Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone
-
摘要: 为了探究连续水位波动下潜流带内硝酸盐的反应迁移规律,构建了包含河床沙丘的垂向二维数值模型.通过考虑不同河水位波动情况、河床坡度以及有氧呼吸、硝化和反硝化过程,系统探讨河床坡度和连续水位波动过程对溶质时空分布以及硝酸盐转化效率的影响.结果表明:河床坡度越大,地表水和周围地下水流之间会发生更快的物质交换,使溶质的浓度变化幅度变小,最终降低潜流带对NO3‒的转化效率;较高的后续水位峰值会延长地下水潜流路径并使溶质的浓度相对变化幅度越大,然而潜流带对NO3‒的转化效率会变低;后续水位波动持续的时间会影响溶质的时间响应,但不会影响对NO3‒的转化效率;不同的后续水位波动延迟时间会影响NO3‒浓度变化峰值出现的数量,延迟时间越久,越容易出现NO3‒浓度的多峰现象.Abstract: In order to investigate the reactive-transport patterns of nitrate in hyporheic zone during the hyporheic exchange process under a dynamic water level condition, a vertical two-dimensional numerical model of riverbed dune including (river) water fluctuations and sinuous river bed dune was constructed. By considering three types of river level fluctuations scenarios, river bed slope, aerobic respiration, nitrification and denitrification processes in our model, the effects of bed slope and water level fluctuatio scenarios on spatiotemporal evolution of solute distribution and nitrate conversion efficiency of hyporheic zone were systematically discussed. The results show that larger river bed slope condition can increase the solute exchange flux between surface water and the groundwater flow, and reduce the variation degree of solute concentration, which will consequently decrease the conversion efficiency of NO3‒ in hyporheic zones. Larger subsequent peak level of water fluctuations can prolong hyporheic flow path and increase the variation degree of solute concentration, whereas it can reduce the conversion efficiency of NO3‒ in hyporheic zones. The duration of subsequent water level fluctuations will affect the time response of solute concentration, but will not affect the conversion efficiency of NO3‒. Different delay times of subsequent water level fluctuations will affect the humber of NO3‒ concentration peaks. Furthermore, longer delay time can result in multiple peaks of NO3- concentration.
-
表 1 模型参数及默认取值
Table 1. Parameters used in this study and default values
参数名称 符号 默认取值 参数名称 符号 默认取值 河床宽度 L 3[m] 孔隙度 θ 0.35[-] 河床深度 Db 5[m] 纵向弥散度 $ {\alpha }_{\mathrm{L}} $ 0.05[m] 河满深度 dbkf 10[m] 横向弥散度 $ {\alpha }_{\mathrm{T}} $ 0.005[m] 河床波长 λ 1[m] 动力粘滞系数 μ 1.002×10-3[Pa•s] 河床振幅 Δ 0.1[m] DO极限浓度 $ {C}_{{\mathrm{O}}_{2},\mathrm{l}\mathrm{i}\mathrm{m}} $ 0.031 25[mol/m3] 坡度 S 0.001、0.01、0.05[-] NO3‒极限浓度 $ {C}_{\mathrm{N}{{\mathrm{O}}_{3}}^{-},\mathrm{l}\mathrm{i}\mathrm{m}} $ 0.008 1[mol/m3] 渗透系数 K 9.8×10‒4[m/s] DOC一级反应速率常数 $ {K}_{\mathrm{D}\mathrm{O}\mathrm{C}} $ 5×10‒6[1/s] 曼宁系数 M 0.05 NH4+二阶反应速率常数 $ {K}_{\mathrm{N}{{\mathrm{H}}_{4}}^{+}} $ 8.99×10‒5[m3/(mol•s)] 河流中DOC浓度 $ {C}_{\mathrm{D}\mathrm{O}\mathrm{C},0} $ 150[mg/L] 河流中NO3‒浓度 $ {C}_{\mathrm{N}{{\mathrm{O}}_{3}}^{-},0} $ 8[mg/L] 河流中DO浓度 $ {C}_{{\mathrm{O}}_{2},0} $ 10[mg/L] 河流中NH4+浓度 $ {C}_{\mathrm{N}{{\mathrm{H}}_{4}}^{+},0} $ 5[mg/L] -
Bardini, L., Boano, F., Cardenas, M. B., et al., 2012. Nutrient Cycling in Bedform Induced Hyporheic Zones. Geochimica et Cosmochimica Acta, 84: 47-61. https://doi.org/10.1016/j.gca.2012.01.025 Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/WR019i003p00732 Craig, L. S., Bahr, J. M., Roden, E. E., 2010. Localized Zones of Denitrification in a Floodplain Aquifer in Southern Wisconsin, USA. Hydrogeology Journal, 18(8): 1867-1879. https://doi.org/10.1007/s10040-010-0665-2 Elliott, A. H., Brooks, N. H., 1997. Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory. Water Resources Research, 33(1): 123-136. https://doi.org/10.1029/96wr02784 Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362 Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., et al., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. Science of the Total Environment, 248(2-3): 75-86. https://doi.org/10.1016/s0048-9697(99)00532-x Grant, S. B., Azizian, M., Cook, P., et al., 2018. Factoring Stream Turbulence into Global Assessments of Nitrogen Pollution. Science, 359(6381): 1266-1269. https://doi.org/10.1126/science.aap8074 Harvey, J. W., Drummond, J. D., Martin, R. L., et al., 2012. Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions with a Dynamic Streambed. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N11. https://doi.org/10.1029/2012jg002043 Howden, N. J. K., Burt, T. P., Worrall, F., et al., 2011. Nitrate Pollution in Intensively Farmed Regions: What are the Prospects for Sustaining High-Quality Groundwater? Water Resources Research, 47(6): W00L02. https://doi.org/10.1029/2011wr010843 Hunter, K. S., Wang, Y. F., Van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1-4): 53-80. https://doi.org/10.1016/s0022-1694(98)00157-7 Käser, D. H., Binley, A., Heathwaite, A. L., et al., 2009. Spatio-Temporal Variations of Hyporheic Flow in a Riffle-Step-Pool Sequence. Hydrological Processes, 23(15): 2138-2149. https://doi.org/10.1002/hyp.7317 Kessler, A. J., Cardenas, M. B., Cook, P. L. M., 2015. The Negligible Effect of Bed Form Migration on Denitrification in Hyporheic Zones of Permeable Sediments. Journal of Geophysical Research: Biogeosciences, 120(3): 538-548. https://doi.org/10.1002/2014jg002852 Knowles, R., 1982. Denitrification. Microbiological Reviews, 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982 Li, Y., Zhang, W. W., Yuan, J. H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2016.01.001 McCallum, J. L., Shanafield, M., 2016. Residence Times of Stream-Groundwater Exchanges Due to Transient Stream Stage Fluctuations. Water Resources Research, 52(3): 2059-2073. https://doi.org/10.1002/2015wr017441 Nilsson, C., Reidy, C. A., Dynesius, M., et al., 2005. Fragmentation and Flow Regulation of the World's Large River Systems. Science, 308(5720): 405-408. https://doi.org/10.1126/science.1107887 Qian, J., Wang, C., Wang, P. F., et al., 2009. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip. Advances in Water Science, 20(1): 139-144 (in Chinese with English abstract). Qu, G. Y., Li, M. J., Zheng, J. H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract). Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610 Singh, T., Gomez-Velez, J. D., Wu, L. W., et al., 2020. Effects of Successive Peak Flow Events on Hyporheic Exchange and Residence Times. Water Resources Research, 56(8): e2020WR027113. https://doi.org/10.1029/2020wr027113 Singh, T., Wu, L. W., Gomez-Velez, J. D., et al., 2019. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resources Research, 55(1): 218-235. https://doi.org/10.1029/2018WR022993 Stonedahl, S. H., Harvey, J. W., Wörman, A., et al., 2010. A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders. Water Resources Research, 46(12): W12539. https://doi.org/10.1029/2009wr008865 Sun, B., Zhang, L. X., Yang, L. Z., et al., 2012. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4): 370-379. https://doi.org/10.1007/s13280-012-0249-6 Trauth, N., Fleckenstein, J. H., 2017. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resources Research, 53(1): 779-798. https://doi.org/10.1002/2016WR019488 Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120 Williams, D. D., Febria, C. M., Wong, J. C. Y., 2010. Ecotonal and Other Properties of the Hyporheic Zone. Fundamental and Applied Limnology, 176(4): 349-364. https://doi.org/10.1127/1863-9135/2010/0176-0349 Wörman, A., Packman, A. I., Marklund, L., et al., 2006. Exact Three-Dimensional Spectral Solution to Surface-Groundwater Interactions with Arbitrary Surface Topography. Geophysical Research Letters, 33: L0740. https://doi.org/10.1029/2006gl025747 Wu, J., Huang, S. F., Tang, H., et al., 2006. Review of Research on Ecosystem Health in Riverine Phreatic Zones. Water Resources Protection, 22(5): 5-8, 27 (in Chinese with English abstract). Xia, J. H., Lin, J. Q., Yao, L., et al., 2010. Edge Structure and Edge Effect of Riparian Zones. Journal of Hohai University (Natural Sciences), 38(2): 215-219 (in Chinese with English abstract). Zhao, S. F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract). Zheng, L. Z., Cardenas, M. B., 2018. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research: Biogeosciences, 123(9): 2743-2760. https://doi.org/10.1029/2018jg004412 李勇, 张维维, 袁佳慧, 等, 2016. 潜流带水流特性及氮素运移转化研究进展. 河海大学学报(自然科学版), 44(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201601001.htm 钱进, 王超, 王沛芳, 等, 2009. 河湖滨岸缓冲带净污机理及适宜宽度研究进展. 水科学进展, 20(1): 139-144. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200901024.htm 屈国颖, 李民敬, 郑剑涵, 等, 2022. 受污染湖泊沉积物中氮素转化对有机污染物降解的促进效应与机制. 地球科学, 47(2): 652-661. doi: 10.3799/dqkx.2021.095 吴健, 黄沈发, 唐浩, 等, 2006. 河流潜流带的生态系统健康研究进展. 水资源保护, 22(5): 5-8, 27. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200605001.htm 夏继红, 林俊强, 姚莉, 等, 2010. 河岸带的边缘结构特征与边缘效应. 河海大学学报(自然科学版), 38(2): 215-219. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201002022.htm 赵淑凤, 刘慧, 赵磊, 等, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131 -