Study on Slope Stability of Inlet / Outlet of Lower Reservoir of Warang Pumped Storage Power Station in Upper Yellow River
-
摘要: 高山峡谷地区水电工程中的边坡失稳问题十分常见,对工程的建设与水库运行安全有着重要影响.以黄河上游哇让抽水蓄能电站下库进/出水口边坡为研究对象,基于平硐编录、钻孔电视等方法对岩体结构面进行统计;通过钻孔波速测试,开展边坡岩体卸荷分带;据此,对边坡潜在破坏模式进行定性分析.通过UDEC软件,建立基于DFN离散裂隙网络的边坡离散元模型,考虑天然、暴雨和地震3种工况,分别对自然边坡、无支护开挖过程以及支护开挖过程进行数值模拟,揭示边坡潜在变形主控因素.结果显示,边坡的变形破坏主要受卸荷裂隙和顺坡向缓倾裂隙两组结构面控制,潜在变形模式为台阶状滑移-拉裂破坏;稳定性研究表明,自然边坡在3种工况下,抗滑稳定性均不满足规范要求.为保证进出水口安全,结合边坡变形模式和工程经验,提出了相应的开挖支护方案.研究表明,该支护方案有效可行,可有效提高边坡稳定性且使稳定系数满足规范要求.Abstract: Slope instability is very common in the process of building hydropower projects in alpine canyon areas, which has an important impact on engineering construction. In this paper, the slope of the inlet/outlet of the lower reservoir of the Warang pumped storage power station in the upper reach of the Yellow River is taken as the research object. Based on the methods of adit logging and borehole TV, the rock mass structural plane is counted: Through borehole wave velocity test, unloading zoning of slope rock mass is carried out. Accordingly, the potential failure mode of the slope is qualitatively analyzed. Through UDEC software, a discrete element model of slope based on DFN discrete fracture network is established. Considering three working conditions of natural, rainstorm and earthquake, the numerical simulation of natural slope, unsupported excavation process and supported excavation process are carried out respectively to reveal the main controlling factors of potential deformation of slope. The results show that the deformation and failure of the slope are mainly controlled by two groups of structural planes: unloading fissures and gently inclined fissures along the slope. The potential deformation mode is step-like slip-crack failure. The stability study shows that the anti-sliding stability of the natural slope does not meet the specification requirements under three working conditions. In order to ensure the safety of inlet and outlet, combined with slope deformation mode and engineering experience, the corresponding excavation support scheme is proposed. The research shows that the supporting scheme is effective and feasible, which can effectively improve the slope stability and make the stability coefficient meet the specification requirements under different working conditions.
-
表 1 结构面参数取值
Table 1. Parameter values of structural plane
区域 组别 法向刚度
(GPa/m)剪切刚度
(GPa/m)粘聚力
(MPa)抗拉强度
(MPa)内摩擦角
(°)强卸荷带 J1 20 20 0.48 0.24 25.7 J2 16 16 0.31 0.15 16.8 J3 10 10 0.24 0.12 16.8 弱卸荷带 J1 25 25 1 0.5 30 J2 20 20 0.38 0.19 21 J3 16 16 0.31 0.15 16.8 F5断层 / 10 10 0.1 0.05 16.8 新鲜岩体 / 30 30 2 1 35 表 2 岩石参数取值
Table 2. Rock parameter values
区域 密度
(kg/m3)体积模量
(GPa)剪切模量
(GPa)粘聚力
(MPa)抗拉强度
(MPa)内摩擦角
(°)强卸荷带 2 710 6.67 4.0 6.0 0.55 28 弱卸荷带 2 710 25.30 16.0 25.0 2.50 30 F5断层 2 710 6.67 4.0 6.0 0.55 28 新鲜岩体 2 720 25.30 17.4 29.0 2.90 35 表 3 梁单元强度取值
Table 3. Strength values of beam element
梁单元参数 取值 密度(kg/m3) 2 500 泊松比 0.15 抗压屈强度(MPa) 4 抗拉屈强度(MPa) 2 杨氏模量(GPa) 20 厚度(m) 0.2 界面摩擦角(°) 45 界面粘结强度(MPa) 1 界面抗拉强度(MPa) 0.1 界面法向刚度(GPa) 20 界面剪切刚度(GPa) 10 表 4 锚杆单元强度取值
Table 4. Strength values of bolt element
锚杆参数 系统锚 锚筋桩 预应力锚索 锁口锚杆 型号、直径(mm) C25/C28 3C28 10φj15.24 C28 密度(kg/m3) 7 500 7 500 7 500 7 500 抗压屈强度(GPa) 10 10 10 10 极限抗拉强度(kN) 88/110 166 650 220 杨氏模量(GPa) 49 25 25 98 粘结刚度(GPa) 4.8/5.2 2.9 3.6 10 粘结强度(kN/m) 39/44 38 33 88 间距(m) 2.0 4.0 4.0 1.0 预应力(吨) / / 37.5 / -
Bai, X. P., Ju, G. H., He, Y. M., 2006. Characteristics and Comprehensive Treatment of Natural High Slopes on Damsite of Laxiwa Hydropower Project, the Yellow River. The Chinese Journal of Geological Hazard and Control, 17(4): 6-10 (in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2006.04.002 Chai, B., Yin, K. L., Chen, L. X., et al., 2009. Analysis of Slope Deformation under Control of Rock Mass Structure. Rock and Soil Mechanics, 30(2): 521-525 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2009.02.041 Dai, X. R., Zhao, J. J., Lai, Q. Y., et al., 2022. Movement Process and Formation Mechanism of Rock Avalanche in Chada, Tibet Plateau. Earth Science, 47(6): 1932-1944 (in Chinese with English abstract). Gao, B. L., Zhang, J. H., Zhang, L. Q., 2022. Deterioration Characteristics of Structural Plane and Dynamic Instability Mechanism of High Dangerous Rock Mass under Earthquake. Earth Science, 47(12): 4417-4427(in Chinese with English abstract). Gu, D. M., Gao, X. C., Zhang, W. G., et al., 2020. Failure Evolution of Anti-Dip Rock Slope in the Three Gorges Reservoir Area. Rock and Soil Mechanics, 41(S2): 1-10 (in Chinese with English abstract). Jiang, Z. M., Li, S. L., Feng, S. R., et al., 2018. Numerical Simulation of Uplift Deformation of Left Bank Slope near Dam of Xiangjiaba Hydropower Station. Advances in Science and Technology of Water Resources, 38(4): 64-69, 94 (in Chinese with English abstract). Ju, N. P., Zhao, J. J., Huang, R. Q., et al., 2010. Stability Analysis of Atomized Slope beside Spillway at Hydropower Station of Dadu River, Southwest China. Journal of Engineering Geology, 18(3): 425-430 (in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.03.021 Li, S. Y., Chen, Y., Zhang, L., et al., 2018. Stability Evaluation of Typical Rocky High Slope of Baihetan Hydropower Station. Water Resources and Power, 36(5): 102-105 (in Chinese with English abstract). Li, T. F., Pan, M., Liu, R. X., 2002. Analysis of the Modes of Rock Mass Structure on Slope Stability. Acta Scicentiarum Naturalum Universitis Pekinesis, 38(2): 239-244 (in Chinese with English abstract). Liu, H. D., Zhao, Y. W., Dong, J. Y., et al., 2022. Seismic Dynamic Response and Failure Mode of Anti-Dip Rock Slope with Weak Rock Stratum. Earth Science, 47(12): 4373-4389(in Chinese with English abstract). Lü, C. T., Wang, B., Ji, N., 2017. Stability Analysis and Evaluation of Deep Unloading Slopes in Western Region of China. Journal of China Three Gorges University (Natural Sciences), 39(5): 53-58 (in Chinese with English abstract). Ou, G. Z., Wu, Y. P., Xiao, W., et al., 2015. Study on Deformation Mode for Marl Rock of Badong Group with Shelving Dip High Cutting Slopes of Three Gorges. Science Technology and Engineering, 15(9): 164-169 (in Chinese with English abstract). Sun, G. Z., 1988. Structural Mechanics of Rock Mass. Science Press, Beijing (in Chinese). Xu, P. H., Chen, J. P., Huang, R. Q., et al., 2005. Stability Analysis of Left High Slope at Jiefanggou under the Condition of Storing Water for a Certain Hydropower Station. Rock and Soil Mechanics, 26(5): 827-832 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2005.05.030 Xu, Q., Zhang, D. X., Zheng, G., 2009. Failure Mode and Stability Analysis of Left Bank Abutment High Slope at Jinping Ⅰ Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 28(6): 1183-1192 (in Chinese with English abstract). Yang, J. H., Dong, J. Y., Liu, H. D., et al., 2011. Study on Deformation and Failure Mode of Slope Controlled by Rock Mass Structure. Journal of China Coal Society, 36(S1): 58-62 (in Chinese with English abstract). Yang, X. B., Huang, R. Q., Shen, J. H., et al., 2005. Characteristics and Mechanism of Slope Deformation at Intake of Flood-Discharge Tunnel No. 2 of Zipingpu Hydropower Station. Chinese Journal of Rock Mechanics and Engineering, 24(12): 2035-2040 (in Chinese with English abstract). Zhang, Y. Y., Huang, R. Q., Pei, X. J., et al., 2017. Deformation Failure Mode of Fractured Rock Mass Slope in Lenggu Hydropower Station. Journal of Engineering Geology, 25(2): 556-564 (in Chinese with English abstract). Zhang, Z. H., Deng, J. H., Wei, J. B., et al., 2017. Deformation Mechanism Analysis of the Left Abutment Slope of Changheba Hydropower Station. Advanced Engineering Sciences, 49(S2): 1-7(in Chinese with English abstract). Zhou, H. F., Fu, W. X., Ye, F., et al., 2021. Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446(in Chinese with English abstract). Zhou, J., Zhang, L. Q., 2022. Dynamic Response Analysis of Slope Rock Mass with Complex Shape Based on Indirect Boundary Element Method. Earth Science, 47(12): 4350-4361 (in Chinese with English abstract). 白兴平, 巨广宏, 贺咏梅, 2006. 黄河拉西瓦水电站坝区天然高边坡特征及其治理. 中国地质灾害与防治学报, 17(4): 6-10. 柴波, 殷坤龙, 陈丽霞, 等, 2009. 岩体结构控制下的斜坡变形特征. 岩土力学, 30(2): 521-525. 代欣然, 赵建军, 赖琪毅, 等, 2022. 青藏高原察达高速远程滑坡运动过程与形成机理. 地球科学, 47(6): 1932-1944. doi: 10.3799/dqkx.2021.205 高丙丽, 张金厚, 张路青, 2022. 地震作用下结构面劣化特征及高位危岩体动力失稳机制. 地球科学, 47(12): 4417-4427. doi: 10.3799/dqkx.2022.352 顾东明, 高学成, 仉文岗, 等, 2020. 三峡库区反倾岩质边坡时效破坏演化模拟研究. 岩土力学, 41(增刊2): 1-10. 蒋中明, 李双龙, 冯树荣, 等, 2018. 向家坝水电站左岸近坝边坡抬升变形数值模拟. 水利水电科技进展, 38(4): 64-69, 94. 巨能攀, 赵建军, 黄润秋, 等, 2010. 西南大渡河某水电站溢洪道陡槽段雾化边坡稳定性分析. 工程地质学报, 18(3): 425-430. 李思滢, 陈媛, 张林, 等, 2018. 白鹤滩水电站典型顺层岩质高边坡稳定性评价. 水电能源科学, 36(5): 102-105. 李铁锋, 潘懋, 刘瑞珣, 2002. 基岩斜坡变形与破坏的岩体结构模式分析. 北京大学学报(自然科学版), 38(2): 239-244. 刘汉东, 赵亚文, 董金玉, 等, 2022. 含软弱岩层反倾岩质边坡地震动力响应与破坏模式. 地球科学, 47(12): 4373-4389. doi: 10.3799/dqkx.2022.355 吕城腾, 王蓓, 纪南, 2017. 西部地区深卸荷边坡稳定性分析与评价. 三峡大学学报(自然科学版), 39(5): 53-58. 欧光照, 吴益平, 肖威, 等, 2015. 三峡库区巴东组泥灰岩顺层缓倾高边坡变形破坏模式研究. 科学技术与工程, 15(9): 164-169. 孙广忠, 1988. 岩体结构力学. 北京: 科学出版社. 徐佩华, 陈剑平, 黄润秋, 等, 2005. 某水电站解放沟左岸反倾高边坡蓄水稳定性分析. 岩土力学, 26(5): 827-832. 许强, 张登项, 郑光, 2009. 锦屏Ⅰ级水电站左岸坝肩边坡施工期破坏模式及稳定性分析. 岩石力学与工程学报, 28(6): 1183-1192. 杨继红, 董金玉, 刘汉东, 等, 2011. 岩体结构控制下的边坡变形破坏模式分析. 煤炭学报, 36(增刊1): 58-62. 杨绪波, 黄润秋, 沈军辉, 等, 2005. 紫坪铺水电站2#泄洪洞进水口边坡变形特征及其机理研究. 岩石力学与工程学报, 24(12): 2035-2040. 张御阳, 黄润秋, 裴向军, 等, 2017. 楞古水电站碎裂岩质边坡变形破坏模式研究. 工程地质学报, 25(2): 556-564. 张正虎, 邓建辉, 魏进兵, 等, 2017. 长河坝水电站左坝肩边坡变形机制分析. 工程科学与技术, 49(增刊2): 1-7. 周洪福, 符文熹, 叶飞, 等, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097 周剑, 张路青, 2022. 基于间接边界元方法的SH波倾斜入射下边坡动力响应特征. 地球科学, 47(12): 4350-4361. doi: 10.3799/dqkx.2022.363 -