• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    连续河水位波动对河床潜流带硝酸盐转化效率的影响

    张佩瑶 文章 李一鸣

    张佩瑶, 文章, 李一鸣, 2024. 连续河水位波动对河床潜流带硝酸盐转化效率的影响. 地球科学, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130
    引用本文: 张佩瑶, 文章, 李一鸣, 2024. 连续河水位波动对河床潜流带硝酸盐转化效率的影响. 地球科学, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130
    Zhang Peiyao, Wen Zhang, Li Yiming, 2024. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone. Earth Science, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130
    Citation: Zhang Peiyao, Wen Zhang, Li Yiming, 2024. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone. Earth Science, 49(7): 2637-2649. doi: 10.3799/dqkx.2023.130

    连续河水位波动对河床潜流带硝酸盐转化效率的影响

    doi: 10.3799/dqkx.2023.130
    基金项目: 

    国家自然科学基金面上项目 42272290

    国家自然科学基金重点项目 41830862

    国家自然科学基金项目 U23A2042

    详细信息
      作者简介:

      张佩瑶(1999-),女,硕士研究生,主要从事潜流带溶质运移数值模拟工作.ORCID:0000-0002-3632-8249.E-mail:ZhangPY0926@cug.edu.cn

      通讯作者:

      文章,ORCID: 0000-0001-9672-3219.E-mail: wenz@cug.edu.cn

    • 中图分类号: P641.2

    Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone

    • 摘要: 为了探究连续水位波动下潜流带内硝酸盐的反应迁移规律,构建了包含河床沙丘的垂向二维数值模型.通过考虑不同河水位波动情况、河床坡度以及有氧呼吸、硝化和反硝化过程,系统探讨河床坡度和连续水位波动过程对溶质时空分布以及硝酸盐转化效率的影响.结果表明:河床坡度越大,地表水和周围地下水流之间会发生更快的物质交换,使溶质的浓度变化幅度变小,最终降低潜流带对NO3的转化效率;较高的后续水位峰值会延长地下水潜流路径并使溶质的浓度相对变化幅度越大,然而潜流带对NO3的转化效率会变低;后续水位波动持续的时间会影响溶质的时间响应,但不会影响对NO3的转化效率;不同的后续水位波动延迟时间会影响NO3浓度变化峰值出现的数量,延迟时间越久,越容易出现NO3浓度的多峰现象.

       

    • 图  1  (a)概念模型示意图;(b)连续水位波动过程示意图

      Hsup. 水位过程线;Hp. 水位峰值;H0. 初始水位

      Fig.  1.  (a) Schematic diagram of conceptual model; (b) schematic diagram of the river level fluctuation of successive peak flow event

      图  2  不同水文情景过程示意图

      a. Hp1 > Hp2, td1 > td2; b. Hp1 < Hp2, td1 > td2; c. Hp1 > Hp2, td1=td2

      Fig.  2.  Schematic diagrams of the process of different hydrological scenarios

      图  3  分段示踪示意图

      ①代表后续水位波动与前一个水位波动完全重叠的情景;②代表后续水位波动与前一个水位波动部分重叠;③代表两个水位波动互不叠加

      Fig.  3.  Diagram of solute tracers at different time periods

      图  4  情景a下不同时间点位置示意图

      a. t=0;b. t=tp1; c. t=tlag; d. t=tp2; e. t=td1; f. t=td2

      Fig.  4.  Schematic diagram of different time points in scenario a

      图  5  不同时刻流场分布示意图

      Fig.  5.  Snapshots of flow field and hyporheic zone

      图  6  三种情景下NO3及净反硝化速率的时空分布图

      Fig.  6.  Spatial-temporal distributions of nitrate and net denitrification rates under three scenarios

      图  7  与基流条件相比,情景a下各反应物浓度随时间的相对变化

      Fig.  7.  Relative changes of reactant concentrations over time under scenario a compared to base flow conditions

      图  8  与基流条件相比,情景b下各反应物浓度随时间的相对变化

      Fig.  8.  Relative changes of reactant concentrations over time under scenario b compared to base flow conditions

      图  9  与基流条件相比,情景c下各反应物浓度随时间的相对变化

      Fig.  9.  Relative changes of reactant concentrations over time under scenario c compared to base flow conditions

      图  10  情景a下NO3的穿透曲线示意图

      Fig.  10.  Schematic diagrams of the penetration curves of nitrate under scenario a

      图  11  情景b下NO3的穿透曲线示意图

      Fig.  11.  Schematic diagrams of the penetration curves of nitrate under scenario b

      图  12  情景c下NO3的穿透曲线示意图

      Fig.  12.  Schematic diagrams of the penetration curves of nitrate under scenario c

      表  1  模型参数及默认取值

      Table  1.   Parameters used in this study and default values

      参数名称 符号 默认取值 参数名称 符号 默认取值
      河床宽度 L 3[m] 孔隙度 θ 0.35[-]
      河床深度 Db 5[m] 纵向弥散度 $ {\alpha }_{\mathrm{L}} $ 0.05[m]
      河满深度 dbkf 10[m] 横向弥散度 $ {\alpha }_{\mathrm{T}} $ 0.005[m]
      河床波长 λ 1[m] 动力粘滞系数 μ 1.002×10-3[Pa•s]
      河床振幅 Δ 0.1[m] DO极限浓度 $ {C}_{{\mathrm{O}}_{2},\mathrm{l}\mathrm{i}\mathrm{m}} $ 0.031 25[mol/m3]
      坡度 S 0.001、0.01、0.05[-] NO3极限浓度 $ {C}_{\mathrm{N}{{\mathrm{O}}_{3}}^{-},\mathrm{l}\mathrm{i}\mathrm{m}} $ 0.008 1[mol/m3]
      渗透系数 K 9.8×10‒4[m/s] DOC一级反应速率常数 $ {K}_{\mathrm{D}\mathrm{O}\mathrm{C}} $ 5×10‒6[1/s]
      曼宁系数 M 0.05 NH4+二阶反应速率常数 $ {K}_{\mathrm{N}{{\mathrm{H}}_{4}}^{+}} $ 8.99×10‒5[m3/(mol•s)]
      河流中DOC浓度 $ {C}_{\mathrm{D}\mathrm{O}\mathrm{C},0} $ 150[mg/L] 河流中NO3浓度 $ {C}_{\mathrm{N}{{\mathrm{O}}_{3}}^{-},0} $ 8[mg/L]
      河流中DO浓度 $ {C}_{{\mathrm{O}}_{2},0} $ 10[mg/L] 河流中NH4+浓度 $ {C}_{\mathrm{N}{{\mathrm{H}}_{4}}^{+},0} $ 5[mg/L]
      下载: 导出CSV
    • Bardini, L., Boano, F., Cardenas, M. B., et al., 2012. Nutrient Cycling in Bedform Induced Hyporheic Zones. Geochimica et Cosmochimica Acta, 84: 47-61. https://doi.org/10.1016/j.gca.2012.01.025
      Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/WR019i003p00732
      Craig, L. S., Bahr, J. M., Roden, E. E., 2010. Localized Zones of Denitrification in a Floodplain Aquifer in Southern Wisconsin, USA. Hydrogeology Journal, 18(8): 1867-1879. https://doi.org/10.1007/s10040-010-0665-2
      Elliott, A. H., Brooks, N. H., 1997. Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory. Water Resources Research, 33(1): 123-136. https://doi.org/10.1029/96wr02784
      Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362
      Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., et al., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. Science of the Total Environment, 248(2-3): 75-86. https://doi.org/10.1016/s0048-9697(99)00532-x
      Grant, S. B., Azizian, M., Cook, P., et al., 2018. Factoring Stream Turbulence into Global Assessments of Nitrogen Pollution. Science, 359(6381): 1266-1269. https://doi.org/10.1126/science.aap8074
      Harvey, J. W., Drummond, J. D., Martin, R. L., et al., 2012. Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions with a Dynamic Streambed. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N11. https://doi.org/10.1029/2012jg002043
      Howden, N. J. K., Burt, T. P., Worrall, F., et al., 2011. Nitrate Pollution in Intensively Farmed Regions: What are the Prospects for Sustaining High-Quality Groundwater? Water Resources Research, 47(6): W00L02. https://doi.org/10.1029/2011wr010843
      Hunter, K. S., Wang, Y. F., Van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1-4): 53-80. https://doi.org/10.1016/s0022-1694(98)00157-7
      Käser, D. H., Binley, A., Heathwaite, A. L., et al., 2009. Spatio-Temporal Variations of Hyporheic Flow in a Riffle-Step-Pool Sequence. Hydrological Processes, 23(15): 2138-2149. https://doi.org/10.1002/hyp.7317
      Kessler, A. J., Cardenas, M. B., Cook, P. L. M., 2015. The Negligible Effect of Bed Form Migration on Denitrification in Hyporheic Zones of Permeable Sediments. Journal of Geophysical Research: Biogeosciences, 120(3): 538-548. https://doi.org/10.1002/2014jg002852
      Knowles, R., 1982. Denitrification. Microbiological Reviews, 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982
      Li, Y., Zhang, W. W., Yuan, J. H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2016.01.001
      McCallum, J. L., Shanafield, M., 2016. Residence Times of Stream-Groundwater Exchanges Due to Transient Stream Stage Fluctuations. Water Resources Research, 52(3): 2059-2073. https://doi.org/10.1002/2015wr017441
      Nilsson, C., Reidy, C. A., Dynesius, M., et al., 2005. Fragmentation and Flow Regulation of the World's Large River Systems. Science, 308(5720): 405-408. https://doi.org/10.1126/science.1107887
      Qian, J., Wang, C., Wang, P. F., et al., 2009. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip. Advances in Water Science, 20(1): 139-144 (in Chinese with English abstract).
      Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
      Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610
      Singh, T., Gomez-Velez, J. D., Wu, L. W., et al., 2020. Effects of Successive Peak Flow Events on Hyporheic Exchange and Residence Times. Water Resources Research, 56(8): e2020WR027113. https://doi.org/10.1029/2020wr027113
      Singh, T., Wu, L. W., Gomez-Velez, J. D., et al., 2019. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resources Research, 55(1): 218-235. https://doi.org/10.1029/2018WR022993
      Stonedahl, S. H., Harvey, J. W., Wörman, A., et al., 2010. A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders. Water Resources Research, 46(12): W12539. https://doi.org/10.1029/2009wr008865
      Sun, B., Zhang, L. X., Yang, L. Z., et al., 2012. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4): 370-379. https://doi.org/10.1007/s13280-012-0249-6
      Trauth, N., Fleckenstein, J. H., 2017. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resources Research, 53(1): 779-798. https://doi.org/10.1002/2016WR019488
      Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
      Williams, D. D., Febria, C. M., Wong, J. C. Y., 2010. Ecotonal and Other Properties of the Hyporheic Zone. Fundamental and Applied Limnology, 176(4): 349-364. https://doi.org/10.1127/1863-9135/2010/0176-0349
      Wörman, A., Packman, A. I., Marklund, L., et al., 2006. Exact Three-Dimensional Spectral Solution to Surface-Groundwater Interactions with Arbitrary Surface Topography. Geophysical Research Letters, 33: L0740. https://doi.org/10.1029/2006gl025747
      Wu, J., Huang, S. F., Tang, H., et al., 2006. Review of Research on Ecosystem Health in Riverine Phreatic Zones. Water Resources Protection, 22(5): 5-8, 27 (in Chinese with English abstract).
      Xia, J. H., Lin, J. Q., Yao, L., et al., 2010. Edge Structure and Edge Effect of Riparian Zones. Journal of Hohai University (Natural Sciences), 38(2): 215-219 (in Chinese with English abstract).
      Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
      Zheng, L. Z., Cardenas, M. B., 2018. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research: Biogeosciences, 123(9): 2743-2760. https://doi.org/10.1029/2018jg004412
      李勇, 张维维, 袁佳慧, 等, 2016. 潜流带水流特性及氮素运移转化研究进展. 河海大学学报(自然科学版), 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm
      钱进, 王超, 王沛芳, 等, 2009. 河湖滨岸缓冲带净污机理及适宜宽度研究进展. 水科学进展, 20(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200901024.htm
      屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095
      吴健, 黄沈发, 唐浩, 等, 2006. 河流潜流带的生态系统健康研究进展. 水资源保护, 22(5): 5-8, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200605001.htm
      夏继红, 林俊强, 姚莉, 等, 2010. 河岸带的边缘结构特征与边缘效应. 河海大学学报(自然科学版), 38(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201002022.htm
      赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    • 加载中
    图(12) / 表(1)
    计量
    • 文章访问数:  351
    • HTML全文浏览量:  193
    • PDF下载量:  30
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-04-18
    • 网络出版日期:  2024-08-03
    • 刊出日期:  2024-07-25

    目录

      /

      返回文章
      返回