitrate nitrogen supply conditions

      图  3  高硝态氮供给条件下沉积物反硝化动力学特征

      Fig.  3.  Kinetic characteristics of sediment denitrification under high nitrate nitrogen supply conditions

      图  4  反硝化反应结束后沉积物中反硝化菌数目

      Fig.  4.  Number of denitrifying bacteria in sediment after the end of denitrification reaction

      图  5  与空气连通条件下沉积物硝化反应动力学过程

      Fig.  5.  Kinetic process of sediment nitration reaction under air-connected conditions

      图  6  与空气隔绝条件下沉积物硝化反应动力学过程

      Fig.  6.  Kinetic process of sediment nitration reaction under air isolation

      图  7  反应结束后沉积物中氨氧化菌数目

      Fig.  7.  Number of ammonia oxidizing bacteria in sediment after the end of the reaction

      表  1  实验设计

      Table  1.   Experimental design

      实验名称 用水类型 氮素
      类型
      氮浓度
      (mg/L)
      C/N 供氧 周期间隔(d) 周期数
      硝态氮周期供给反硝化实验 GW 硝态氮 23.1 2.09 厌氧 0、2、4、8、16 2
      GW 硝态氮 100.0 2.09 厌氧 0、8、16 3
      氨氮周期供给硝化实验 RW 氨氮 10.0 - 开口 0、2、8、16 3
      RW 氨氮 10.0 - 密封 0、2、8、16 3
      注:GW为地下水模拟液,RW为河水模拟液.
      下载: 导出CSV

      表  2  GW配方

      Table  2.   GW formulation

      药品 Mg(NO3)2•6H2O MgCl2•6H2O KNO3 MgSO4•7H2O Ca(HCO3)2 NaHCO3
      浓度(mg/L) 9.00 162.83 0.21 87.74 716.31 79.39
      下载: 导出CSV

      表  3  RW配方

      Table  3.   RW formulation

      药品 Mg(NO3)2•6H2O Na2SO4 NaCl KNO3 MgSO4•7H2O Ca(HCO3)2 NaHCO3
      浓度(mg/L) 8.68 6.46 7.64 2.21 64.32 155.03 15.21
      下载: 导出CSV

      表  4  反硝化反应结束后各组沉积物中三氮含量

      Table  4.   Trinitrogen content in sediments after the completion of denitrification reaction

      反硝化实验 沉积物组别 三氮含量(mg/kg)
      NO3--N NO2--N NH4+-N
      低硝态氮供给 原沉积物 0.157 - 1.021
      间隔0 d 0.054 - 0.290
      间隔2 d 0.129 - 0.965
      间隔4 d 0.043 - 1.047
      间隔8 d 0.215 0.022 1.473
      间隔16 d 0.248 0.026 1.308
      高硝态氮供给 间隔0 d 0.411 - 1.171
      间隔8 d 0.405 - 1.212
      间隔16 d 0.301 - 1.776
      注:表中三氮含量为3个平行样的平均值,“-”表示低于亚硝酸盐方法检出限.
      下载: 导出CSV

      表  5  硝化反应结束后各组沉积物中三氮含量

      Table  5.   Trinitrogen content in sediments after the nitrification reaction is completed

      溶解氧 组别 三氮含量(mg/kg)
      NO3--N NO2--N NH4+-N
      与空气联通DO饱和 原沉积物 0.16 - 1.02
      间隔0 d 0.35 0.03 0.17
      间隔2 d 0.37 - 0.55
      间隔8 d 0.68 0.03 1.07
      间隔16 d 0.9 - 1.13
      与空气隔绝DO下降 间隔0 d 1 0.02 0.46
      间隔2 d 0.92 - 0.35
      间隔16 d 1.02 - 0.48
      注:表中三氮含量为3个平行样的平均值,“-”表示低于亚硝酸盐方法检出限.
      下载: 导出CSV
    • Butturini, A., Battin, T. J., Sabater, F., 2000. Nitrification in Stream Sediment Biofilms: The Role of Ammonium Concentration and DOC Quality. Water Research, 34(2): 629-639. https://doi.org/10.1016/s0043-1354(99)00171-2
      Cao, Y. R., Li, M. J., Mao, S. J., et al., 2021. Distribution of Nitrogen and Water Chemistry in River-Groundwater Interaction Zone in the Lower Reaches of Han River. Earth and Environment, 49(5): 463-471(in Chinese with English abstract).
      Du, Y., Ma, T., Deng, Y. M., et al., 2017. Hydro-Biogeochemistry of Hyporheic Zone: Principles, Methods and Ecological Significance. Earth Science, 42(5): 661-673(in Chinese with English abstract).
      Dwivedi, D., Arora, B., Steefel, C. I., et al., 2018. Hot Spots and Hot Moments of Nitrogen in a Riparian Corridor. Water Resources Research, 54(1): 205-222. https://doi.org/10.1002/2017WR022346
      Erisman, J. W., Galloway, J. N., Seitzinger, S., et al., 2013. Consequences of Human Modification of the Global Nitrogen Cycle. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 368(1621): 20130116. https://doi.org/10.1098/rstb.2013.0116
      Gu, B. J., Ge, Y., Chang, S. X., et al., 2013. Nitrate in Groundwater of China: Sources and Driving Forces. Global Environmental Change, 23(5): 1112-1121. https://doi.org/10.1016/j.gloenvcha.2013.05.004
      Kihumba, A. M., Longo, J. N., Vanclooster, M., 2016. Modelling Nitrate Pollution Pressure Using a Multivariate Statistical Approach: The Case of Kinshasa Groundwater Body, Democratic Republic of Congo. Hydrogeology Journal, 24(2): 425-437. https://doi.org/10.1007/s10040-015-1337-z
      Kolbe, T., de Dreuzy, J. R., Abbott, B. W., et al., 2019. Stratification of Reactivity Determines Nitrate Removal in Groundwater. Proceedings of the National Academy of Sciences of the United States of America, 116(7): 2494-2499. https://doi.org/10.1073/pnas.1816892116
      Lan, K., Liang, X., Li, J., 2020. Hydrochemical Characteristics of Groundwater of the Hanjiang Zone in the Jianghan Plain. Safety and Environmental Engineering, 27(5): 1-9, 16(in Chinese with English abstract).
      Li, M. J., Li, R., Gao, Y. Q., et al., 2020. Nitrate Bioreduction Dynamics in Hyporheic Zone Sediments under Cyclic Changes of Chemical Compositions. Journal of Hydrology, 585: 124836. https://doi.org/10.1016/j.jhydrol.2020.124836
      Liu, Y., Tay, J. H., 2001. Factors Affecting Nitrite Build-up in Nitrifying Biofilm Reactor. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 36(6): 1027-1040. https://doi.org/10.1081/ese-100104129
      Ma, A. L., Liu, H., Mao, S. J., et al., 2022. Distribution Characteristics of Dissolved Manganese in the Lateral Hyporheic Zone between River and Groundwater in the Lower Reaches of the Han River. Earth Science, 47(2): 729-741(in Chinese with English abstract).
      Packman, A. I., Salehin, M., Zaramella, M., 2004. Hyporheic Exchange with Gravel Beds: Basic Hydrodynamic Interactions and Bedform-Induced Advective Flows. Journal of Hydraulic Engineering, 130(7): 647-656. https://doi.org/10.1061/(asce)0733-9429(2004)130: 7(647) doi: 10.1061/(asce)0733-9429(2004)130:7(647
      Peng, K., Ouyang, Z. P., Wu, X. Y., et al., 2023. Cultivation of Hydrogenotrophic Microorganisms and the Denitrification Characteristics. Acta Microbiologica Sinica, 63(2): 821-833(in Chinese with English abstract).
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661(in Chinese with English abstract).
      Serio, F., Miglietta, P. P., Lamastra, L., et al., 2018. Groundwater Nitrate Contamination and Agricultural Land Use: A Grey Water Footprint Perspective in Southern Apulia Region (Italy). The Science of the Total Environment, 645: 1425-1431. https://doi.org/10.1016/j.scitotenv.2018.07.241
      Shen, S., Ma, T., Du, Y., et al., 2017. Dynamic Variations of Nitrogen in Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain. Earth Science, 42(5): 674-684(in Chinese with English abstract).
      Shen, S., Ma, T., Du, Y., et al., 2018. The Spatial Distribution Characteristic and Genesis of Nitrogen of Shallow Groundwater in the East of Jianghan Plain. Environmental Science & Technology, 41(2): 47-56(in Chinese with English abstract).
      Spalding, R. F., Exner, M. E., 1993. Occurrence of Nitrate in Groundwater: A Review. Journal of Environmental Quality, 22(3): 392-402. https://doi.org/10.2134/jeq1993.00472425002200030002x
      Teng, Y. G., Zuo, R., Wang, J. S., 2007. Hyporheic Zone of Groundwater and Surface Water and Its Ecological Function. Earth and Environment, 35(1): 1-8(in Chinese with English abstract).
      Wang, J. Q., Ma, R., Guo, Z. L., et al., 2020. Experiment and Multicomponent Model Based Analysis on the Effect of Flow Rate and Nitrate Concentration on Denitrification in Low-Permeability Media. Journal of Contaminant Hydrology, 235: 103727. https://doi.org/10.1016/j.jconhyd.2020.103727
      Wang, L. F., Wang, Y. T., Li, Y., et al., 2022. Effect of Water Chemistry on Nitrogen Transformation, Dissolved Organic Matter Composition and Microbial Community Structure in Hyporheic Zone Sediment Columns. Environmental Research, 215(Pt 1): 114246. https://doi.org/10.1016/j.envres.2022.114246
      Wang, L. K., Zeng, G. M., Yang, Z. H., et al., 2014. Operation of Partial Nitrification to Nitrite of Landfill Leachate and Its Performance with Respect to Different Oxygen Conditions. Biochemical Engineering Journal, 87: 62-68. https://doi.org/10.1016/j.bej.2014.03.013
      Wang, Y. X., Du, Y., Deng, Y. M., et al., 2022. Lacustrine Groundwater Discharge and Lake Water Quality Evolution. Bulletin of Geological Science and Technology, 41(1): 1-10(in Chinese with English abstract).
      Ward, M. H., DeKok, T. M., Levallois, P., et al., 2005. Workgroup Report: Drinking-Water Nitrate and Health: Recent Findings and Research Needs. Environmental Health Perspectives, 113(11): 1607-1614. https://doi.org/10.1289/ehp.8043
      Wu, G. D., Zhang, X., Lu, C. P., 2019. Spatial-Temporal Variability in Hyporheic Zone and Hyporheic Exchange. Yangtze River, 50(10): 100-107(in Chinese with English abstract).
      Yang, J., Xiao, T. Y., Li, H. B., et al., 2018. Spatial Distribution and Influencing Factors of the NO3-N Concentration in Groundwater in Jianghan Plain. China Environmental Science, 38(2): 710-718(in Chinese with English abstract).
      Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract).
      曹意茹, 李民敬, 毛胜军, 等, 2021. 汉江下游河水-地下水交互带中地下水水化学和氮分布特征. 地球与环境, 49(5): 463-471.
      杜尧, 马腾, 邓娅敏, 等, 2017. 潜流带水文-生物地球化学: 原理、方法及其生态意义. 地球科学, 42(5): 661-673. doi: 10.3799/dqkx.2017.054
      蓝坤, 梁杏, 李静, 2020. 江汉平原汉江带地下水水化学特征分析. 安全与环境工程, 27(5): 1-9, 16.
      马奥兰, 刘慧, 毛胜军, 等, 2022. 汉江下游河水-地下水侧向交互带中溶解态锰的分布特征. 地球科学, 47(2): 729-741. doi: 10.3799/dqkx.2021.038
      彭科, 欧阳泽坪, 吴晓燕, 等, 2023. 氢自养微生物的驯化及其反硝化特性研究. 微生物学报, 63(2): 821-833.
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      沈帅, 马腾, 杜尧, 等, 2017. 江汉平原典型地区季节性水文条件影响下氮的动态变化规律. 地球科学, 42(5): 674-684. doi: 10.3799/dqkx.2017.055
      沈帅, 马腾, 杜尧, 等, 2018. 江汉平原东部浅层地下水氮的空间分布特征. 环境科学与技术, 41(2): 47-56.
      滕彦国, 左锐, 王金生, 2007. 地表水-地下水的交错带及其生态功能. 地球与环境, 35(1): 1-8.
      王焰新, 杜尧, 邓娅敏, 等, 2022. 湖底地下水排泄与湖泊水质演化. 地质科技通报, 41(1): 1-10.
      吴光东, 张潇, 鲁程鹏, 2019. 河流潜流带和潜流交换时空变异特征研究综述. 人民长江, 50(10): 100-107.
      杨静, 肖天昀, 李海波, 等, 2018. 江汉平原地下水中硝酸盐的分布及影响因素. 中国环境科学, 38(2): 710-718.
      朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217
    • 加载中
    图(7) / 表(5)
    计量
    • 文章访问数:  241
    • HTML全文浏览量:  74
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-09
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回