A Study on Hydrocarbon Sources and Accumulation Time in the Northern Fault Zone, Songnan-Baodao Sag of Qiongdongnan Basin
-
摘要: 琼东南盆地松南-宝岛凹陷北部断阶带发现多个含气构造,对该区带油气来源等认识存在很大争议,深水区烃源岩规模研究方面还比较薄弱,阻碍了下一步勘探方向的决策.采集了研究区共84个泥岩、7个天然气、3个原油样品进行岩石热解、干酪根同位素、生物标志化合物、天然气轻烃与碳同位素等分析,系统对比研究区不同层系烃源岩地化特征,认为松南-宝岛凹陷北部断阶带油气来源于崖城组海相泥岩,以陆源有机质的生烃贡献最大. 结合古环境、古生物与显微组分分析推测崖城组整体为浅海沉积,有利于好烃源岩的形成,在此基础上通过地震相的精细刻画厘清研究区崖城组烃源岩分布特征,结果表明研究区崖城组发育大规模煤系三角洲-浅海相沉积体系,其中前三角洲亚相、浅海相是好烃源岩主要赋存单元,烃源岩沿近凹断阶带分布. 流体包裹体证据表明,松南-宝岛凹陷北部断阶带深水区至少存在两期烃类充注,主要成藏的是晚期高熟煤型气(7.8 Ma之后),证实煤系三角洲-浅海相沉积体系下发育的烃源岩能够为油气成藏提供充足的烃类,晚期更容易大量生成天然气,其东侧的深水区断阶带存在类似的烃源岩分布、热演化特征及输导体系,应是下一步天然气勘探首选.Abstract: A number of gas-bearing structures were discovered in the northern fault zone of Songnan-Baodao Sag in Qiongdongnan Basin, but great disputes on the understanding of hydrocarbon source in the northern fault zone, the research on the scale of source rocks in deep-water is still weak, which hindered the decision of the next exploration direction. A total of 84 mudstone, 7 natrual gases, 3 crudoil samples from the study area were collected for rock pyrolysis, kerrogen carbon isotope, biomarkers, light hydrocarbon and carbon isotope analysis of natural gas in this paper, Geochemical characteristics of source rock from different strata in the study area systematic comparison, it is believed that the oil and gas in the norhern fault-step zone of Songnan-Baodao depression derived from marine mudstone of yacheng formation, and land-based organic hydrocarbon generation is dominant, combined with the paleoenvironment paleontology and microscopic components analysis, it is predicted that the whole yacheng formation is a shallow sea sedimentary environment, and conductive to the enrichment of organic matter form good source rocks, On this basis, the distribution characteristics of hydrocarbon source rocks of the yacheng formation in the study area are clarified through the seismic facies. The results show that the yacheng formation in the study area develop a large-scale coal-bearing delta、marine sedimentary system, which is the main occurrence unit of good hydrocarbon source rocks, distributed along the near concave and fault step zone. Fluid inclusion evidence shows that there are at least two stages of hydrocarbon filling in the deep-water area of the northern fault step zone of Songnan-Baodao depression, and the main accumulation is the high mature coal-type gas. It is confirmed that source rocks deposited on the coal-bearing delta and marine facies have rich gas supply, and a large amount of natural gas will be easier generated in the later stage, it is speculated that there are similar source rock distribution, thermal evolution characteristics and transport system in the fault step zone of deep-water area on the east side, which should be the first choice for next natural gas exploration.
-
电感耦合等离子体质谱技术(ICP-MS) 具有灵敏度高, 精密度好, 谱线相对简单, 动态线性范围宽, 可同时进行多元素快速分析并可提供同位素信息等分析特性, 被广泛地应用于地质、冶金、石油、环境、生物、医学、材料科学等各个领域.然而在ICP-MS分析中, 灵敏度的漂移及基体效应严重影响了分析的准确度和精密度, 采用标准加入法[1]、同位素稀释法[2]可在不同程度上改善分析质量, 但存在分析操作繁琐、价格昂贵及难以进行多元素同时分析的缺点.多元素内标校正技术[3, 4]、外标校正技术[5]以及内外标校正技术的结合[6]应用于地质样品中多元素的测定获得了较为理想的分析效果.多元素-同位素内标技术[7]较好地克服了由于ICP-MS分析中的折衷条件的选择所带来的分析误差.以天然岩石为外标的分析技术[8]可较好地解决相同岩性样品的分析测定.
由于地质样品的复杂性, 给ICP-MS多元素的分析研究带来了一定的困难最大限度地抑制灵敏度的漂移, 减少基体效应尤其是元素间含量的差异所引起的基体干扰, 建立准确快速的多元素分析方法仍是一项有意义的探索性工作.本文采用模拟地质样品中天然组成比的基体匹配校正标准溶液为外标, 以115In-103Rh为双内标校正元素, 通过单个Ca, Cr, Ti, Ba及稀土元素的氧化物、氢氧化物的测定计算出等效的干扰浓度校正多原子离子干扰, 建立了地质样品中多元素的ICP-MS分析方法.
1. 实验部分
1.1 仪器与试剂
电感耦合等离子体光质谱仪POEMSⅢ (美国Thermo Jarrell Ash公司, 该仪器质谱部分采用VG Element PQ3, 光谱采用TJA公司IRIS); 美国Savillex Teflon密闭溶样器; 高纯HNO3, HF: 用优级纯经亚沸蒸馏纯化而得; 高纯LiBO2 (美国Aldrich Chemical Company); 高纯水: 18 MΩ的高纯水由E-pure (美国Barnstead公司) 制得.
1.2 仪器工作条件
等离子体质谱工作参数见表 1
表 1 ICP-MS仪器工作参数Table Supplementary Table Operation parameters for POEMS Ⅲ (ICP-MS)1.3 样品制备与分析流程
(1) 对基性、超基性岩采用酸消解分析流程.准确称取50 mg岩石样品置于7 mL Savillex PTFE密封溶样器中, 加入少量高纯水, 润湿样品; 加入1 mL高纯HNO3, 3 mL高纯HF, 旋紧盖子于超声清洗机助溶1 h, 于120℃加热48 h, 开盖于140℃左右的电热板蒸干; 再加入3 mL HNO3, 1 mL HF, 加盖密封于120℃加热6~8 d; 再将溶液蒸干, 加入3~5mL质量分数为5%的HNO3, 于105℃密封放置2~3 d, 最后用质量分数为2%的HNO3稀释, 稀释因子为1∶2 000, 待ICP-MS测定. (2) 对酸性、中酸性岩采用酸消解与碱熔融联合的分析流程(酸消解分析流程同上).准确称取50 mg岩石样品于铂金坩埚中, 加入适量高纯熔剂LiBO2, 搅拌均匀, 放入马弗炉升温到1 250℃, 保持半小时, 冷却, 取出; 加入3 mL HF, 在电热板上于120℃左右加热近干, 再加4 mL 1∶1 HNO3浸取盐类, 用10%的HNO3转移到15 mL Savillex PTFE密封溶样器中, 于105℃加热2~3 d, 最后用质量分数为2%的HNO3稀释, 稀释因子为1∶2 000, 待ICP-MS测定. (3) 样品测定.在所选定的POEMSⅢ最佳工作条件下, 先进行分析系统的标准化, 再按如下顺序测定: 样品空白→校正溶液※质量监控样(国际标样或标准溶液) →样品(10个) →样品空白→质量监控样→样品(10个) →样品空白.
1.4 基体匹配标准的配制
根据20个地质标准物质中各元素平均质量浓度的统计计算, 并进行各元素间质量浓度比值的归一化, 配制基体匹配标准溶液, 如表 2所示.
表 2 基体匹配标准溶液Table Supplementary Table Matrix-matched standard solutions1.5 内标元素的选择
在ICP-MS分析中, 内标元素能有效地监控和校正分析信号的短期和长期漂移, 并对基体效应具有明显的补偿作用.通过对In, Rh, Re作为内标元素的行为特征及其对基体补偿作用的对比实验研究表明: 采用115In为内标, 轻质量端元素的回收率相对较高; 以103Rh为内标, 重质量端元素的回收率相对较高; 对于中间质量数的元素, 采用3种不同的内标均可获得较好的回收率, 其中以115In为最佳.考虑到内标元素的选择应在电离电势及质量数尽可能接近被测元素, 以确保其电离及质谱行为特征相似.本方法选择115In-103Rh双内标元素校正系统, 以115In校正质量数小于160的元素; 以103Rh校正质量数大于160的元素.实验表明: 采用In-Rh双内标校正系统, 具有明显的基体补偿作用, 各分析元素的回收率有明显改善.
1.6 多原子离子干扰的校正
在地质样品多元素同时分析中, “多原子”或“加合物”离子的干扰往往比同量异位干扰更为严重, 其主要的多原子干扰在于Ca, Cr, Ti等元素的氧化物对过渡元素的干扰; 轻稀土元素的氧化物、氢氧化物形成对重稀土元素的干扰, 以及Ba的7个天然同位素所形成的氧化物、氢氧化物对轻稀土元素的干扰.为校正多原子离子的干扰, 我们分别采用单个的Ca, Cr, Ti, La, Ce, Pr和Ba测定氧化物CaO, CrO, TiO, LaO, CeO, PrO, BaO及氢氧化物LaOH, CeOH, PrOH, BaOH的产率, 并计算出对应质量数的等效浓度, 加以校正.如44CaO对60Ni, 50CrO对66Zn, 50TiO对66Zn, 141PrO对157 Gd, 140 CeOH对157 Gd, 135 BaO对151Eu, 130BaO对146Nd, 130BaOH对147Sm的干扰.
1.7 检出限和测定限
以2%HNO3空白溶液连续测定11次的3倍标准偏差所对应的质量浓度值计算检出限, 各元素的检出限在0.000 5~0.4 ng·mL-1之间; 以样品空白溶液连续测定11次的10倍标准偏差所对应的含量计算定量测定限, 各元素的定量测定限在0.5×10-6~22.5×10-6之间.
2. 结果
(1) 标准参考物质分析结果的相对标准偏差.按照所建立的分析方法, 在不同的时间内进行AGV-1 (安山岩), BHVO-2 (玄武岩), GSR-3 (玄武岩), DNC-1 (橄榄岩), RGM-1 (流纹岩), G-2 (花岗岩), G-2 (花岗岩) 等7个不同岩性的地质标准参考物质的重复测定, 标准样品分析结果的相对标准偏差如图所示除个别样品的极少数元素外绝大部分元素分析结果的相对标准偏差均优于5%.
(2) 标准参考物质分析结果与推荐的相对误差.7个不同岩性地质标准参考物质的分析结果与推荐值的相对误差如图 2所示, 从图中可以看出对于基性、超基性岩, 绝大部分元素分析结果的相对误差优于10%;而对于酸性岩, 大部分元素分析结果的相对误差小于10%.
(3) 标准参考物质分析结果.7个不同岩性地质标准参考物质的分析结果及相对偏差如表 3所示, 其中推荐值引自文献和资料①。
表 3 样品分析结果Table Supplementary Table Analytical results of samples① Wilson S A. Data compilation for U.S.G.S. reference material BHVO-2, Hawaiian Basalt, U.S.G.S. Open File Report, 1997.
3. 结论
采用模拟天然岩石含量组成比的基体匹配标准进行校正可较好地抑制由于元素间含量比的差异所带来的基体干扰; 采用115In-103Rh双内标校正系统, 可有效地监控和校正分析信号的短期和长期漂移, 并对基体效应具有明显的补偿作用.对于基性, 超基性岩, 采用HF+HNO3密封消解; 对于中、酸性岩, 采用LiBO2碱熔融及酸消解结合的样品处理方法, 在POEMSⅢ上建立的地质样品中微、痕、超痕量元素的ICP-MS分析方法, 具有准确度高、精密度好、分析简便快速等特点, 可广泛用于不同岩性地质样品中多元素的同时分析
-
图 3 δ13CH4与C1/(C2+C3)判断天然气成因图
底图据戴金星(1993)
Fig. 3. δ13CH4与C1/(C2+C3) to determine the genetic map of natural gas
-
Cramer, B., Faber, E., Gerling, P., et al., 2001. Reaction Kinetics of Stable Carbon Isotopes in Natural GasInsights from Dry, Open System Pyrolysis Experiments. Energy & Fuels, 15(3): 517-532. https://doi.org/10.1021/ef000086h Chen, H. H., 2007. Advances in Geochronology of Hydrocarbon Accumulation. Oil & Gas Geology, 28(2): 143-150(in Chinese with English abstract). Dai, J. X., 1993. Identification of Coal Formed Gas and Oil Type Gas by Light Hydrocarbons. Petroleum Exploration and Development, 20(5): 26-32(in Chinese with English abstract). Dai, J. X., 2011. Significance of the Study on Carbon Isotopes of Alkane Gases. Natural Gas Industry, 31(12): 1-6(in Chinese with English abstract). Deng, Y., Pei, J. X., Hu, L., et al., 2022. Discovery and Hydrocarbon Accumulation Models of Baodao 21-1 Gas Field in the Western South China Sea. China Offshore Oil and Gas, 34(5): 13-22(in Chinese with English abstract). Gan, J., Zhang, Y. Z., Liang, G., et al., 2019. Deposition Pattern and Differential Thermal Evolution of Source Rocks, Deep Water Area of Qiongdongnan Basin. Earth Science, 44(8): 2627-2635(in Chinese with English abstract). Guo, S. S., Liao, G. L., Liang, H., et al., 2021. Major Breakthrough and Significance of Deep-Water Gas Exploration in Well BD21 in Qiongdongnan Basin. China Petroleum Exploration, 26(5): 49-59(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.05.005 Huang, B. J., Li, l., Huang, H. T., et al., 2012a. Origin and Accumulation Mechanism of Shallow Gas in the North Baodao Slope, Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 39(5): 530-536(in Chinese with English abstract). Huang, B. J., Li, X. S., Wang, Z. F., et al., 2012b. Source Rock Geochemistry and Gas Potential in the Deep Water Area, Qiongdongnan Basin. China Offshore Oil and Gas, 24(4): 1-7(in Chinese with English abstract). Jang, Y. L., Liu, X. J., Zhao, X. Z., et al., 2020. Comprehensive Identification of Oil and Gas Accumulation Period by Fluid Inclusion Technique and Reservoir Bitumen Characteristics: A Case Study of the Paleozoic Buried Hill in Beidagang, Huanghua Depression. Earth Science, 45(3): 980-988(in Chinese with English abstract). Li, X. J., Chen, F., Chen, C. Y., 2004. Quantitative Reserch on Relationship between Planktonic Formation Content and Water Depth in Western South China Sea. Journal of Palaeogeography, 6(4): 442-447(in Chinese with English abstract). Li, X. X., 2004. Study on Structural Dynamics and Hydrocarbon Accumulation in Qiongdongnan Basin(Dissertation), Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou((in Chinese with English abstract). Liu, D. H., Lu, H. Z., Xiao, X. M., 2007. Oil and Gas Inclusions and Their Application in Petroleum Exploration and Development. Guangdong Science and Technology Press, Guanzhou(in Chinese). Liu, Z. H., Chen, H. H., 2011. Hydrocarbon Charging Orders and Times in the Eastern Area of Qiongdongnan Bain. Geoscience, 25(2): 279-288(in Chinese with English abstract). Liang, G., Gan, J., Li, X., et al., 2015. Genetic Types and Origin of Natural Gas in Lingshui Sag, Qiongdongnan Basin. China Offshore Oil and Gas, 27(4): 47-53(in Chinese with English abstract). Liu, Y. H., Chen, H. H., Su, A., et al., 2016. Eocene Source Rock Determination in Qiongdongnan Basin, the South China Sea: A Hydrocarbon Detection Perspective. Earth Science, 41(9): 1539-1547 (in Chinese with English abstract). Sun, R., Han, Y. X., Zeng, Q. B., et al., 2019. Sedimentary Characteristics of Yacheng Formation in the Eastern Deepwater Area in Qiongdongnan Basin and Their Control on Marine Source Rocks. Acta Petrolei Sinica, , 40(S2): 57-66(in Chinese with English abstract). Tang, Y., Perry, J. K., Jenden, P. D., et al., 2000. Mathematical Modeling of Stable Carbon Isotope Ratios in Natural Gases. Geochimica et Cosmochimica Acta, 64(15): 2673-2687. https://doi.org/10.1016/s0016-7037(00)00377-x Wu, P., Hou, D. J., Gan, J., et al., 2019. Development Model of Oligocene Source Rock in the Eastern Deep-Water Area of Qiongdongnan Basin. Acta Sedimentologica. 37(3): 633-644(in Chinese with English abstract). Xu, C. G., You L., 2022. North Slope Transiton Zone of Songnan-Baodao Sag in Qiongdongnan Basin and Its Control on Medium and Large Gas Fields, South China Sea. Petroleum Explortion and Development. 49(6): 1061-1072(in Chinese with English abstract). Zhu, W. L., Huang, B. J., Mi, L. J., et al., 2009. Geochemistry, Origin, and Deep-Water Exploration Potential of Natural Gases in the Pearl River Mouth and Qiongdongnan Basins, South China Sea. AAPG Bulletin, 93(6): 741-761. https://doi.org/10.1306/02170908099 Zhang, Y. Z., Qi, J F., Wu, J. F., et al., 2019. Cenozoic Faults Systems and Its Geodynamics of the Continental Margin Basins in the Northern of South China Sea. Earth Science, 44(2): 603-625(in Chinese with English abstract). Zhang, Y. Z., Fan, C. W., Xu, X. D., et al., 2015. Genesis and Sources of Natural Gas in Eastern Qiongdongnan Basin, South China Sea. Petroleum Geology & Experiment, 37(4): 466-472, 478(in Chinese with English abstract). Zhang, Y. Z., Gan, J., Xu, X. D., et al., 2019. The Source and Natural Gas Lateral Migration Accumulation Model of Y 8-1 Gas Bearing Structure, East Deep Water in the Qiongdongnan Basin. Earth Science, 44(8): 2610-2616(in Chinese with English abstract). 陈红汉, 2007. 油气成藏年代学研究进展. 石油与天然气地质, 28(2): 143-150. doi: 10.3321/j.issn:0253-9985.2007.02.003 戴金星, 1993. 利用轻烃鉴别煤成气和油型气. 石油勘探与开发, 20(5): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199305003.htm 戴金星, 2011. 天然气中烷烃气碳同位素研究的意义. 天然气工业, 31(12): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112003.htm 邓勇, 裴健翔, 胡林, 等, 2022. 南海西部海域宝岛21-1气田的发现与成藏模式. 中国海上油气, 34(5): 13-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202205002.htm 甘军, 张迎朝, 梁刚, 等, 2019. 琼东南盆地深水区烃源岩沉积模式及差异热演化. 地球科学, 44(8): 2627-2635. doi: 10.3799/dqkx.2019.202 郭书生, 廖高龙, 梁豪, 等, 2021. 琼东南盆地BD21井深水区天然气勘探重大突破及意义. 中国石油勘探, 26(5): 49-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202105005.htm 黄保家, 李里, 黄合庭. 等, 2012a. 琼东南盆地宝岛北坡浅层天然气成因与成藏机制. 石油勘探与开发. 39(5): 530-536. 黄保家, 李绪深, 王振峰, 等, 2012b. 琼东南盆地深水区烃源岩地球化学特征与天然气潜力. 中国海上油气, 24(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201204002.htm 蒋有录, 刘学嘉, 赵贤正, 等, 2020. 根据储层沥青和流体包裹体综合判识油气成藏期. 地球科学, 45(3): 980-988. doi: 10.3799/dqkx.2019.016 李学杰, 陈芳, 陈超云. 等, 2004. 南海西部浮游有孔虫含量与水深关系定量研究. 古地理学报. 6(4): 442-447. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200404005.htm 李绪宣, 2004. 琼东南盆地构造动力学演化及油气成藏研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所). 刘德汉, 卢焕章, 肖贤明, 2007. 油气包裹体及其在石油勘探和开发中的应用. 广州: 广东科技出版社. 刘正华, 陈红汉, 2011. 琼东南盆地东部地区油气形成期次和时期. 现代地质. 25(2): 279-288. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201102012.htm 梁刚, 甘军, 李兴, 等, 2015. 琼东南盆地陵水凹陷天然气成因类型及来源. 中国海上油气, 27(4): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201504006.htm 刘妍鷨, 陈红汉, 苏奥, 等, 2016. 从含油气检测来洞悉琼东南盆地东部发育始新统烃源岩的可能性. 地球科学, 41(9): 1539-1547. doi: 10.3799/dqkx.2016.521 孙瑞, 韩银学, 曾清波, 等, 2019. 琼东南盆地深水区东段崖城组沉积特征及对海相烃源岩的控制. 石油学报, 40(S2): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2019S2008.htm 吴飘, 侯读杰, 甘军, 等, 2019. 琼东南盆地深水东区渐新统烃源岩发育模式. 沉积学报, 37(3): 633-644. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201903018.htm 徐长贵, 尤丽, 2022. 琼东南盆地松南-宝岛凹陷北部转换带特征及其对大中型气田的控制. 石油勘探与开发, 49(6): 1061-1072. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202206001.htm 张新顺, 黄志龙, 范彩伟. 等, 2014. 琼东南盆地宝岛凹陷北斜坡油气运聚模式探讨. 高校地质学报. 20(4): 602-610. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201404012.htm 张远泽, 漆家福, 吴景富, 2019. 南海北部新生代盆地断裂系统及构造动力学影响因素. 地球科学, 44(2): 603-625 doi: 10.3799/dqkx.2018.542 张迎朝, 范彩伟, 徐新德, 等, 2015. 南海琼东南盆地东区天然气成因类型与烃源探讨. 石油实验地质, 37(4): 466-472, 478. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201504010.htm 张迎朝, 甘军, 徐新德, 等, 2019. 琼东南盆地深水东区Y8-1含气构造天然气来源及侧向运聚模式. 地球科学, 44(8): 2609-2618. doi: 10.3799/dqkx.2019.159 -