• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温水热系统中相变时温度和驱动力的变化

    叶建桥 毛绪美

    叶建桥, 毛绪美, 2024. 高温水热系统中相变时温度和驱动力的变化. 地球科学, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126
    引用本文: 叶建桥, 毛绪美, 2024. 高温水热系统中相变时温度和驱动力的变化. 地球科学, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126
    Ye Jianqiao, Mao Xumei, 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126
    Citation: Ye Jianqiao, Mao Xumei, 2024. Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System. Earth Science, 49(10): 3773-3783. doi: 10.3799/dqkx.2023.126

    高温水热系统中相变时温度和驱动力的变化

    doi: 10.3799/dqkx.2023.126
    基金项目: 

    国家自然科学基金项目 41440027

    详细信息
      作者简介:

      叶建桥(1993-),男,硕士研究生,从事地热水文地质学研究.E-mail:95849578@qq.com

      通讯作者:

      毛绪美,E-mail: maoxumei@cug.edu.cn

    • 中图分类号: P641

    Changes of Temperature and Driving Force during Phase Change in High Temperature Hydrothermal System

    • 摘要: 基于重力驱动的地下水流系统理论是描述地下水系统渗流特征的主要工具,由水头差产生的重力势是地下水运移的主要驱动力.但在水热系统中,存在除大地增温以外的深部热源,会给地下水系统提供额外的能量,产生新的驱动力.对流型水热系统中,地下水在补给段温度较低而在排泄段温度较高,排泄段的高温地下水会产生密度、盐度、粘度等变化,导致地热水的压力水头发生变化,形成地热驱动力.在高温水热系统中,排泄段地下水的温度更高,可能存在液态水转变为气态水的相变过程,使地下水温度发生突变,从而引起地热驱动力的改变.以西藏羊八井地热田为例,利用SiO2地温计评估发现,热储层与地热井同一深度位置的水温存在较大差异,通过对比饱和蒸发线确定在距井口43.9 m处发生了引起温度骤降的相变过程.结合热力学第一定律,计算得出相变前后的温差约为23.6 ℃,由此造成的地热驱动力的变化值为-1.02 m.结果表明,水热系统中的地热驱动力仅存在于排泄段,排泄段地热水发生相变会引起地热驱动力的变化.

       

    • 图  1  羊八井地热田水文地质简图及采样位置

      Guo et al.(2007)修改

      Fig.  1.  Hydrogeological sketch and sampling location of Yangbajing geothermal field

      图  2  液体蒸发线与井底温度-绝对压强曲线

      Fig.  2.  Liquid evaporation line and bottom hole temperature-absolute pressure curve

      图  3  地质剖面图

      Fig.  3.  Geological profile

      表  1  羊八井地热田地热井基本数据资料

      Table  1.   Basic data of geothermal wells in Yangbajing geothermal field

      井号 类型 深度(m) 井口温度(℃) 井底温度(℃) 开采量(t/h) 勘测时间 井底水压力(kPa)
      YBJT3 浅层地热水 193 104.8 171 54.8 2006年6月 1 891.4
      YBJT4 浅层地热水 454 110.4 173 54.5 2006年6月 4 449.2
      YBJT5 浅层地热水 270 110.4 167 132.5 2006年6月 2 646.0
      YBJT6 浅层地热水 240 108.8 163 63.2 2006年6月 2 352.0
      YBJT7 浅层地热水 300 108.8 172 140.5 2006年6月 2 940.0
      ZK4001 深层地热水 1495 159.3 255 242.7 2006年6月 14 651.0
      下载: 导出CSV

      表  2  羊八井地热田水化学数据资料(mg/L)

      Table  2.   Data of hydrochemistry in Yangbajing geothermal field (mg/L)

      井号 类型 温度(℃) pH HCO$ {}_{3}^{-} $ SO$ {}_{4}^{2-} $ Cl- F- Na+ K+ Ca2+ Mg2+ SiO2 水类型
      YBJT3 浅层地热水 104.8 8.21 178.0 56.3 518.30 17.90 281.8 36.60 4.2 0.22 160.50 Cl-Na
      YBJT4 浅层地热水 110.4 8.36 184.2 60.0 547.10 19.40 306.4 41.80 3.9 0.20 169.40 Cl-Na
      YBJT5 浅层地热水 110.4 9.57 160.1 59.0 512.90 19.20 308.1 42.70 4.6 0.28 172.00 Cl-Na
      YBJT6 浅层地热水 108.8 9.72 174.5 58.2 507.40 18.50 293.5 39.70 4.1 0.21 166.00 Cl-Na
      YBJT7 浅层地热水 108.8 9.49 151.1 60.3 559.80 18.50 303.2 41.60 3.6 0.20 171.40 Cl-Na
      ZK4001 深层地热水 159.3 8.40 363.0 27.0 1 020.00 18.00 709.0 135.00 2.1 0.13 581.50 Cl-Na
      YBJC1 冷地下水 14.0 7.23 26.5 6.1 1.16 0.48 1.6 1.10 11.8 0.72 10.03 HCO3-Ca
      YBJC2 冷地表水 8.0 8.15 19.1 10.3 1.27 0.33 2.2 1.37 8.7 1.33 11.50 HCO3-Ca
      YBJC3 冷地表水 8.0 7.93 24.0 5.0 1.06 0.34 1.4 0.82 9.4 1.03 8.00 HCO3-Ca
      下载: 导出CSV

      表  3  热储层温度(℃)

      Table  3.   Thermal reservoir temperature (℃)

      井号 地热水类型 二氧化硅
      (无蒸汽损失)地温计
      二氧化硅
      (最大蒸汽损失)地温计
      Na-K
      地温计
      Na-K-Ca
      β=1/3)地温计
      YBJT3 浅层地热水 192.6 156.2 223.3 411.3
      YBJT4 浅层地热水 196.3 159.1 229.0 422.4
      YBJT5 浅层地热水 197.3 159.9 230.8 421.2
      YBJT6 浅层地热水 194.9 158.0 228.0 418.5
      YBJT7 浅层地热水 197.1 159.7 229.6 424.4
      ZK4001 深层地热水 299.9 236.7 271.4 527.0
      下载: 导出CSV

      表  4  羊八井地热田不同位置的水温

      Table  4.   Water temperature at different locations of Yangbajing geothermal field

      编号 类型 深度(m) 温度(℃)
      1 地温计估算的浅热储层 180~280 m,平均230.0 m 158.6
      2 代表浅层地热水的地热井底部 平均291.4 m 169.2
      3 地温计估算的深热储层 950~1 850 m,平均1 400.0 m 236.7
      4 代表深层地热水的ZK4001底部 1 495.0 m 255.0
      下载: 导出CSV

      表  5  饱和水蒸汽压力

      Table  5.   Saturated water vapor pressure

      温度
      (℃)
      绝对压强
      (kPa)
      水蒸汽的密度
      (kg·m-3
      焓(kJ·kg-1 汽化热(kJ·kg-1
      液体 水蒸汽 水蒸汽
      0 0.61 0 0 2 491.10 2 491.10
      50 12.34 0.08 209.34 2 587.40 2 378.10
      100 101.33 0.60 418.68 2 677.00 2 258.40
      150 476.24 2.54 632.21 2 750.70 2 118.50
      200 1 554.77 7.84 852.01 2 795.50 1 943.50
      250 3 977.67 20.01 1 081.45 2 790.10 1 708.60
      300 8 592.94 46.93 1 325.54 2 708.00 1 382.50
      350 16 538.50 113.20 1 636.20 2 516.70 880.50
      370 21 040.90 171.00 1 888.25 2 301.90 411.10
      374 22 070.90 322.60 2 098.00 2 098.00 0
      下载: 导出CSV
    • Akiya, N., Savage, P. E., 2002. Roles of Water for Chemical Reactions in High-Temperature Water. Chemical Reviews, 102(8): 2725-2750. https://doi.org/10.1021/cr000668w
      Arnórsson, S., 1985. The Use of Mixing Models and Chemical Geothermometers for Estimating Underground Temperatures in Geothermal Systems. Journal of Volcanology and Geothermal Research, 23(3-4): 299-335. https://doi.org/10.1016/0377-0273(85)90039-3
      Arnórsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The Chemistry of Geothermal Waters in Iceland. Ⅲ. Chemical Geothermometry in Geothermal Investigations. Geochimica et Cosmochimica Acta, 47(3): 567-577. https://doi.org/10.1016/0016-7037(83)90278-8
      Bischoff, J. L., Rosenbauer, R. J., 1984. The Critical Point and Two-Phase Boundary of Seawater, 200-500 ℃. Earth and Planetary Science Letters, 68(1): 172-180. https://doi.org/10.1016/0012-821x(84)90149-3
      Duoji, 2003. Typical High Temperature Geothermal System-Basic Characteristics of Yangbajing Geothermal Field. Engineering Science, 5(1): 42-47(in Chinese with English abstract).
      Engelen, G. B., Jones, C. P., 1986. Developments in the Analysis of Groundwater Flow Systems. IAHS Publication, (163): 2-8.
      Fournier, R. O., 1976. Exchange of Na+ and K+ between Water Vapor and Feldspar Phases at High Temperature and Low Vapor Pressure. Geochimica et Cosmochimica Acta, 40(12): 1553-1561. https://doi.org/10.1016/0016-7037(76)90094-6
      Fournier, R. O., 1977. Chemical Geothermometers and Mixing Models for Geothermal Systems. Geothermics, 5(1-4): 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
      Fournier, R. O., Truesdell, A. H., 1970. Chemical Indicators of Subsurface Temperature Applied to Hot Spring Waters of Yellowstone National Park, Wyoming, U. S. A. Geothermics, 2(P1): 529–535.
      Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5): 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
      Freeze, R. A., Harlan, R. L., 1969. Blueprint for a Physically-Based, Digitally-Simulated Hydrologic Response Model. Journal of Hydrology, 9(3): 237-258. https://doi.org/10.1016/0022-1694(69)90020-1
      Fu, X. C., 2005. Physical Chemistry. 5th ed. People's Education Press, Beijing (in Chinese).
      Gao, Z. J., 2013. Experimental Demonstration and Significance of Groundwater Flow System Differentiation. Journal of Shandong University of Science and Technology (Natural Science), 32(2): 17-24(in Chinese with English abstract).
      Gao, Z. J., Liu, Y. G., 2014. Research on Application of Thermally Driven in Groundwater Movement. Ground Water, 36(2): 7-9(in Chinese with English abstract).
      Garven, G., 1995. Continental-Scale Groundwater Flow and Geologic Processes. Annual Review of Earth and Planetary Sciences, 23: 89-117. https://doi.org/10.1146/annurev.earth.23.1.89
      Guo, Q. H., Wang, Y. X., Liu, W., 2007. Major Hydrogeochemical Processes in the Two Reservoirs of the Yangbajing Geothermal Field, Tibet, China. Journal of Volcanology and Geothermal Research, 166(3-4): 255-268. https://doi.org/10.1016/j.jvolgeores.2007.08.004
      Hubbert, M. K., 1940. The Theory of Ground-Water Motion. The Journal of Geology, 48(8, Part 1): 785-944. https://doi.org/10.1029/TR021i002p00648-1
      Kell, G. S., 1977. Effects of Isotopic Composition, Temperature, Pressure, and Dissolved Gases on the Density of Liquid Water. Journal of Physical and Chemical Reference Data, 6(4): 1109-1131. https://doi.org/10.1063/1.555561
      Li, J. X., Guo, Q. H., Wang, Y. X., 2015. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science, 40(9): 1576-1584(in Chinese with English abstract).
      Liang, X., Zhang, R. Q., Jin, M. G., 2015. Grounduater Flow Systems. Geological Publishing House, Beijing (in Chinese).
      Liu, D. M., Wei, M. H., Sun, M. H., et al., 2022. Classification and Determination of Thermal Control Structural System of Hot Dry Rock. Earth Science, 47(10): 3723-3735(in Chinese with English abstract).
      Mao, X. M., Ye, J. Q., Dong, Y. Q., et al., 2022. Geothermal Driving Force: A New Additional Non-Gravity Action Driving the Migration of Geothermal Water in the Xinzhou Geothermal Field of Yangjiang, Guangdong. Bulletin of Geological Science and Technology, 41(1): 137-145(in Chinese with English abstract).
      Pope, S., 1987. Turbulent Premixed Flames. Annual Review of Fluid Mechanics, 19(1): 237-270. https://doi.org/10.1146/annurev.fluid.19.1.237
      Saar, M. O., 2011. Review: Geothermal Heat as a Tracer of Large-Scale Groundwater Flow and as a Means to Determine Permeability Fields. Hydrogeology Journal, 19(1): 31-52. https://doi.org/10.1007/s10040-010-0657-2
      Tóth, Á., Galsa, A., Mádl-Szőnyi, J., 2020. Significance of Basin Asymmetry and Regional Groundwater Flow Conditions in Preliminary Geothermal Potential Assessment—Implications on Extensional Geothermal Plays. Global and Planetary Change, 195: 103344. https://doi.org/10.1016/j.gloplacha.2020.103344
      Tóth, J., 1963. A Theoretical Analysis of Groundwater Flow in Small Drainage Basins. Journal of Geophysical Research, 68(16): 4795-4812. https://doi.org/10.1029/jz068i016p04795
      Tóth, J., 1999. Groundwater as a Geologic Agent: An Overview of the Causes, Processes, and Manifestations. Hydrogeology Journal, 7(1): 1-14. https://doi.org/10.1007/s100400050176
      Tóth, J. R., 1980. Deposition of Submarine Crusts Rich in Manganese and Iron. Geological Society of America Bulletin, 91(1): 44-54. https://doi.org/10.1130/0016-7606(1980)9144: doscri>2.0.co;2 doi: 10.1130/0016-7606(1980)9144:doscri>2.0.co;2
      Wang, C. S., Dai, J. G., Zhao, X. X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 621: 1-43. https://doi.org/10.1016/j.tecto.2014.01.036
      Wang, J. L., Jin, M. G., Jia, B. J., et al., 2022. Numerical Investigation of Residence Time Distribution for the Characterization of Groundwater Flow System in Three Dimensions. Journal of Earth Science, 33(6): 1583-1600. https://doi.org/10.1007/s12583-022-1623-3
      Wang, Y. C., Li, L., Wen, H. G., et al., 2022. Geochemical Evidence for the Nonexistence of Supercritical Geothermal Fluids at the Yangbajing Geothermal Field, Southern Tibet. Journal of Hydrology, 604: 127243. https://doi.org/10.1016/j.jhydrol.2021.12724310.31223/x56w7w
      White, D. E., Williams, D. L., 1975. Assessment of Geothermal Resources of the United States, No. 726-730. US Department of the Interior, Geological Survey.
      Xu, T., Yuan Y. L., Jia, X. F., et al., 2018. Prospects of Power Generation from an Enhanced Geothermal System by Water Circulation through Two Horizontal Wells: A Case Study in the Gonghe Basin, Qinghai Province, China. Energy, 148: 196-207. https://doi.org/10.1016/j.energy.2018.01.135
      Xu, T. F., Wang, Y., Feng, G. H., 2021. Research Progress and Development Prospect of Deep Supercritical Geothermal Resources. Natural Gas Industry, 41(3): 155-167(in Chinese with English abstract).
      Zhao, P., Dor, J., Liang, T. L., et al., 1998. Characteristics of Gas Geochemistry in Yangbajing Geothermal Field, Tibet. Chinese Science Bulletin, 43(21): 1770-1777. https://doi.org/10.1007/BF02883369
      Zheng, X. L., Guo, J. Q., 1996. Silica Geothermometer and Its Related Problems. Groundwater, 18(2): 85-88(in Chinese with English abstract).
      Zhu, B. Q., Zhu, L. X., 1992. Geochemical Exploration of Geothermal Field. Geological Publishing House, Beijing(in Chinese).
      Zhu, X., Wang, G. L., Ma, F., et al., 2021. Hydrogeochemistry of Geothermal Waters from Taihang Mountain-Xiongan New Area and Its Indicating Significance. Earth Science, 46(7): 2594-2608(in Chinese with English abstract).
      多吉, 2003. 典型高温地热系统: 羊八井热田基本特征. 中国工程科学, 5(1): 42-47.
      傅献彩, 2005. 物理化学-上册. 5版. 北京: 人民教育出版社.
      高宗军, 2013. 地下水流系统分异的试验演示及其意义. 山东科技大学学报(自然科学版), 32(2): 17-24.
      高宗军, 刘永贵, 2014. 地下水运动的热驱动机理. 地下水, 36(2): 7-9.
      李洁祥, 郭清海, 王焰新, 2015. 高温热田深部母地热流体的温度计算及其升流后经历的冷却过程: 以腾冲热海热田为例. 地球科学, 40(9): 1576-1584. doi: 10.3799/dqkx.2015.142
      梁杏, 张人权, 靳孟贵, 2015. 地下水流系统: 理论应用调查. 北京: 地质出版社.
      刘德民, 韦梅华, 孙明行, 等, 2022. 干热岩控热构造系统厘定与类型划分. 地球科学, 47(10): 3723-3735. doi: 10.3799/dqkx.2022.058
      毛绪美, 叶建桥, 董亚群, 等, 2022. 地热驱动力: 广东阳江新洲地热田驱动地热水运移的一种额外非重力作用的分析方法. 地质科技通报, 41(1): 137-145.
      许天福, 汪禹, 封官宏, 2021. 深部超临界地热资源研究进展及开发前景展望. 天然气工业, 41(3): 155-167.
      郑西来, 郭建青, 1996. 二氧化硅地热温标及其相关问题的处理方法. 地下水, 18(2): 85-88.
      朱炳球, 朱立新, 1992. 地热田地球化学勘查. 北京: 地质出版社.
      朱喜, 王贵玲, 马峰, 等, 2021. 太行山-雄安新区蓟县系含水层水文地球化学特征及意义. 地球科学, 46(7): 2594-2608. doi: 10.3799/dqkx.2020.207
    • 加载中
    图(3) / 表(5)
    计量
    • 文章访问数:  305
    • HTML全文浏览量:  179
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-22
    • 网络出版日期:  2024-11-08
    • 刊出日期:  2024-10-25

    目录

      /

      返回文章
      返回