An Improved Faraday Cup Configuration and Its Applying in Sr Isotopic Analysis of Rich⁃REE Apatite by LA⁃MC⁃ICP⁃MS
-
摘要: 稀土元素二价离子(REE2+)干扰校正是激光原位Sr同位素分析的难点.本研究将一种改进的MC-ICP-MS法拉第杯结构(能同步接收REE2+)与常规的干扰信号扣除法(RPSM)相结合,创新性实现了REE2+干扰的准确校正.系统评估了改进的法拉第杯结构(IFCC)对REE2+信号同步性以及比值(r:166,168,170Er2+/167Er2+和170,172,174,176Yb2+/173Yb2+)的影响.在IFCC上没有观察到REE2+信号之间的脱耦现象,表明IFCC适合与RPSM结合用于REE2+干扰校正;REE2+信号比值(r)与Er和Yb的天然同位素丰度比值(R:166,168,170Er/167Er和170,172,174,176Yb/173Yb)近似相等(r/R≈1),指示在一定条件下可以使用R和测量的167Er2+和173Yb2+信号准确计算出166,168,170Er2+和170,172,174,176Yb2+信号强度,进而实现REE2+干扰校正.加标溶液的Sr同位素SN-MC-ICP-MS分析结果表明,与IFCC结合,常规的干扰信号扣除法(RPSM,使用R做干扰校正系数)可有效校正Sr/Er≥3样品中的REE2+干扰,而增强的干扰信号扣除法(EPSM,使用测量的REE2+信号比值做干扰校正系数)可有效校正Sr/Er≥1样品中的REE2+干扰.应用IFCC,使用LA-MC-ICP-MS对两个富稀土元素磷灰石标准物质Durango(Sr/Er=7.4)和UWA-1(Sr/Er=2.8)进行了Sr同位素组成分析,87Sr/86Sr的测定值分别为0.706 27±0.000 14(2SD,n=19)和0.704 76±0.000 19(2SD,n=20),与报道的TIMS或MC-ICP-MS测定值在误差范围内一致,证实了该方法的可靠性.Abstract: It is still difficult to accurately correct the interferences of REE2+ in Sr isotopic analysis by LA-MC-ICP-MS. In this study, we corrected the interferences of REE2+ by RPSM (Routine Peak Stripping Method) combining use of an improved cup configuration of MC-ICP-MS allowing for synchronic detection of REE2+ signals. The effectiveness of IFCC (Improved Faraday Cup Configuration) was evaluated with respect to both the synchrony and the ratios of REE2+ signals. With IFCC, no decoupling of REE2+ signals was observed. This finding indicates that IFCC is well suited for RPSM to correct the interferences of REE2+. The ratios of REE2+ signals (r: 166, 168, 170Er2+/167Er2+和170, 172, 174, 176Yb2+/173Yb2+) are approximately equal to (r/R≈1) the natural isotopic abundant ratios of Er an Yb (R: 166, 168, 170Er/167Er和170, 172, 174, 176Yb/173Yb). This property cause IFCC to be well suited to correct interferences of REE2+ with the R and the measured signals of 167Er2+ and 173Yb2+. We also determined the Sr isotopic compositions of the Er and Yb-spiked 0.1 μg/g NBS987 Sr solutions by SN-MC-ICP-MS with IFCC, and the results attest that the interferences of REE2+ in the solutions with Sr/Er≥3 can be corrected using the RPSM (R as the interference correction factor), and those in the solutions with Sr/Er≥1 can be corrected using the EPSM (Enhanced Peak Stripping Method, measured r as the interference correction factor). Sr isotopic compositions of two rich-REE reference materials (Durango with Sr/Er=7.4, and UWA-1 with Sr/Er=2.8) were determined by LA-MC-ICP-MS with IFCC, and the determined 87Sr/86Sr of the two reference materials are 0.706 27±0.000 14 (2SD, n=19) and 0.704 76±0.000 19 (2SD, n=20), respectively, both of which agree with previously published values (determined by TIMS or MC-ICP-MS) within uncertainties.
-
Key words:
- Sr /
- isotopes /
- LA⁃MC⁃ICP⁃MS /
- double⁃charged ions of rare earth elements (REE2+) /
- apatite /
- geochemistry
-
图 2 REE2+信号之间的同步性
Fig. 2. Synchrony between the REE2+ signals
$ {I}_{Y{\mathrm{b}}^{2+}} $: $ {I}_{{170}_{Y\mathrm{b}}2+} $ or $ {I}_{{172}_{Y\mathrm{b}}2+} $, $ {I}_{{174}_{Y\mathrm{b}}2+} $, $ {I}_{{176}_{Y\mathrm{b}}2+} $; $ {I}_{E{\mathrm{r}}^{2+}} $: $ {I}_{{166}_{E\mathrm{r}}2+} $ or $ {I}_{{168}_{E\mathrm{r}}2+} $, $ {I}_{{170}_{E\mathrm{r}}2+} $
图 3 MC-ICP-MS磁场波动对REE2+信号的影响示意
M2+:166,168,170Er2+或170,172,174,176Yb2+信号;N2+:167Er2+或173Yb2+信号;图 3a据文献(Yang et al.,2014a)修改
Fig. 3. Effect of fluctuating magnetic field of MC-ICP-MS on the REE2+ signals
表 1 磷灰石标准物质元素含量和Sr同位素组成
Table 1. The chemical and Sr isotopic compositions of apatite reference materials
样品 CaO P2O5 Rb Sr Er Yb Sr/Er 87Sr/86Sr(±2SD) (%) (μg/g) Durango 53.94 42.25 0.12 476 64 47 7.40 0.706 328±0.000 023 UWA-1 53.67 40.12 0.15 1 186 421 311 2.82 0.704 748±0.000 017 注:Durango和UWA-1的化学成分和Sr同位素组成数据均来自 Yang et al.(2014b )的文献报道.表 2 改进的MC⁃ICP⁃MS法拉第杯结构(IFCC)
Table 2. The Improved Faraday Cup Configuration (IFCC) of MC-ICP-MS
质量数(AMU) L4 L3 L2 L1 Center H1 H2 H3 法拉第杯(M+) 82.906 83.407 83.907 84.909 85.909 86.410 86.910 87.912 待测离子
(N2+或N+)Sr+ 83.913
(84Sr+)85.909
(86Sr+)86.909
(87Sr+)87.906
(88Sr+)Kr+ 82.914
(83Kr+)83.912
(84Kr+)85.911
(86Kr+)Rb+ 84.912
(85Rb+)86.909
(87Rb+)Er2+ 82.965
(166Er2+)83.466
(167Er2+)83.966
(168Er2+)84.968
(170Er2+)Yb2+ 84.967
(170Yb2+)85.968
(172Yb2+)86.469
(173Yb2+)86.969
(174Yb2+)87.971
(176Yb2+)待测离子与法拉第杯检测质量数的偏差(AMU)=N+(或N2+)-M+ ΔSr+ 0.006 0 ‒0.001 ‒0.006 ΔKr+ 0.008 0.005 0.002 ΔRb+ 0.003 ‒0.001 ΔEr2+ 0.059 0.059 0.059 0.059 ΔYb2+ 0.059 0.059 0.059 0.059 0.059 注:待测离子的质荷比根据文献( de Laeter et al., 2003 )报道的同位素原子质量计算.表 3 LA⁃MC⁃ICP⁃MS操作参数
Table 3. Operating conditions of the LA-MC-ICP-MS
仪器 操作参数 MC⁃ICP⁃MS Neptune plus RF功率 1 200 W 加速电压 10 kV 冷却气流速 16 L/min 辅助气流速 0.8 L/min 样品气流速 1.0 L/min 取样锥 Ni(Ф=1.2 mm) 截取锥 H(Ф=0.78 mm) 屏蔽炬状态 ON 分析管道真空 1×10‒7 mbar 分析室真空 3×10‒8 mbar 氧化物产率(UO+/U+) < 0.2% 扫描积分时间 0.492 s 扫描次数/点 160(60次背景测量+100次样品测量) LA Resolution LR S155 能量密度 4 J/cm2 频率 8 Hz 剥蚀时间 60 s 束斑直径 74 μm 载气(He) 0.3 L/min 辅助气(N2) 6 mL/min 表 4 测量的REE2+信号比值
Table 4. The measured ratios of REE2+ signals
REE2+
信号比值166Er2+ /
167Er2+2RSD(%) 168Er2+ /
167Er2+2RSD(%) 170Er2+ /
167Er2+2RSD(%) 170Yb2+ /
173Yb2+2RSD(%) R 1.466 1.180 0.651 0.185 r1 1.309 1.5 0.921 2.7 0.541 2.4 0.142 2.2 r2 1.444 0.1 1.188 0.1 0.665 0.2 0.183 1.2 r1/R 0.893 0.781 0.830 0.765 r2/R 0.985 1.007 1.021 0.989 REE2+信号比值 172Yb2+ /
173Yb2+2RSD(%) 174Yb2+ /
173Yb2+2RSD(%) 176Yb2+ /
173Yb2+2RSD(%) 172Yb2+ /
173Yb2+2RSD(%) R 1.347 1.989 0.807 1.347 r1 0.940 2.9 1.291 3.1 0.520 3.0 0.940 2.9 r2 1.348 0.2 1.986 0.2 0.867 0.5 1.348 0.2 r1/R 0.698 0.649 0.644 0.698 r2/R 1.001 0.999 1.075 1.001 注:R为Er和Yb的天然同位素丰度比值. 表 5 富稀土元素磷灰石标准物质Sr同位素LA⁃MC⁃ICP⁃MS分析结果
Table 5. The Sr isotopic compositions of rich-REE reference materials determined by LA-MC-ICP-MS with the improved Faraday cup configuration
样品测点 平均离子信号强度(V) 同位素比值 167Er2+ 85Rb+ 173Yb2+ 88Sr+ 85Rb+_Corrected 84Sr/86Sr 2σ 87Sr/86Sr 2σ Durango-01 0.001 10 0.000 80 0.000 27 1.3 0.000 023 0.056 501 0.000 119 0.706 243 0.000 133 Durango-02 0.001 12 0.000 82 0.000 28 1.4 0.000 021 0.056 489 0.000 138 0.706 248 0.000 142 Durango-03 0.001 10 0.000 80 0.000 28 1.4 0.000 024 0.056 553 0.000 117 0.706 238 0.000 154 Durango-04 0.001 09 0.000 80 0.000 27 1.4 0.000 027 0.056 591 0.000 105 0.706 204 0.000 124 Durango-05 0.001 07 0.000 78 0.000 28 1.4 0.000 023 0.056 521 0.000 113 0.706 229 0.000 151 Durango-06 0.001 04 0.000 76 0.000 25 1.4 0.000 027 0.056 488 0.000 122 0.706 267 0.000 155 Durango-07 0.001 07 0.000 80 0.000 26 1.4 0.000 029 0.056 430 0.000 114 0.706 364 0.000 146 Durango-08 0.001 07 0.000 79 0.000 26 1.4 0.000 025 0.056 597 0.000 119 0.706 357 0.000 139 Durango-09 0.001 07 0.000 79 0.000 28 1.4 0.000 024 0.056 540 0.000 124 0.706 234 0.000 149 Durango-10 0.001 04 0.000 77 0.000 25 1.3 0.000 032 0.056 493 0.000 128 0.706 364 0.000 129 Durango-11 0.000 96 0.000 71 0.000 25 1.3 0.000 029 0.056 500 0.000 112 0.706 212 0.000 146 Durango-12 0.001 05 0.000 77 0.000 26 1.4 0.000 027 0.056 465 0.000 118 0.706 313 0.000 137 Durango-13 0.001 07 0.000 78 0.000 27 1.4 0.000 018 0.056 535 0.000 114 0.706 361 0.000 139 Durango-14 0.001 06 0.000 79 0.000 27 1.4 0.000 028 0.056 506 0.000 111 0.706 343 0.000 125 Durango-15 0.001 07 0.000 79 0.000 26 1.3 0.000 031 0.056 457 0.000 109 0.706 309 0.000 147 Durango-16 0.001 10 0.000 81 0.000 27 1.3 0.000 033 0.056 417 0.000 106 0.706 274 0.000 139 Durango-17 0.001 12 0.000 83 0.000 28 1.4 0.000 027 0.056 576 0.000 102 0.706 118 0.000 123 Durango-18 0.001 11 0.000 82 0.000 27 1.4 0.000 022 0.056 472 0.000 113 0.706 350 0.000 157 Durango-19 0.001 09 0.000 80 0.000 27 1.3 0.000 027 0.056 391 0.000 118 0.706 210 0.000 154 UWA-1-01 0.006 41 0.004 76 0.001 63 2.9 0.000 052 0.056 528 0.000 055 0.704 776 0.000 075 UWA-1-02 0.006 44 0.004 80 0.001 65 2.9 0.000 048 0.056 514 0.000 053 0.704 733 0.000 060 UWA-1-03 0.005 26 0.003 90 0.001 27 2.8 0.000 047 0.056 433 0.000 066 0.704 654 0.000 085 UWA-1-04 0.005 95 0.004 42 0.001 46 3.1 0.000 055 0.056 501 0.000 061 0.704 626 0.000 066 UWA-1-05 0.005 91 0.004 40 0.001 47 3.1 0.000 051 0.056 515 0.000 054 0.704 581 0.000 070 UWA-1-06 0.008 44 0.006 27 0.002 27 3.1 0.000 036 0.056 507 0.000 066 0.704 912 0.000 075 UWA-1-07 0.008 13 0.006 07 0.002 18 3.1 0.000 057 0.056 493 0.000 057 0.704 940 0.000 070 UWA-1-08 0.006 54 0.004 86 0.001 70 3.1 0.000 055 0.056 465 0.000 057 0.704 816 0.000 078 UWA-1-09 0.006 59 0.004 93 0.001 72 3.1 0.000 058 0.056 512 0.000 053 0.704 833 0.000 071 UWA-1-10 0.006 05 0.004 50 0.001 58 3.0 0.000 048 0.056 562 0.000 065 0.704 812 0.000 075 UWA-1-11 0.006 62 0.004 91 0.001 71 3.0 0.000 037 0.056 548 0.000 046 0.704 805 0.000 073 UWA-1-12 0.006 07 0.004 48 0.001 53 2.9 0.000 023 0.056 504 0.000 040 0.704 767 0.000 074 UWA-1-13 0.006 77 0.005 00 0.001 69 3.3 0.000 032 0.056 516 0.000 047 0.704 630 0.000 066 UWA-1-14 0.006 94 0.005 13 0.001 73 3.3 0.000 065 0.056 448 0.000 043 0.704 698 0.000 067 UWA-1-15 0.006 68 0.004 96 0.001 67 3.3 0.000 057 0.056 466 0.000 054 0.704 695 0.000 074 UWA-1-16 0.005 98 0.004 42 0.001 50 3.0 0.000 029 0.056 441 0.000 056 0.704 733 0.000 071 UWA-1-17 0.006 08 0.004 49 0.001 53 2.9 0.000 029 0.056 544 0.000 050 0.704 806 0.000 082 UWA-1-18 0.005 05 0.003 72 0.001 26 2.4 0.000 032 0.056 569 0.000 057 0.704 819 0.000 078 UWA-1-19 0.006 20 0.004 56 0.001 56 2.9 0.000 027 0.056 503 0.000 060 0.704 679 0.000 070 UWA-1-20 0.006 29 0.004 66 0.001 63 3.3 0.000 030 0.056 507 0.000 061 0.704 860 0.000 078 -
Bizzarro, M., Simonetti, A., Stevenson, R. K., et al., 2003. In Situ 87Sr/86Sr Investigation of Igneous Apatites and Carbonates Using Laser⁃Ablation MC⁃ICP⁃MS. Geochimica et Cosmochimica Acta, 67(2): 289-302. https://doi.org/10.1016/S0016⁃7037(02)01048⁃7 Bruand, E., Fowler, M., Storey, C., et al., 2017. Apatite Trace Element and Isotope Applications to Petrogenesis and Provenance. American Mineralogist, 102(1): 75-84. https://doi.org/10.2138/am⁃2017⁃5744 Charlier, B. L. A., Ginibre, C., Morgan, D., et al., 2006. Methods for the Microsampling and High⁃Precision Analysis of Strontium and Rubidium Isotopes at Single Crystal Scale for Petrological and Geochronological Applications. Chemical Geology, 232(3-4): 114-133. https://doi.org/10.1016/j.chemgeo.2006.02.015 Christensen, J. N., Halliday, A. N., Lee, D. C., et al., 1995. In Situ Sr Isotopic Analysis by Laser Ablation. Earth and Planetary Science Letters, 136(1): 79-85. https://doi.org/10.1016/0012⁃821X(95)00181⁃6 de Laeter, J. R., Böhlke, J. K., De Bièvre, P., et al., 2003. Atomic Weights of the Elements. Review 2000 (IUPAC Technical Report). Pure and Applied Chemistry, 75(6): 683-800. https://doi.org/10.1351/pac200375060683 Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP⁃MS. Applied Surface Science, 127: 278-286. https://doi.org/10.1016/S0169⁃4332(97)00643⁃0 Ehrlich, S., Gavrieli, I., Dor, L. B., et al., 2001. Direct High⁃Precision Measurements of the 87Sr/86Sr Isotope Ratio in Natural Water, Carbonates and Related Materials by Multiple Collector Inductively Coupled Plasma Mass Spectrometry (MC⁃ICP⁃MS). Journal of Analytical Atomic Spectrometry, 16(12): 1389-1392. https://doi.org/10.1039/b107996b Guillong, M., Horn, I., Günther, D., 2003. A Comparison of 266 nm, 213 nm and 193 nm Produced from a Single Solid State Nd: YAG Laser for Laser Ablation ICP⁃MS. Journal of Analytical Atomic Spectrometry, 18(10): 1224-1230. https://doi.org/10.1039/B305434A Hart, S., Ball, L., Jackson, M., 2005. Sr Isotope by Laser Ablation PIMMS: Application to Cpx from Samoan Peridotite Xenoliths. WHOI Plasma Facility Open File Technical Report. Horstwood, M. S. A., Evans, J. A., Montgomery, J., 2008. Determination of Sr Isotopes in Calcium Phosphates Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry and Their Application to Archaeological Tooth Enamel. Geochimica et Cosmochimica Acta, 72(23): 5659-5674. https://doi.org/10.1016/j.gca.2008.08.016 Hu, Z. C., Gao, S., Liu, Y. S., et al., 2008. Signal Enhancement in Laser Ablation ICP⁃MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 23(8): 1093-1101. https://doi.org/10.1039/B804760J Jochum, K. P., Stoll, B., Weis, U., et al., 2009. In Situ Sr Isotopic Analysis of Low Sr Silicates Using LA⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 24(9): 1237-1243. https://doi.org/10.1039/B905045K Lewis, J., Coath, C. D., Pike, A. W. G., 2014. An Improved Protocol for 87Sr/86Sr by Laser Ablation Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry Using Oxide Reduction and a Customised Plasma Interface. Chemical Geology, 390: 173-181. https://doi.org/10.1016/j.chemgeo.2014.10.021 Lin, J., Liu, Y. S., Chen, H. H., et al., 2015. Review of High⁃Precision Sr Isotope Analyses of Low⁃Sr Geological Samples. Journal of Earth Science, 26(5): 763-774. https://doi.org/10.1007/s12583⁃015⁃0593⁃0 Meija, J., Coplen, T. B., Berglund, M., et al., 2016. Isotopic Compositions of the Elements 2013 (IUPAC Technical Report). Pure and Applied Chemistry, 88(3): 293-306. https://doi.org/10.1515/pac⁃2015⁃0503 Müller, W., Anczkiewicz, R., 2016. Accuracy of Laser⁃Ablation (LA)⁃MC⁃ICPMS Sr Isotope Analysis of (Bio)Apatite: A Problem Reassessed. Journal of Analytical Atomic Spectrometry, 31(1): 259-269. https://doi.org/10.1039/c5ja00311c Munoz, P. M., Alves, A., Azzone, R. G., et al., 2016. In Situ Sr Isotope Analyses by LA⁃MC⁃ICP⁃MS of Igneous Apatite and Plagioclase from Magmatic Rocks at the CPGeo⁃USP. Brazilian Journal of Geology, 46(suppl. 1): 227⁃243. Paton, C., Woodhead, J. D., Hergt, J. M., et al., 2007. Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA⁃MC⁃ICP⁃MS. Geostandards and Geoanalytical Research, 31(4): 321-330. https://doi.org/10.1111/j.1751⁃908x.2007.00131.x Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA⁃MC⁃ICPMS. Chemical Geology, 211(1-2): 135-158. https://doi.org/10.1016/j.chemgeo.2004.06.025 Russell, W. A., Papanastassiou, D. A., Tombrello, T. A., 1978. Ca Isotope Fractionation on the Earth and Other Solar System Materials. Geochimica et Cosmochimica Acta, 42(8): 1075-1090. https://doi.org/10.1016/0016⁃7037(78)90105⁃9 Simonetti, A., Buzon, M. R., Creaser, R. A., 2008. In⁃Situ Elemental and Sr Isotope Investigation of Human Tooth Enamel by Laser Ablation⁃(MC)⁃ICP⁃MS: Successes and Pitfalls. Archaeometry, 50(2): 371-385. https://doi.org/10.1111/j.1475⁃4754.2007.00351.x Sun, C. Y., Cawood, P. A., Xu, W. L., et al., 2022. In Situ Geochemical Composition of Apatite in Granitoids from the Eastern Central Asian Orogenic Belt: A Window into Petrogenesis. Geochimica et Cosmochimica Acta, 317: 552-573. https://doi.org/10.1016/j.gca.2021.10.028 Sun, J. F., Yang, J. H., Wu, F. Y., 2009. Application of In⁃Situ Isotopic Analysis to Granite Genesis. Earth Science Frontiers, 16(2): 129-139 (in Chinese with English abstract). Vroon, P. Z., van der Wagt, B., Koornneef, J. M., et al., 2008. Problems in Obtaining Precise and Accurate Sr Isotope Analysis from Geological Materials Using Laser Ablation MC⁃ICPMS. Analytical and Bioanalytical Chemistry, 390(2): 465-476. https://doi.org/10.1007/s00216⁃007⁃1742⁃9 Waight, T., Baker, J., Peate, D., 2002. Sr Isotope Ratio Measurements by Double⁃Focusing MC⁃ICPMS: Techniques, Observations and Pitfalls. International Journal of Mass Spectrometry, 221(3): 229-244. https://doi.org/10.1016/S1387⁃3806(02)01016⁃3 Woodhead, J., Swearer, S., Hergt, J., et al., 2005. In Situ Sr⁃Isotope Analysis of Carbonates by LA⁃MC⁃ICP⁃MS: Interference Corrections, High Spatial Resolution and an Example from Otolith Studies. Journal of Analytical Atomic Spectrometry, 20(1): 22-27. https://doi.org/10.1039/B412730G Yang, Y. H., Wu, F. Y., Xie, L. W., et al., 2014a. Re⁃Evaluation of Interferences of Doubly Charged Ions of Heavy Rare Earth Elements on Sr Isotopic Analysis Using Multi⁃Collector Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 97: 118-123. https://doi.org/10.1016/j.sab.2014.05.006 Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014b. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U⁃Th⁃Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012 Yang, Y. H., Wu, F. Y., Xie, L. W., et al., 2009. In⁃Situ Sr Isotopic Measurement of Natural Geological Samples by LA⁃MC⁃ICP⁃MS. Acta Petrologica Sinica, 25(12): 3431-3441 (in Chinese with English abstract). Yang, Z. P., Fryer, B. J., Longerich, H. P., et al., 2011.785 nm Femtosecond Laser Ablation for Improved Precision and Reduction of Interferences in Sr Isotope Analyses Using MC⁃ICP⁃MS. Journal of Analytical Atomic Spectrometry, 26(2): 341-351. https://doi.org/10.1039/C0JA00131G Zhu, L., Zhang, G. L., Liu, Y. S., et al., 2020. Improved In⁃Situ Determination of Sr Isotope Ratio in Silicate Samples Using LA⁃MC⁃ICP⁃MS and Its Wider Application for Fused Rock Powder. Journal of Earth Science, 31(2): 262-270. https://doi.org/10.1007/s12583⁃019⁃1214⁃0 Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2007. Spatial Variations of Trace Element and Sr Isotopic Compositions of Apatite in Eclogite from the CCSD Main Hole. Acta Petrologica Sinica, 23(12): 3267-3274 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.12.019 孙金凤, 杨进辉, 吴福元, 2009. 原位微区同位素分析在花岗岩成因研究中的应用. 地学前缘, 16(2): 129-139. doi: 10.3321/j.issn:1005-2321.2009.02.009 杨岳衡, 吴福元, 谢烈文, 等, 2009. 地质样品Sr同位素激光原位等离子体质谱(LA⁃MC⁃ICP⁃MS)测定. 岩石学报, 25(12): 3431-3441. 宗克清, 刘勇胜, 高长贵, 等, 2007. CCSD主孔榴辉岩中磷灰石微区微量元素和Sr同位素组成研究. 岩石学报, 23(12): 3267-3274. doi: 10.3969/j.issn.1000-0569.2007.12.019 -