Effect of Thermal Fluid Activity on Reservoirs in W16 Structure of Laizhou Bay Sag, Bohai Bay Basin
-
摘要: 渤海湾盆地莱州湾凹陷古近系沙河组混积岩发育的优质储层的成因机理尚不明确.采用流体包裹体测温、镜质体反射率以及岩石学观察,结合实测物性,研究了沙河街组湖相碳酸盐岩-陆源碎屑岩-火山岩所构成的复杂混积背景下的热流体活动对储层改造作用.异常高的包裹体均一温度和镜质体反射率以及包裹体的高古盐度指示深部热卤水的活动.储层广泛存在酸性溶蚀:凝灰岩和泥晶白云岩填隙物以及长石颗粒等存在大量次生溶蚀孔,且常见粒缘缝,这可能是岩浆活动驱动的高压酸性热液入侵造成的淋滤和水力破裂.流体温压下降,热液矿物沉淀导致了储层强烈致密化.总体上,热液对该区储层改造可产生建设性和破坏性两种效应,在一定程度上强化了储层物性的空间分异.Abstract: Genetic mechanism of the high-quality reservoirs developed by the Paleogene Shahejie Formation mixed rock in the Laizhouwan Sag, Bohai Bay Basin is still unclear. Based on fluid inclusion, vitrinite reflectance and petrological observation, combined with measured physical properties, it studies the effects of thermal fluid activities on reservoir under the complex mixing background of lacustrine carbonate rocks, terrigenous clastic rocks and volcanic rocks in the Shahejie Formation. The high homogenization temperatures of fluid inclusions, vitrinite reflectance, and paleo-salinity of fluid inclusions indicate the activity of deep hot brines. Acid dissolution exists widely in the reservoir: There are a large number of secondary dissolution pores in tuff, micrite dolomite interstitials and feldspar grains, and the common grain margin fractures, which may be caused by the intrusion of high pressure acid hydrothermal solution driven by magmatic activity. As the fluid temperature pressure drops, hydrothermal mineral precipitation also resulted in a strong and dense reservoir. In general, hydrothermal can produce both constructive and destructive effects on the reservoir, which strengthens the spatial differentiation of reservoir physical properties to a certain extent.
-
Key words:
- hydrothermal fluid /
- diagenesis /
- high-quality reservoir /
- Laizhou Bay Sag /
- petroleum geology
-
图 5 莱州湾凹陷W16构造沙三-沙四段储层的溶蚀作用
a. W16-2井,1 017.5 m,铸体薄片,凝灰质填隙物的溶蚀缝;b. W16-8井,1 356.5 m,铸体薄片,凝灰质填隙物的溶蚀孔和溶蚀缝;c. W16-8井,1 248.0 m,铸体薄片,无定向水力破裂缝;d. W16-8井,1 401.5 m,铸体薄片,粒缘缝;e. W16-9井,1 610.0 m,铸体薄片,长石粒内溶孔;f. W16-7井,1 710.9 m,扫描电镜,长石蜂窝状溶蚀小孔;g~h. W16-8井,1 248.0 m,铸体薄片,粒间的泥晶白云石溶蚀孔
Fig. 5. Corrosion in the Es3 and Es4 reservoirs in the W16 structure, Laizhou Bay Sag
图 6 莱州湾凹陷W16构造沙三-沙四段储层中热液矿物组合
a.W16-10井,1 882.0 m,铸体薄片,方解石脉;b. W16-4井1 504.0 m,阴极发光照片,发红色阴极光的方解石充填了长石次生溶蚀孔;c. W16-4井,1 456.0 m,阴极发光照片,发红色阴极光的方解石充填了粒间孔;d. W16-2井,975.36 m,铸体薄片,方解石形成连晶胶结;e. W16-8井,1 340.5 m,扫描电镜,自形的方解石晶体;f. W16-2井,1 239.0 m,铸体薄片,白云石胶结物充填了粒间孔隙;g. W16-8井,1 260.0 m,自形的白云石晶体;h. W16-4井,1 628.0 m,玫瑰花状的自生绿泥石矿物;i. W16-4井,1 525.0 m,石盐晶体;j. W16-2,973.5 m,铸体薄片,球状黄铁矿充填粒间孔;k. W16-2井,973.54 m,扫描电镜,近球状的黄铁矿;l. W16-2井,1 239.0 m,铸体薄片,裂缝充填黄铁矿和方解石
Fig. 6. Hydrothermal mineral assemblages in the Es3 and Es4 reservoirs of the W16 structure, Laizhou Bay Sag
图 8 莱州湾凹陷W16构造沙四段储层热液硅化
a.W16-10井,1 882 m,普通薄片,硅质脉;b. W16-6井,1 658.5 m,铸体薄片,硅质脉;c.W16-4井,1 610.0 m,扫描电镜,自形石英晶体;d. W16-10井,1 789.5 m,普通薄片,石英加大边;e.W16-7井,1 676.0 m,普通薄片,石英加大边;f. W16-7井,1 684.0 m,普通薄片,石英加大边;g-h. W16-7井,1 711.5 m,普通薄片-阴极发光,凝灰质砾岩
Fig. 8. Hydrothermal silicification of the Es4 reservoirs of the W16 structure, Laizhou Bay Sag
表 1 W16-7井沙河街组和中生界岩心实测孔隙度数据
Table 1. Measured porosity data of drill cores in the Shahejie and Mesozoic formations in well W16-7
岩性 深度(m) 孔隙度(%) 岩性 深度(m) 孔隙度(%) 硅质细砂岩 1 643.0 9.4 硅质细砂岩 1 689.0 13.4 硅质细砂岩 1 644.0 14.4 硅质细砂岩 1 690.5 15.7 硅质细砂岩 1 645.0 16.4 硅质细砂岩 1 692.0 18.6 硅质细砂岩 1 646.0 8.4 硅质细砂岩 1 694.0 15.7 硅质细砂岩 1 647.0 18.9 硅质细砂岩 1 696.0 25.3 硅质细砂岩 1 648.0 16.6 凝灰质砾岩 1 697.5 30.7 硅质细砂岩 1 649.0 10.1 凝灰质砾岩 1 698.0 28.9 硅质细砂岩 1 651.0 2.7 凝灰质砾岩 1 705.5 19.1 硅质细砂岩 1 652.0 1.7 凝灰质砾岩 1 707.0 32.0 硅质细砂岩 1 653.3 1.0 凝灰质砾岩 1 709.0 35.9 硅质细砂岩 1 654.0 5.6 凝灰质砾岩 1 716.5 19.8 硅质细砂岩 1 656.0 6.9 凝灰质砾岩 1 722.0 19.7 硅质细砂岩 1 657.0 12.2 凝灰质砾岩 1 727.5 6.1 硅质细砂岩 1 658.0 4.4 凝灰质砾岩 1 728.5 17.9 硅质细砂岩 1 659.0 5.2 凝灰质砾岩 1 730.0 15.9 硅质细砂岩 1 660.5 3.8 凝灰质砾岩 1 731.5 16.9 硅质细砂岩 1 661.7 7.6 凝灰质砾岩 1 732.0 30.3 硅质细砂岩 1 662.0 5.9 凝灰岩 1 733.5 7.4 硅质细砂岩 1 663.0 11.2 火山角砾岩 1 735.0 13.7 硅质细砂岩 1 665.0 6.6 火山角砾岩 1 737.0 10.5 硅质细砂岩 1 666.0 7.3 火山角砾岩 1 740.0 15.3 硅质细砂岩 1 667.0 9.2 火山角砾岩 1 741.5 11.4 硅质细砂岩 1 668.0 4.8 火山角砾岩 1 743.5 8.9 硅质细砂岩 1 669.0 10.5 凝灰岩 1 746.0 12.9 硅质细砂岩 1 670.0 8.6 火山角砾岩 1 747.5 9.2 硅质细砂岩 1 671.0 8.0 火山角砾岩 1 748.5 14.8 硅质细砂岩 1 672.0 6.3 火山角砾岩 1 750.0 29.1 硅质细砂岩 1 673.0 6.1 火山角砾岩 1 754.5 17.8 硅质细砂岩 1 674.0 3.5 火山角砾岩 1 762.5 30.3 硅质细砂岩 1 675.0 4.6 火山角砾岩 1 764.0 14.1 硅质细砂岩 1 676.0 4.0 火山角砾岩 1 767.0 16.9 硅质细砂岩 1 677.5 5.1 火山角砾岩 1 772.0 29.5 硅质细砂岩 1 679.0 4.0 火山角砾岩 1 775.0 17.2 硅质细砂岩 1 680.0 1.5 凝灰岩 1 779.0 10.5 硅质细砂岩 1 681.0 10.9 火山角砾岩 1 781.0 14.3 硅质细砂岩 1 682.0 2.9 火山角砾岩 1 783.0 13.4 硅质细砂岩 1 683.0 3.1 火山角砾岩 1 786.5 7.0 硅质细砂岩 1 684.0 6.1 火山角砾岩 1 787.5 27.4 硅质细砂岩 1 685.0 20.2 火山角砾岩 1 789.0 10.9 硅质细砂岩 1 687.5 16.7 凝灰岩 1 798.0 31.1 -
Davies, G. R., Smith, L. B., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: An Overview. AAPG Bulletin, 90(11): 1641-1690. https://doi.org/10.1306/05220605164 Giles, M. R., de Boer, R. B., 1989. Secondary Porosity: Creation of Enhanced Porosities in the Subsurface from the Dissolution of Carbonate Cements as a Result of Cooling Formation Waters. Marine and Petroleum Geology, 6(3): 261-269. https://doi.org/10.1016/0264-8172(89)90005-6 Law, B. E., Nuccio, V. F., Barher, C. E., 1989. Kinky Vitrinite Reflectance Well Profiles: Evidence of Paleopore Pressure in Low-Permeability, Gas-Bearing Sequences in Rocky Mountain Foreland Basins. AAPG Bulletin, 73(7): 999-1010. https://doi.org/10.1306/44b4a2d0-170a-11d7-8645000102c1865d Liu, W. C., Zhang, G. K., Yang, H. F., et al., 2018. Characteristics and Development Model of Mixed Deposits of the Paleogene in Southern Laizhou Bay Sag, Bohai Sea. Journal of Palaeogeography, 20(6): 1033-1042(in Chinese with English abstract). Liu, X. J., Wang, Q. B., Dai, L. M., et al., 2020. Reservoir Characteristics and Formation Mechanisms of Lacustrine Carbonate and Volcanics Mixing Sediments, Laizhouwan Sag. Earth Science, 45(10): 3579-3588(in Chinese with English abstract). Luo, B., Ma, L., Liu, R., et al., 2020. Diagenesis of Permian Volcanic Rocks and Its Influence on Reservoir Performance in Jianyang Area, Sichuan, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(6): 711-723(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2020.06.08 Niu, C. M., Guo, T., Yang, B., et al., 2019. Control of Cenozoic Magmatic Activity on Paleogene High Quality Reservoirs in Southern Bohai Sea. China Offshore Oil and Gas, 31(2): 11-19(in Chinese with English abstract). Niu, C. M., Yang, H. F., Zhao, D. J., et al., 2022. Study on the Ultra-Late Hydrocarbon Accumulation and Migration Lagging Effect in Laizhouwan Sag, Bohai Sea. Earth Science, 47(2): 464-478(in Chinese with English abstract). Parker, R. L., Huestis, S. P., 1974. The Inversion of Magnetic Anomalies in the Presence of Topography. Journal of Geophysical Research, 79(11): 1587-1593. https://doi.org/10.1029/jb079i011p01587 Podladchikov, Y. Y., Wickham, S. M., 1994. Crystallization of Hydrous Magmas: Calculation of Associated Thermal Effects, Volatile Fluxes, and Isotopic Alteration. The Journal of Geology, 102(1): 25-45. https://doi.org/10.1086/629646 Singurindy, O., Berkowitz, B., Lowell, R. P., 2004. Carbonate Dissolution and Precipitation in Coastal Environments: Laboratory Analysis and Theoretical Consideration. Water Resources Research, 40(4): W04401. https://doi.org/10.1029/2003WR002651 Su, A., Chen, H. H., Cao, L. S., et al., 2014. Genesis, Source and Charging of Oil and Gas in Lishui Sag, East China Sea Basin. Petroleum Exploration and Development, 41(5): 523-532(in Chinese with English abstract). Tian, L. X., Wang, Q. B., Liu, X. J., et al., 2020. Geological Features and Their Participation in the Formation of Silicified Clastic Reservoirs in the Shahejie Formation of Laizhouwan Sag, Bohai Sea. Oil & Gas Geology, 41(5): 1073-1082(in Chinese with English abstract). Wang, M. Q., Zhang, Q., Xie, J., et al., 2020. Research on the Petrological and Diagenetic Characteristics of Mixed Rocks in the Shallow Lower Es3, in the Southern Region of Laizhouwan Sag. Periodical of Ocean University of China, 50(4): 83-94(in Chinese with English abstract). Xue, Y. A., Yang, H. F., Wang, H., et al., 2022. Discovery and Significance of KL10-2 Neogene Large Oilfield in Deep Subsag Zone of Laizhouwan Sag, Bohai Sea. China Offshore Oil and Gas, 34(1): 17-26(in Chinese with English abstract). Yang, H. F., Tu, X., Zhao, D. J., et al., 2021. Organic Facies Characteristics of Source Rocks on the 3rd and 4th Member of Shahejie Formation in the Southern Laizhouwan Depression, Bohai Bay Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 48(1): 72-81(in Chinese with English abstract). Zhang, J. Y., Liu, W. H., Teng, G. E., et al., 2012. Influences of TSR on Gaseous Hydrocarbon Components and Carbon Isotopes: Revelations from High-Temperature and High-Pressure Simulation Experiments. Petroleum Geology & Experiment, 34(1): 66-70, 77(in Chinese with English abstract). Zhao, D. J., Yang, H. F., Wang, H., et al., 2022. Characteristics of Strike Slip-Extensional Complex Slope Zone and Hydrocarbon Accumulation in Laizhouwan Sag, Bohai Sea, China. Journal of Chengdu University of Technology (Science & Technology Edition), 49(3): 272-283(in Chinese with English abstract). Zhou, L. D., Sun, F. T., Lai, Y. C., et al., 2019. Sedimentary Characteristics and Sedimentary Evolution in Mixed Sediments Background of Shahejie Formation in KL Oilfield, Laizhou Bay Depression, Bohai Bay Basin. Periodical of Ocean University of China, 49(9): 110-120(in Chinese with English abstract). 刘文超, 张国坤, 杨宏飞, 等, 2018. 渤海莱州湾凹陷南部古近系混合沉积特征及发育模式. 古地理学报, 20(6): 1033-1042. 刘晓健, 王清斌, 代黎明, 等, 2020. 莱州湾凹陷火山岩-湖相碳酸盐岩混积岩储层特征和成因. 地球科学, 45(10): 3579-3588. 罗冰, 马羚, 刘冉, 等, 2020. 川西简阳地区二叠纪火山岩成岩作用及其对储集性能的影响. 成都理工大学学报(自然科学版), 47(6): 711-723. 牛成民, 郭涛, 杨波, 等, 2019. 渤海南部海域新生代岩浆活动对古近系优质储层的控制作用. 中国海上油气, 31(2): 11-19. 牛成民, 杨海风, 赵弟江, 等, 2022. 渤海海域莱州湾凹陷油气超晚期成藏与油气运移滞后效应. 地球科学, 47(2): 464-478. 苏奥, 陈红汉, 曹来圣, 等, 2014. 东海盆地丽水凹陷油气成因、来源及充注过程. 石油勘探与开发, 41(5): 523-532. 田立新, 王清斌, 刘晓健, 等, 2020. 渤海海域莱州湾凹陷沙河街组硅化碎屑岩地质特征及其储层意义. 石油与天然气地质, 41(5): 1073-1082. 王梦琪, 张强, 谢俊, 等, 2020. 莱州湾凹陷南部地区浅层沙三下亚段混积岩岩石学特征及成岩作用. 中国海洋大学学报(自然科学版), 50(4): 83-94. 薛永安, 杨海风, 王航, 等, 2022. 渤海莱州湾凹陷深洼带垦利10-2新近系大型油田发现与意义. 中国海上油气, 34(1): 17-26. 杨海风, 涂翔, 赵弟江, 等, 2021. 渤海湾盆地莱州湾凹陷沙河街组第三、第四段烃源岩有机相特征. 成都理工大学学报(自然科学版), 48(1): 72-81. 张建勇, 刘文汇, 腾格尔, 等, 2012. TSR对气态烃组分及碳同位素组成的影响: 高温高压模拟实验的证据. 石油实验地质, 34(1): 66-70, 77. 赵弟江, 杨海风, 王航, 等, 2022. 渤海莱州湾凹陷走滑-伸展叠覆型复杂斜坡带特征及油气成藏. 成都理工大学学报(自然科学版), 49(3): 272-283. 周连德, 孙风涛, 来又春, 等, 2019. 渤海莱州湾凹陷KL油田沙河街组混积背景下的沉积特征与沉积演化. 中国海洋大学学报(自然科学版), 49(9): 110-120. -