Vertical Distribution of Methane-Metabolizing Microorganisms and Molecular Ecological Networks in Dajiuhu Peatland, Shennongjia
-
摘要: 为了探讨产甲烷菌和甲烷氧化菌群落随土壤深度的垂直分布特征及甲烷代谢菌对环境的响应机制,于2019年4个季度采集大九湖泥炭地0 cm、10 cm、30 cm和50 cm的土壤样品.通过功能基因高通量测序获得产甲烷菌和甲烷氧化菌群落结构组成并构建分子生态网络.产甲烷菌和甲烷氧化菌的最大优势属分别为Methanoregula和Methylocapsa;产甲烷菌和甲烷氧化菌群落生态网络结构及其共现模式随深度发生变化,产甲烷菌和甲烷氧化菌群落结构随深度呈相反的变化趋势;产甲烷菌和甲烷氧化菌网络中关键物种分别有3个和4个,分别为Methanoregula、Methanocella、Methanobacterium和Methylocapsa、Candidatus Methyloumidiphilus、Methylocystis、Candidatus Methylospira.表明环境因子土壤总碳、总氮、铵态氮和亚硝态氮含量等环境因子通过影响产甲烷菌和甲烷氧化菌群落进而改变CH4排放.Abstract: Soil samples, at the depth of 0 cm, 10 cm, 30 cm, and 50 cm, were collected from the Dajiuhu peatland for four quarters in 2019 to investigate the distribution patterns of methanogens and methanotrophs in vertical profile and their response to the abiotic environment. High-through put sequencing was implemented to analyze the community structure of methanogens and methanotrophs, then construct molecular ecological networks. Methanoregula and Methylocapsa were found as the largest dominant genus of methanogens and methanotrophs in the Dajiuhu peatland. The ecological networks of methanogens and methanotrophs and their synergism varied with depth, and the opposite situation was observed in methanogens and methanogens. Moreover, Methanoregula, Methanocella, Methanobacterium were identified as key species in the methanogenic community, and 4 key species of methanotrophs were Methylocapsa, Candidatus Methyloumidiphilus, Methylocystis, Candidatus Methylospira. The results demonstrated that total carbon, total nitrogen, ammonium, and nitrite could affect the structure of methanogens and methanogens, thereby controlling CH4 emissions in the Dajiuhu peatland.
-
Key words:
- peatland /
- methanogens /
- methanotrophs /
- ecological network /
- CH4 flux /
- geochemistry
-
表 1 产甲烷菌和甲烷氧化菌群落Shannon和Chao1指数
Table 1. Shannon and Chao1 indices of methanogenic and methanotrophic communities
样品 产甲烷菌 甲烷氧化菌 Shannon指数 Chao1指数 Shannon指数 Chao1指数 Win.0 cm 3.49 3.465 0 631.92 715.382 5 5.05 4.695 0 1 256.88 983.367 5 Spr.0 cm 4.08 919.04 5.03 1 016.39 Sum.0 cm 3.20 677.52 4.93 1 230.28 Fal.0 cm 3.09 633.05 3.77 429.92 Win.10 cm 3.87 3.887 5 1 032.84 1 051.002 5 4.87 4.547 5 1 141.40 993.625 0 Spr.10 cm 4.03 1 115.40 5.37 1 164.49 Sum.10 cm 4.67 1 304.54 3.63 884.67 Fal.10 cm 2.98 751.23 4.32 783.94 Win.30 cm 4.45 4.637 5 1 166.73 1 250.890 0 3.95 3.732 5 969.21 844.750 0 Spr.30 cm 4.98 1 456.76 4.39 1 035.77 Sum.30 cm 4.55 1 025.22 3.3 748.17 Fal.30 cm 4.57 1 354.85 3.29 625.85 Win.50 cm 4.63 4.355 0 1 196.64 1 197.137 5 2.99 3.655 0 431.53 705.557 5 Spr.50 cm 4.20 1 225.42 4.14 855.45 Sum.50 cm 3.94 980.39 4.09 766.55 Fal.50 cm 4.65 1 386.10 3.4 768.70 表 2 不同土层产甲烷菌和甲烷氧化菌分子生态网络的拓扑参数
Table 2. Topological parameters of the methanogenic and methanotrophic molecular ecological networks in different soil depths
代谢菌群 深度(cm) 节点数 连接数 正边数 负边数 平均聚类系数 平均度 网络直径 平均路径长度 网络密度 模块性 产甲烷菌 0 412 1 932 1 129 803 0.226 9.379 10 3.889 0.023 0.668 10 442 2 576 1 651 925 0.236 11.656 14 4.255 0.026 0.547 30 338 2 082 1 290 792 0.244 12.320 15 4.707 0.037 0.454 50 354 2 627 1 634 993 0.325 14.842 13 3.737 0.042 0.570 甲烷氧化菌 0 307 1 286 1 127 159 0.273 8.378 14 4.609 0.027 0.456 10 431 1 483 621 862 0.244 6.882 14 4.864 0.016 0.671 30 504 769 461 308 0.217 3.052 25 8.081 0.006 0.840 50 456 628 467 161 0.312 2.754 17 6.183 0.006 0.851 -
Bergman, I., Klarqvist, M., Nilsson, M., 2000. Seasonal Variation in Rates of Methane Production from Peat of Various Botanical Origins: Effects of Temperature and Substrate Quality. FEMS Microbiology Ecology, 33(3): 181-189. https://doi.org/10.1016/S0168-6496(00)00060-X Chen, J. W., Ge, J. W., Feng, L., et al., 2020. Methane Flux Characteristics and Its Relationship with Soil Microbial Community Composition of Dajiuhu Peatland in Shennongjia. Earth Science, 45(3): 1082-1092(in Chinese with English abstract). Chen, Y., Dumont, M. G., McNamara, N. P., et al., 2008. Diversity of the Active Methanotrophic Community in Acidic Peatlands as Assessed by mRNA and SIP-PLFA Analyses. Environmental Microbiology, 10(2): 446-459. https://doi.org/10.1111/j.1462-2920.2007.01466.x Cheng, Y. Y., Jin, Z. J., Yuan, W., et al., 2021. Archaeal and Bacterial Communities Co-Occurrence Pattern in Huixian Karst Wetland. Journal of Guilin University of Technology, 41(1): 183-192(in Chinese with English abstract). de Menezes, A. B., Richardson, A. E., Thrall, P. H., 2017. Linking Fungal-Bacterial Co-Occurrences to Soil Ecosystem Function. Current Opinion in Microbiology, 37: 135-141. https://doi.org/10.1016/j.mib.2017.06.006 Ding, W. X., Cai, Z. C., Tsuruta, H., et al., 2003. Key Factors Affecting Spatial Variation of Methane Emissions from Freshwater Marshes. Chemosphere, 51(3): 167-173. https://doi.org/10.1016/S0045-6535(02)00804-4 Ding, W. X., Cai, Z. C., 2003. Effect of Nitrogen Fertilizers on Methane Oxidation in Soils by Methanotrophs. Chinese Journal of Eco-Agriculture, 11(2): 50-53(in Chinese with English abstract). Du, X. F., Li, S. Z., Feng, K., et al., 2020. Vertical Distribution Features of Microbial Quantity, Diversity and Interactions along Soil Profiles in an Agropasture Grassland. Microbiology China, 47(9): 2789-2806(in Chinese with English abstract). Freilich, M. A., Wieters, E., Broitman, B. R., et al., 2018. Species Co-Occurrence Networks: Can They Reveal Trophic and Non-Trophic Interactions in Ecological Communities? Ecology, 99(3): 690-699. https://doi.org/10.1002/ecy.2142 Gu, H., Xiao, F. S., He, Z. L., et al., 2018. Microbial Driven Methane Emission Mechanisms in Wetland Ecosystems. Acta Microbiologica Sinica, 58(4): 618-632(in Chinese with English abstract). He, S. M., Malfatti, S. A., McFarland, J. W., et al., 2015. Patterns in Wetland Microbial Community Composition and Functional Gene Repertoire Associated with Methane Emissions. mBio, 6(3): e00066-e00015. https://doi.org/10.1128/mBio.00066-15 Horn, M. A., Matthies, C., Küsel, K., et al., 2003. Hydrogenotrophic Methanogenesis by Moderately Acid-Tolerant Methanogens of a Methane-Emitting Acidic Peat. Applied and Environmental Microbiology, 69(1): 74-83. https://doi.org/10.1128/AEM.69.1.74-83.2003 Huang, R. L., Zhang, Z. Y., Xiao, X., et al., 2019. Structural Changes of Soil Organic Matter and the Linkage to Rhizosphere Bacterial Communities with Biochar Amendment in Manure Fertilized Soils. Science of the Total Environment, 692: 333-343. https://doi.org/10.1016/j.scitotenv.2019.07.262 Jaatinen, K., Fritze, H., Laine, J., et al., 2010. Effects of Short- and Long-Term Water-Level Drawdown on the Populations and Activity of Aerobic Decomposers in a Boreal Peatland. Global Change Biology, 13(2): 491-510. https://doi.org/10.1111/j.1365-2486.2006.01312.x Kim, S. Y., Veraart, A. J., Meima-Franke, M., et al., 2015. Combined Effects of Carbon, Nitrogen and Phosphorus on CH4 Production and Denitrification in Wetland Sediments. Geoderma, 259: 354-361. https://doi.org/10.1016/j.geoderma.2015.03.015 Li, S. Q., Zang, K. P., Song, L., 2020. Review on Methanogens and Methanotrophs Metabolised by Methane in Wetland. Marine Environmental Science, 39(3): 488-496(in Chinese with English abstract). Li, Y. Y., Ge, J. W., Peng, F. J., et al., 2017. Characteristics of Methane Flux and Their Effect Factors on Dajiuhu Peatland of Shennongjia. Earth Science, 42(5): 832-842(in Chinese with English abstract). Liu, Y. Y., Ge, J. W., Si, N., et al., 2021. Variation Characteristics of Methane Flux and Its Relationship with the Composition of Methanogens in the Subalpine Peat Wetland of Dajiuhu, Shennongjia. Resources and Environment in the Yangtze Basin, 30(6): 1418-1427(in Chinese with English abstract). Luton, P. E., Wayne, J. M., Sharp, R. J., et al., 2002. The mcrA Gene as an Alternative to 16Sr RNA in the Phylogenetic Analysis of Methanogen Populations in Landfill. Microbiology, 148(Pt 11): 3521-3530. https://doi.org/10.1099/00221287-148-11-3521 Peltoniemi, K., Laiho, R., Juottonen, H., et al., 2016. Responses of Methanogenic and Methanotrophic Communities to Warming in Varying Moisture Regimes of Two Boreal Fens. Soil Biology and Biochemistry, 97: 144-156. https://doi.org/10.1016/j.soilbio.2016.03.007 Takashi N., Tomoyuki H., Osamu N., 2011. The Impact of Aridification and Vegetation Type on Changes in the Community Structure of Methane-Cycling Microorganisms in Japanese Wetland Soils. Bioscience, Biotechnology, and Biochemistry, 75(9): 1727-1734. https://doi.org/10.1271/bbb.110265 Tang, B., Tang, J., Wu, L. S., et al., 2010. Time-Space Change of Methanogen Amount from Zoige Plateau. Microbiology China, 37(11): 1706-1711(in Chinese with English abstract). Tong, C., Cadillo-Quiroz, H., Zeng, Z. H., et al., 2017. Changes of Community Structure and Abundance of Methanogens in Soils along a Freshwater-Brackish Water Gradient in Subtropical Estuarine Marshes. Geoderma, 299: 101-110. https://doi.org/10.1016/j.geoderma.2017.03.026 Wagner, D., 2017. Effect of Varying Soil Water Potentials on Methanogenesis in Aerated Marshland Soils. Scientific Reports, 7: 14706. https://doi.org/10.1038/s41598-017-14980-y Wang, L. W., Ge, J. W., Feng, L., et al., 2022. The Synergism between Methanogens and Methanotrophs and the Nature of Their Contributions to the Seasonal Variation of Methane Fluxes in a Wetland: The Case of Dajiuhu Subalpine Peatland. Advances in Atmospheric Sciences, 39(8): 1375-1385. https://doi.org/10.1007/s00376-021-1255-z Xiong, J. M., Ma, L. Y., Huang, S. S., et al., 2020. Molecular Ecological Network Reveals the Response of Metallurgical Microorganisms to Energy Substrates. Chinese Journal of Biotechnology, 36(12): 2674-2684(in Chinese with English abstract). Xu, X., Inubushi, K., 2009. Responses of Ethylene and Methane Consumption to Temperature and pH in Temperate Volcanic Forest Soils. European Journal of Soil Science, 60(4): 489-498. https://doi.org/10.1111/j.1365-2389.2009.01155.x Yavitt, J. B., Yashiro, E., Cadillo-Quiroz, H., et al., 2012. Methanogen Diversity and Community Composition in Peatlands of the Central to Northern Appalachian Mountain Region, North America. Biogeochemistry, 109(1): 117-131. https://doi.org/10.1007/s10533-011-9644-5 Yun, J. L., Zhuang G. Q., Ma A. Z., et al., 2010. Diversity of Methanotrophs in Zoige Wetland Soils under Both Anaerobic and Aerobic Conditions. Journal of Environmental Sciences, 22(8): 1232-1238. https://doi.org/10.1016/S1001-0742(09)60243-6 Yun, J. L., Zhuang, G. Q., Ma, A. Z., et al., 2012. Community Structure, Abundance, and Activity of Methanotrophs in the Zoige Wetland of the Tibetan Plateau. Microbial Ecology, 63(4): 835-843. https://doi.org/10.1007/s00248-011-9981-x Zhang, H., Liu, C. Y., Zhang, X., et al., 2022. The Key Sulfometuron-Methyl Degrading Bacteria Isolation Based on Soil Bacterial Phylogenetic Molecular Ecological Networks and Application for Bioremediation of Contaminated Soil by Immobilization. Ecotoxicology and Environmental Safety, 238: 113605. https://doi.org/10.1016/j.ecoenv.2022.113605 Zhang, P., Xie, X. J., Li, Q. H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135(in Chinese with English abstract). Zhang, Q. T., Wang, M. M., Ma, X. Y., et al., 2019. High Variations of Methanogenic Microorganisms Drive Full-Scale Anaerobic Digestion Process. Environment International, 126: 543-551. https://doi.org/10.1016/j.envint.2019.03.005 Zhang, S. Q., Zhou, Z. B., Li, Y., et al., 2018. Deciphering the Core Fouling-Causing Microbiota in a Membrane Bioreactor: Low Abundance But Important Roles. Chemosphere, 195: 108–118. https://doi.org/10.1016/j.chemosphere.2017.12.067 Zhao, H. H., Xiao, X., Pei, M., et al., 2016. Effect of Long-Term Oil Contamination on the Microbial Molecular Ecological Networks in Saline-Alkali Soils. Environmental Science, 37(9): 3582-3589(in Chinese with English abstract). Zhao, Y. X., Wang, J. Q., Liu, Y., et al., 2021. Microbial Interaction Promotes Desulfurization Efficiency under High pH Condition. Environmental Research, 200: 111423. https://doi.org/10.1016/j.envres.2021.111423 Zhou, J. Z., Deng, Y., Luo, F., et al., 2011. Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2. mBio, 2(4): e00122-e00111. https://doi.org/10.1128/mBio.00122-11 Zhu, Z. C., Liu, H., Mao, S. J., et al., 2023. Distribution Characteristics of Microbial Communities in River-Groundwater Interaction Zone and Main Environmental Factors. Earth Science, 48(10): 3832-3843(in Chinese with English abstract). 谌佳伟, 葛继稳, 冯亮, 等, 2020. 神农架大九湖泥炭湿地甲烷通量特征及其与土壤微生物群落组成的关系. 地球科学, 45(3): 1082-1092. doi: 10.3799/dqkx.2019.289 程跃扬, 靳振江, 袁武, 等, 2021. 会仙岩溶湿地古菌和细菌群落的共现性. 桂林理工大学学报, 41(1): 183-192. 丁维新, 蔡祖聪, 2003. 氮肥对土壤氧化甲烷的影响研究. 中国生态农业学报, 11(2): 50-53. 杜雄峰, 厉舒祯, 冯凯, 等, 2020. 农牧交错带草地土壤剖面微生物总量、多样性和互作网络的垂直分布特征. 微生物学通报, 47(9): 2789-2806. 顾航, 肖凡书, 贺志理, 等, 2018. 湿地微生物介导的甲烷排放机制. 微生物学报, 58(4): 618-632. 李思琦, 臧昆鹏, 宋伦, 2020. 湿地甲烷代谢微生物产甲烷菌和甲烷氧化菌的研究进展. 海洋环境科学, 39(3): 488-496. 李艳元, 葛继稳, 彭凤姣, 等, 2017. 神农架大九湖泥炭湿地CH4通量特征及其影响因子. 地球科学, 42(5): 832-842. doi: 10.3799/dqkx.2017.071 刘垚垚, 葛继稳, 斯南雍茜, 等, 2021. 神农架大九湖亚高山泥炭湿地甲烷通量变化特征及其与产甲烷菌群落组成的关系. 长江流域资源与环境, 30(6): 1418-1427. 汤博, 唐杰, 吴俐莎, 等, 2010. 若尔盖高原产甲烷菌数量的时空差异性. 微生物学通报, 37(11): 1706-1711. 熊俊茗, 马丽媛, 黄珊珊, 等, 2020. 分子生态网络揭示冶金微生物对能源底物的响应. 生物工程学报, 36(12): 2674-2684. 张攀, 谢先军, 黎清华, 等, 2022. 东寨港红树林沉积物中微生物群落结构特征及其对环境的响应. 地球科学, 47(3): 1122-1135. doi: 10.3799/dqkx.2022.025 赵慧慧, 肖娴, 裴孟, 等, 2016. 长期石油污染对盐碱化土壤中微生物群落分子生态网络的影响. 环境科学, 37(9): 3582-3589. 朱子超, 刘慧, 毛胜军, 等, 2023. 河水-地下水侧向交互带微生物群落分布特征及其主控因子. 地球科学, 48(10): 3832-3843. doi: 10.3799/dqkx.2021.217 -